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Abstract: A two-level group-specific curve model is such that the mean response of each member
of a group is a separate smooth function of a predictor of interest. The three-level extension is such
that one grouping variable is nested within another one, and higher level extensions are analogous.
Streamlined variational inference for higher level group-specific curve models is a challenging problem.
We confront it by systematically working through two-level and then three-level cases and making use of
the higher level sparse matrix infrastructure laid down in (Nolan and Wand, 2020, ANZIAM Journal,
doi: 10.1017/S1446181120000061). A motivation is analysis of data from ultrasound technology for
which three-level group-specific curve models are appropriate. Whilst extension to the number of levels
exceeding three is not covered explicitly, the pattern established by our systematic approach sheds light
on what is required for even higher level group-specific curve models.
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1 Introduction

We provide explicit algorithms for fitting and approximate Bayesian inference for
multilevel models involving, potentially, thousands of noisy curves. The algorithms
include covariance parameter estimation and allow for pointwise credible intervals
around the fitted curves. Contrast function fitting and inference is also supported by
our approach. Both two-level and three-level situations are covered, and a template
for even higher level situations is laid down.

Models and methodology for statistical analyses of grouped data for which
the basic unit is a noisy curve continues to be an important area of research. A
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driving force is rapid technological change which is resulting in the generation
of curve-type data at fine resolution levels. Examples of such technology include
accelerometers (e.g., Goldsmith et al., 2015) personal digital assistants (e.g., Trail
et al., 2014) and quantitative ultrasound (e.g., Wirtzfeld et al., 2015). In some
applications, curve-type data have higher levels of grouping, with groups at one level
nested inside other groups. Our focus here is streamlined variational inference for
such circumstances.

Some motivating data is shown in Figure 1 from an experiment involving
quantitative ultrasound technology (Wirtzfeld et al., 2015). Each curve corresponds
to a logarithmically transformed backscatter coefficient, with the backscatter
coefficient measurements in units centimeters−1steradian−1, over a fine grid of
frequency values for tumours in laboratory mice, with exactly 1 tumour per mouse.
Each backscatter/frequency curve corresponds to one of five slices of the same tumour,
where slices correspond to scan lines at different probe locations. The slices are
grouped according to being from one of 10 tumours. We refer to such data as
three-level data with frequency measurements at level 1, slices being the level 2
groups and tumours constituting the level 3 groups. The gist of this article is efficient
and flexible variational fitting and inference for such data that scales well to much
larger multilevel datasets. Indeed, our algorithms are linear in the number of groups
at both levels 2 and 3. Simulation study results given later in this article show that
curve-type data with thousands of groups can be analysed quickly using our new
methodology. Depending on sample sizes and implementation language, fitting times
range from a few seconds to several minutes. In contrast, naı̈ve implementations
become infeasible when the number of groups are in the several hundreds due to
storage and computational demands.

We work with a variant of group-specific curve models that at least go back to
Donnelly et al. (2015). Other contributions of this type include Brumback and Rice
(1998), Verbyla et al. (1999), Wang (1998) and Zhang et al. (1998). The specific
formulation that we use is that given by Durban et al. (2005) which involves an
embedding within the class of linear mixed models (Robinson, 1991, e.g) with
low-rank smoothing splines used for flexible function modelling and fitting. More
recent contributions in this area such as Djeundje and Currie (2010), Heckman et al.
(2013) and Djeundje (2016) point out potential pitfalls and provide remedies for
group-specific curve models and other models involving mixed model-based spline
penalization. For example, Heckman et al. (2013) advocate subject-area modelling of
covariance structures and the use of sandwich-type standard errors, whereas Djeundje
(2016) advocates the use of centring constraints. Whilst our streamlined algorithms
for higher level group-specific curve models and variability bands assume the basic
form corresponding to the first set of references in this paragraph, embellishments
of the type proposed in the more recent literature could be considered depending on
the nature of the data to which the methodology is applied.

We consider both frequentist and Bayesian group-specific curve models. The use of
Bayesian versions, with variational approximations, is in keeping with the emerging
variational Bayesian inference paradigm in statistical and machine learning contexts
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Figure 1 Illustrative three-level curve-type data. The response variable is 10 log10(backscatter coefficient)
according to ultrasound technology. The units of backscatter coefficient are centimeters−1steradian−1.
Level 1 corresponds to different ultrasound frequencies and matches the horizontal axes in each panel.
Level 2 corresponds to different Slices of a Tumour due to differing probe locations. Level 3 corresponds to
different Tumours with one Tumour for each of 10 laboratory mice

in which scalability to very large problems is paramount (e.g., Blei, Kucukelbir and
McAuliffe, 2017).

Even though approximate Bayesian variational inference is our overarching goal,
we also provide an important parallelism involving classical frequentist inference.
Contemporary mixed model software such as nlme() (Pinheiro et al., 2018) and
lme4() (Bates et al., 2015) in the R language provide streamlined algorithms
for obtaining the best linear unbiased predictions of fixed and random effects in
multilevel mixed models with details given in, for example, Pinheiro and Bayes
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(2000). However, the sub-blocks of the covariance matrices required for construction
of pointwise confidence interval bands around the estimated curves are not provided
by such software. In the variational Bayesian analog, these sub-blocks are required
for covariance parameter fitting and inference which, in turn, are needed for curve
estimation. A significant contribution of this article is streamlined computation
for both the best linear unbiased predictors and its corresponding covariance
computation. Similar mathematical results lead to the mean field variational Bayesian
inference equivalent. We present explicit ready-to-code algorithms for both two-level
and three-level group-specific curve models. Extensions to higher level models could
be derived using the blueprint that we establish here. Nevertheless, the algebraic
overhead is increasingly burdensome with each increment in the number of levels.
It is prudent to treat each multilevel case separately and here we already require
several pages to cover two-level and three-level group-specific curve models. To
our knowledge, this is the first article to provide streamlined algorithms for fitting
three-level group-specific curve models.

Another important aspect of our group-specific curve fitting algorithms
is the fact that they make use of the SolveTwoLevelSparseLeastSquares and
SolveThreeLevelSparseLeastSquares algorithms developed for ordinary linear mixed
models in Nolan et al. (2020). This realization means that the algorithms listed
in Sections 2 and 3 are more concise and code-efficient: There is no need
to repeat the implementation of these two fundamental algorithms for stable
QR-based solving of higher level sparse linear systems. Sections S.12–S.13 of the
supplementary materials provide details on the SolveTwoLevelSparseLeastSquares and
SolveThreeLevelSparseLeastSquares algorithms.

Section 2 deals with the two-level case, and the three-level case is covered in
Section 3. In Section 4, we provide some assessments concerning the accuracy and
speed of the new variational inference algorithms. Concluding remarks are given in
Section 5.

2 Two-level models

The simplest version of group-specific curve models involves the pairs (xij,yij) where
xij is the jth value of the predictor variable within the ith group and yij is the
corresponding value of the response variable. We let m denote the number of groups
and ni denote the number of predictor/response pairs within the ith group. The
Gaussian response two-level group-specific curve model is

yij = f(xij) + gi(xij) + εij, εij
ind.
∼ N(0, σ2

ε ), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, (2.1)

where the smooth function f is the global regression mean function and the smooth
functions gi, 1 ≤ i ≤ m, allow for flexible group-specific deviations from f . As in
Durban et al. (2005), we use mixed model-based penalized basis functions to model
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f and the gi. Specifically,

f(x) = β0 + β1 x +
Kgbl

∑
k=1

ugbl,k zgbl,k(x), ugbl,k

ind.
∼ N(0, σ2

gbl) and

gi(x) = ulin,i0 + ulin,i1 x +
Kgrp

∑
k=1

ugrp,ik zgrp,k(x), [
ulin,i0

ulin,i1

]
ind.
∼ N(0,6), ugrp,ik

ind.
∼ N(0, σ2

grp),

where {zgbl,k(⋅) ∶ 1 ≤ k ≤ Kgbl} and {zgrp,k(⋅) ∶ 1 ≤ k ≤ Kgrp} are suitable sets of basis
functions. Splines and wavelet families are the most common choices for the zgbl,k(⋅)
and zgrp,k(⋅). In our illustrations and simulation studies, we use the canonical cubic
O’Sullivan spline basis as described in Section 4 of Wand and Ormerod (2008), which
corresponds to a low-rank version of classical smoothing splines (e.g., Wahba, 1990).
The variance parameters σ2

gbl and σ2
grp control the effective degrees of freedom used for

the global mean and group-specific deviation functions, respectively. Lastly, 6 is a
2 × 2 unstructured covariance matrix for the coefficients of the group-specific linear
deviations.

We also use the notation:

xi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xi1

⋮

xini

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and yi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

yi1

⋮

yini

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for the vectors of predictors and responses corresponding to the ith group. Notation
such as zgbl,1(xi) denotes the ni × 1 vector containing zgbl,1(xij) values, 1 ≤ j ≤ ni.

The remainder of this section is concerned with streamlined methodologies for
estimation and approximate inference for the model parameters. The basis dimension
variables Kgbl and Kgrp are not estimated via these methodologies and are additional
tuning parameters that need to be chosen another way. Section 2.4 of Harezlak et al.
(2018) summarizes theory, methodology and software concerned with this choice
for ordinary nonparametric regression using penalized splines. Theory such as that
presented in Kauermann et al. (2009) reveals that the basis dimension has a relatively
minor effect after a particular threshold is reached. This suggests taking Kgbl and Kgrp

to be large relative to the predictor sample sizes, but this needs to be mitigated against
computational cost. In practice, we recommend starting with 10–15 basis functions
for each level of the hierarchy and assessing sensitivity to these choices using fits
based on larger basis sizes.

2.1 Best linear unbiased prediction

Model (2.1) is expressible as a Gaussian response linear mixed model as follows:

y∣u ∼ N(Xβ +Z u, σ2
ε I), u ∼ N(0,G), (2.2)
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where

X ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X1

⋮

Xm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with X i ≡ [1 xi] and β ≡ [
β0

β1
]

are the fixed effects design matrix and coefficients corresponding to the linear
component of f . The random effects design matrix Z and corresponding random
effects vector u are partitioned according to

Z = [Zgbl blockdiag
1≤i≤m

([X i Zgrp,i])] and u =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ugbl

[
ulin,i

ugrp,i

]
1≤i≤m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.3)

where ugbl = [ugbl,1 ⋯ ugbl,Kgbl
]T are the coefficients corresponding to the non-linear

component of f , ulin,i = [ulin,i0 ulin,i1]
T are the coefficients corresponding to the linear

component of gi and ugrp,i = [ugrp,i1 ⋯ ugrp,iKgrp]
T are the coefficients corresponding to

the non-linear component of gi, 1 ≤ i ≤ m. In (2.3), Zgbl ≡ stack1≤i≤m(Zgbl,i) and the
matrices Zgbl,i and Zgrp,i, 1 ≤ i ≤ m, contain, respectively, spline basis functions for the
global mean function f and the ith group deviation functions gi. Specifically,

Zgbl,i ≡ [zgbl,1(xi) ⋯ zgbl,Kgbl
(xi) ] and Zgrp,i = [zgrp,1(xi) ⋯ zgrp,Kgrp(xi) ]

for 1 ≤ i ≤ m. The corresponding fixed and random effects vectors are

ugbl ∼ N(0, σ2
gblIKgbl) and [

ulin,i

ugrp,i

]
ind.
∼ N ([

0
0
] , [

6 O

O σ2
grpIKgrp

]) , 1 ≤ i ≤ m.

Hence, the full random effects covariance matrix is

G = Cov(u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
gblIKgbl O

O Im ⊗ [
6 O

O σ2
grpIKgrp

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.4)

Next define the matrices

C ≡ [X Z], DBLUP ≡ [
O O

O G−1 ] and RBLUP ≡ σ
2
ε I. (2.5)
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The best linear unbiased predictor of [βT uT]T and corresponding covariance matrix
are

[
β̂

û
] = (CTR−1

BLUP
C +DBLUP)

−1CTR−1
BLUP

y

and Cov([
β̂

û − u
]) = (CTR−1

BLUP
C +DBLUP)

−1.

(2.6)

This covariance matrix grows quadratically in m, so its storage becomes infeasible
for large numbers of groups. However, only the following sub-blocks are required
for adding pointwise confidence intervals to curve estimates:

Cov([
β̂

ûgbl − ugbl

]) = top left-hand (2 +Kgbl) × (2 +Kgbl)

sub-block of (CTR−1
BLUP

C +DBLUP)
−1,

Cov([
ûlin,i − ulin,i

ûgrp,i − ugrp,i

]) = subsequent (2 +Kgrp) × (2 +Kgrp) diagonal

sub-blocks of (CTR−1
BLUP

C +DBLUP)
−1

below Cov([
β̂

ûgbl − ugbl

]), 1 ≤ i ≤ m, and

E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûlin,i − ulin,i

ûgrp,i − ugrp,i

]

T⎫⎪⎪
⎬
⎪⎪⎭

= subsequent (2 +Kgbl) × (2 +Kgrp) sub-blocks

of (CTR−1
BLUP

C +DBLUP)
−1 to the right of

Cov([
β̂

ûgbl − ugbl

]), 1 ≤ i ≤ m.

(2.7)

As in Nolan et al. (2020), we define the generic two-level sparse matrix problem
to be determination of the vector x which minimizes the least squares criterion

∥b − Bx∥2 where ∥v∥2 ≡ vTv for any column vector v, (2.8)
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with B having the two-level sparse form

B ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1

●

B1 O ⋯ O

B2 O
●

B2 ⋯ O

⋮ ⋮ ⋮ ⋱ ⋮

Bm O O ⋯
●

Bm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and b partitioned according to b ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

⋮

bm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.9)

In (2.9), for any 1 ≤ i ≤ m, the matrices Bi,
●

Bi and bi each have the same number of

rows. The numbers of columns in Bi and
●

Bi are arbitrary, whereas the bi are column
vectors. In addition to solving for x, the sub-blocks of (BTB)−1 corresponding to
the non-sparse regions of BTB are included in our definition of a two-level sparse
matrix least squares problem. Algorithm A.2 of Nolan et al. (2020) provides a stable
and efficient solution to this problem and labels it the SolveTwoLevelSparseLeastSquares
algorithm. Section S.13 of the supplementary materials contains details regarding
this algorithm. It uses the the following notation for sub-blocks of x ≡ (BTB)−1BTb
and A−1, where A ≡ BTB:

x ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2,1

x2,2

⋮

x2,m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and A−1
≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12,1 A12,2
⋯ A12,m

A12,1 T A22,1
× ⋯ ×

A12,2 T
× A22,2

⋯ ×

⋮ ⋮ ⋮ ⋱ ⋮

A12,m T
× × ⋯ A22,m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.10)

In Nolan et al. (2020), we used SolveTwoLevelSparseLeastSquares for fitting two-level
linear mixed models. However, precisely the same algorithm can be used for fitting
two-level group-specific curve models because of the following.

Result 1Computation of [β̂
T

ûT
]T and each of the sub-blocks of Cov([β̂

T
(û − u)T]T)

listed in (2.7) are expressible as solutions to the two-level sparse matrix least squares
problem:

∥b − B [
β

u
]∥

2

,

Statistical Modelling xxxx; xx(x): 1–41
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where the non-zero sub-blocks B and b, according to the notation in (2.9), are for
1 ≤ i ≤ m:

bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε yi

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X i σ−1

ε Zgbl,i

O m−1/2σ−1
gbl IKgbl

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and
●

Bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X i σ

−1
ε Zgrp,i

O O

6−1/2 O

O σ−1
grp IKgrp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with each of these matrices having ñi = ni +Kgbl + 2 +Kgrp rows and with Bi having p =

2 +Kgbl columns and
●

Bi having q = 2 +Kgrp columns. The solutions are, with sub-block
labelling according to (2.10),

[
β̂

ûgbl

] = x1, Cov([
β̂

ûgbl − ugbl

]) = A11

and

[
ûlin,i

ûgrp,i

] = x2,i, E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûlin,i − ulin,i

ûgrp,i − ugrp,i

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,i
,

Cov([
ûlin,i − ulin,i

ûgrp,i − ugrp,i

]) = A22,i
, 1 ≤ i ≤ m.

A derivation of Result 1 is given in Section S.1 of the supplementary materials.
Algorithm 1 encapsulates streamlined best linear unbiased prediction computation
together with coefficient covariance matrix sub-blocks of interest.
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Algorithm 1 Streamlined algorithm for obtaining best linear unbiased predictions
and corresponding covariance matrix components for the two-level group-specific
curves model

Inputs: yi(ni × 1), X i(ni × 2), Zgbl,i(ni × Kgbl), Zgrp,i(ni × Kgrp), 1 ≤ i ≤ m;

σ
2
ε , σ

2
gbl, σ

2
grp > 0, 6(q × q), symmetric and positive definite.

For i = 1, . . . ,m:

bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε yi

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε X i σ

−1
ε Zgbl,i

O m−1/2
σ
−1
gbl IKgbl

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

●
Bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε X i σ

−1
ε Zgrp,i

O O

6−1/2 O

O σ
−1
grpIKgrp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S1 ←Ð SolveTwoLevelSparseLeastSquares({(bi,Bi,
●

Bi) ∶ 1 ≤ i ≤ m})

⎡⎢⎢⎢⎢⎣

β̂

ûgbl

⎤⎥⎥⎥⎥⎦
←Ð x1 component of S1 ; Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎞
⎠
←Ð A11 component of S1

For i = 1, . . . ,m:
⎡⎢⎢⎢⎢⎣

ûlin,i

ûgrp,i

⎤⎥⎥⎥⎥⎦
←Ð x2,i component of S1

Cov
⎛
⎝

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

⎞
⎠
←Ð A22,i component of S1

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,i component of S1

Output:

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl

⎤⎥⎥⎥⎥⎦
, Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

ûlin,i

ûgrp,i

⎤⎥⎥⎥⎥⎦
, Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠
∶ 1 ≤ i ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠
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Streamlined variational inference for higher level group-specific curve models 11

2.2 Mean field variational Bayes

We now consider the following Bayesian extension of (2.2) and (2.4):

y∣β,u, σ2
ε ∼ N(Xβ +Z u, σ2

ε I), u∣σ2
gbl, σ

2
grp,6 ∼ N(0,G), G as defined in (2.4),

β ∼ N(µβ,6β), σ2
ε ∣aε ∼ Inverse-χ2(νε,1/aε), aε ∼ Inverse-χ2(1,1/(νεs2

ε)),

σ2
gbl∣agbl ∼ Inverse-χ2(νgbl,1/agbl), agbl ∼ Inverse-χ2(1,1/(νgbls2

gbl)),

σ2
grp∣agrp ∼ Inverse-χ2(νgrp,1/agrp), agrp ∼ Inverse-χ2(1,1/(νgrps2

grp)),

6∣A6 ∼ Inverse-G-Wishart(Gfull, ν6 + 2,A−1
6

),

A6 ∼ Inverse-G-Wishart(Gdiag,1,3A6
), 3A6

≡ {ν6diag(s2
6, 1, s

2
6, 2)}

−1.
(2.11)

Here the 2 × 1 vector µβ and 2 × 2 symmetric positive definite matrix 6β are
hyperparameters corresponding to the prior distribution on β and

νε, sε, νgbl, sgbl, νgrp, sgrp, ν6, s6, 1, s6, 2 > 0

are hyperparameters for the variance and covariance matrix parameters. Details
on the Inverse G-Wishart distribution, and the Inverse-χ2 special case, are given in
Section S.3 of the supplementary materials. The auxiliary variable aε is defined so that
σε has a Half-t distribution with degrees of freedom parameter νε and scale parameter
sε, with larger values of sε corresponding to greater noninformativity. Analogous
comments apply to the other standard deviation parameters. Setting ν6 = 2 leads to
the correlation parameter in 6 having a Uniform distribution on (−1,1) (Huang and
Wand, 2013).

Throughout this article, we use p generically to denote a density function
corresponding to random quantities in Bayesian models such as (2.11). For example,
p(β) denotes the prior density function of β and p(u∣σ2

gbl, σ
2
grp,6) denotes the density

function of u conditional on (σ2
gbl, σ

2
grp,6). Now consider the following mean field

restriction on the joint posterior density function of all parameters in (2.11):

p(β,u,aε,agbl,agrp,A6, σ
2
ε , σ

2
gbl, σ

2
grp,6∣y) ≈ q(β,u,aε,agbl,agrp,A6) q(σ

2
ε , σ

2
gbl, σ

2
grp,6).

(2.12)
Here, generically, each q denotes an approximate posterior density function of the
random vector indicated by its argument according to the mean field restriction
(2.12). Then application of the minimum Kullback–Leibler divergence equations
(e.g., equation (10.9) of Bishop, 2006) leads to the optimal q-density functions for
the parameters of interest being as follows:

Statistical Modelling xxxx; xx(x): 1–41



12 M. Menictas et al.

q∗(β,u) has a N(µq(β,u),6q(β,u)) distribution,

q∗(σ2
ε ) has an Inverse-χ2(ξq(σ2

ε )
, λq(σ2

ε )
) distribution,

q∗(σ2
gbl) has an Inverse-χ2(ξq(σ2

gbl)
, λq(σ2

gbl)
) distribution,

q∗(σ2
grp) has an Inverse-χ2(ξq(σ2

grp)
, λq(σ2

grp)
) distribution

and q∗(6) has an Inverse-G-Wishart(Gfull, ξq(6),3q(6)) distribution.

The optimal q-density parameters are determined via an iterative coordinate ascent
algorithm, with details given in Section S.5 of this article’s supplementary materials.
The stopping criterion is based on the variational lower bound on the marginal
likelihood (e.g., Bishop, 2006, Section 10.2.2) and denoted p(y; q). Its logarithmic
form and derivation are given in Section S.6 of the supplementary materials.

Note that updates for µq(β,u) and 6q(β,u) may be written

µq(β,u) ← (CTR−1
MFVB

C +DMFVB)
−1

(CTR−1
MFVB

y + oMFVB) and 6q(β,u) ← (CTR−1
MFVB

C +DMFVB)
−1,

(2.13)
where

RMFVB ≡ µ
−1
q(1/σ2

ε )
I, DMFVB ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6−1
β O O

O µq(1/σ2
gbl)

I O

O O blockdiag
1≤i≤m

⎡
⎢
⎢
⎢
⎣

Mq(6−1
)

O
O µq(1/σ2

grp)
I

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and oMFVB ≡ [
6−1
β µβ

0
] .

(2.14)

For increasingly large numbers of groups, the matrix 6q(β,u) approaches a size
that is untenable for random access memory storage on standard 2020s workplace
computers. However, only the following relatively small sub-blocks of 6q(β,u) are
required for variational inference concerning the variance and covariance matrix
parameters:

6q(β,ugbl)
= top left-hand (2 +Kgbl) × (2 +Kgbl) sub-block of (CTR−1

MFVB
C +DMFVB)

−1,

6q(ulin,i,ugrp,i)
= subsequent (2 +Kgrp) × (2 +Kgrp) diagonal sub-blocks of

(CTR−1
MFVB

C +DMFVB)
−1 below 6q(β,ugbl)

, 1 ≤ i ≤ m, and
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Streamlined variational inference for higher level group-specific curve models 13

Eq

⎧⎪⎪
⎨
⎪⎪⎩

([
β

ugbl

] −µq(β,ugbl)
)([

ulin,i

ugrp,i

] −µq(ulin,i,ugrp,i))
)

T⎫⎪⎪
⎬
⎪⎪⎭

= subsequent

(2 +Kgbl) × (2 +Kgrp) sub-blocks of (CTR−1
MFVB

C +DMFVB)
−1

to the right of 6q(β,ugbl)
, 1 ≤ i ≤ m.

(2.15)

Our streamlined mean field variational Bayes algorithm depends on Result 2.

Result 2The mean field variational Bayes updates ofµq(β,u) and each of the sub-blocks
of 6q(β,u) in (2.15) are expressible as a two-level sparse matrix least squares problem
of the form:

∥b − Bµq(β,u)∥
2
,

where the non-zero sub-blocks B and b, according to the notation in (2.9), are, for
1 ≤ i ≤ m,

bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
yi

m−1/26
−1/2
β

µβ

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X i µ

1/2
q(1/σ2

ε )
Zgbl,i

m−1/26
−1/2
β

O

O m−1/2µ
1/2
q(1/σ2

gbl)
IKgbl

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

●

Bi ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X i µ

1/2
q(1/σ2

ε )
Zgrp,i

O O

O O

M1/2
q(6−1

)
O

O µ
1/2
q(1/σ2

grp)
IKgrp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with each of these matrices having ñi = ni + 2 +Kgbl + 2 +Kgrp rows and with Bi having

p = 2 +Kgbl columns and
●

Bi having q = 2 +Kgrp columns. The solutions are, with
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14 M. Menictas et al.

sub-block labelling according to (2.10),

µq(β,ugbl)
= x1, 6q(β,ugbl)

= A11
,

µq(ulin,i,ugrp,i)
= x2,i, 6q(ulin,i,ugrp,i)

= A22,i
,

and

Eq

⎧⎪⎪
⎨
⎪⎪⎩

[
β −µq(β)

ugbl −µq(ugbl)

] [
ulin,i −µq(ulin,i)

ugrp,i −µq(ugrp,i)

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,i
,1 ≤ i ≤ m.

Algorithm 2 utilizes Result 2 to facilitate streamlined computation of the
variational parameters.

Lastly, we note that Algorithm 2 is loosely related to Algorithm 2 of Lee and Wand
(2016). One difference is that we are treating the Gaussian, rather than Bernoulli,
response situation here. In addition, we are using the recent sparse multilevel matrix
results of Nolan and Wand (2020) which are amenable to higher level extensions,
such as the three-level group-specific curve model treated in Section 3.

2.3 Contrast function extension

In many curve-type data applications, the data can be categorized as being from two
or more types. Of particular interest in such circumstances are contrast function
estimates and accompanying standard errors. The streamlined approaches used
in Algorithms 1 and 2 still apply for the contrast function extension regardless
of the number of categories. The two category situation, where there is a single
contrast function, is described here. The extension to higher numbers of categories
is straightforward.

Suppose that the (xij,yij) pairs are from one of two categories, labelled A and B,
and introduce the indicator variable data:

ιAij ≡ {
1 if (xij,yij) is from category A,
0 if (xij,yij) is from category B. (2.16)

Then penalized spline models for the global mean and deviation functions for each
category are

f A(x) = βA

0 + β
A

1 x +
Kgbl

∑
k=1

uA
gbl,kzgbl,k(x)

gA
i (x) = uA

lin,i0 + uA
lin,i1 x +

Kgrp

∑
k=1

uA
grp,ikzgrp,k(x)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for category A
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Streamlined variational inference for higher level group-specific curve models 15

Algorithm 2 QR-decomposition-based streamlined algorithm for obtaining mean
field variational Bayes approximate posterior density functions for the parameters
in the Bayesian two-level group-specific curves model (2.11) with product density
restriction (2.12)

Data Inputs: yi(ni × 1), X i(ni × 2), Zgbl,i(ni × Kgbl), Zgrp,i(ni × Kgrp), 1 ≤ i ≤ m;

Hyperparameter Inputs: µβ(2 × 1), 6β(2 × 2) symmetric and positive definite,

sε, νε, sgbl, νgbl, s6, 1, s6, 2, ν6, sgrp, νgrp > 0.

For i = 1, . . . ,m:

Cgbl,i ←Ð [X i Zgbl,i] ; Cgrp,i ←Ð [X i Zgrp,i]
Initialize: µq(1/σ2

ε
), µq(1/σ2

gbl
), µq(1/σ2

grp), µq(1/aε), µq(1/agbl), µq(1/agrp) > 0,

Mq(6−1)(2 × 2),Mq(A−1
6
)(2 × 2) both symmetric and positive definite.

ξq(σ2
ε
) ←Ð νε +∑m

i=1 ni ; ξq(σ2
gbl
) ←Ð νgbl + Kgbl ; ξq(6) ←Ð ν6 + 2 +m

ξq(σ2
grp) ←Ð νgrp +mKgrp ; ξq(aε) ←Ð νε + 1 ; ξq(agbl) ←Ð νgbl + 1 ; ξq(agrp) ←Ð νgrp + 1

ξq(A6) ←Ð ν6 + 2

Cycle:

For i = 1, . . . ,m:

bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)yi

m−1/26−1/2
β

µβ

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)X i µ

1/2
q(1/σ2

ε
)Zgbl,i

m−1/26−1/2
β

O

O m−1/2
µ

1/2
q(1/σ2

gbl
)IKgbl

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

●
Bi ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)X i µ

1/2
q(1/σ2

ε
)Zgrp,i

O O

O O

M1/2
q(6−1) O

O µ
1/2
q(1/σ2

grp)
IKgrp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2 ←Ð SolveTwoLevelSparseLeastSquares({(bi,Bi,
●

Bi) ∶ 1 ≤ i ≤ m})

µq(β,ugbl)
←Ð x1 component of S2 ; 6q(β,ugbl) ←Ð A11 component of S2

µq(ugbl)
←Ð last Kgbl rows of µq(β,ugbl)

6q(ugbl) ←Ð bottom-right Kgbl × Kgbl sub-block of 6q(β,ugbl)

continued on a subsequent page . . .
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16 M. Menictas et al.

Algorithm 2 continued. This is a continuation of the description of this algorithm
that commences on a preceding page

λq(σ2
ε
) ←Ð µq(1/aε) ; 3q(6) ←ÐMq(A−1

6
) ; λq(σ2

grp) ←Ð µq(1/agrp)

For i = 1, . . . ,m:

µq(ulin,i,ugrp,i) ←Ð x2,i component of S2

6q(ulin,i,ugrp,i) ←Ð A22,i component of S2

µq(ulin,i)
←Ð first 2 rows of µq(ulin,i,ugrp,i)

6q(ulin,i) ←Ð top left 2 × 2 sub-block of 6q(ulin,i,ugrp,i)

µq(ugrp,i) ←Ð last Kgrp rows of µq(ulin,i,ugrp,i)

6q(ugrp,i) ←Ð bottom right Kgrp × Kgrp sub-block of 6q(ulin,i,ugrp,i)

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

ulin,i

ugrp,i

⎤⎥⎥⎥⎥⎦
− µq(ulin,i,ugrp,i))

⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,i component of S2

λq(σ2
ε
) ←Ð λq(σ2

ε
) + ∥yi −Cgbl,iµq(β,ugbl)

−Cgrp,iµq(ulin,i,ugrp,i)∥
2

λq(σ2
ε
) ←Ð λq(σ2

ε
) + tr(CT

gbl,iCgbl,i6q(β,ugbl)) + tr(CT
grp,iCgrp,i6q(ulin,i,ugrp,i))

λq(σ2
ε
) ←Ð λq(σ2

ε
)

+2 tr

⎡⎢⎢⎢⎢⎢⎣
CT

grp,iCgbl,i Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

ulin,i

ugrp,i

⎤⎥⎥⎥⎥⎦
− µq(ulin,i,ugrp,i))

⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
3q(6) ←Ð 3q(6) + µq(ulin,i)

µT
q(ulin,i)

+6q(ulin,i)

λq(σ2
grp) ←Ð λq(σ2

grp) + ∥µq(ugrp,i)∥
2 + tr(6q(ugrp,i))

λq(σ2
gbl
) ←Ð µq(1/agbl) + ∥µq(ugbl)

∥2 + tr(6q(ugbl))

µq(1/σ2
ε
) ← ξq(σε)/λq(σ2

ε
) ; µq(1/σ2

gbl
) ← ξq(σ2

gbl
)/λq(σ2

gbl
)

Mq(6−1) ← (ξq(6) − 1)3−1
q(6) ; µq(1/σ2

grp) ← ξq(σ2
grp)/λq(σ2

grp)

λq(aε) ←Ð µq(1/σ2
ε
) + 1/(νεs2

ε) ; µq(1/aε) ←Ð ξq(aε)/λq(aε)
3q(A6) ←Ð diag{diagonal(Mq(6−1))} + {ν6diag(s2

6, 1, s
2
6, 2)}

−1

Mq(A−1
6
) ←Ð ξq(A6)3

−1
q(A6)

λq(agbl) ←Ð µq(1/σ2
gbl
) + 1/(νgbls

2
gbl) ; µq(1/agbl) ←Ð ξq(agbl)/λq(agbl)

λq(agrp) ←Ð µq(1/σ2
grp) + 1/(νgrps2

grp) ; µq(1/agrp) ←Ð ξq(agrp)/λq(agrp)

until the increase in p(y;q) is negligible.

Outputs: µq(β,ugbl)
, 6q(β,ugbl), {µq(ulin,i,ugrp,i),6q(ulin,i,ugrp,i),

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

ulin,i

ugrp,i

⎤⎥⎥⎥⎥⎦
− µq(ulin,i,ugrp,i))

⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶ 1 ≤ i ≤ m},

ξq(σε), λq(σ2
ε
), ξq(σ2

gbl
), λq(σ2

gbl
), ξq(6),3

−1
q(6), ξq(σ2

grp), λq(σ2
grp).
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and

f B(x) = βA

0 + β
BvsA

0 + (βA

1 + β
BvsA

1 )x +
Kgbl

∑
k=1

uB
gbl,kzgbl,k(x)

gB
i (x) = uB

lin,i0 + uB
lin,i1 x +

Kgrp

∑
k=1

uB
grp,ikzgrp,k(x)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for category B.

This allows us to estimate the global contrast function

c(x) ≡ f B
(x) − f A

(x) = βBvsA

0 + βBvsA

1 x +
Kgbl

∑
k=1

(uB
gbl,k − uA

gbl,k)zgbl,k(x). (2.17)

The distributions on the random coefficients are

[uA
lin,i0 uA

lin,i1 uB
lin,i0 uB

lin,i1]
T ind.
∼ N(0,6)

and

uA
gbl,k

ind.
∼ N(0, (σA

gbl)
2), uB

gbl,k

ind.
∼ N(0, (σB

gbl)
2), uA

grp,ik

ind.
∼ N(0, σ2

grp
) and uB

grp,ik

ind.
∼ N(0, σ2

grp
)

independently of each other. In this two-category extension, the matrix 6 is an
unstructured 4 × 4 covariance matrix.

Algorithms 1 and 2 can be used to achieve streamlined fitting and inference for
the contrast curve extension, but with key matrices having new definitions. First, the
X i, Zgbl,i and Zgrp,i matrices need to be changed to:

X i = [1 xi 1 − ιAi (1 − ιAi )⊙ xi ],

Zgbl,i = [ ιAi ⊙ zgbl,1(xi) ⋯ ιAi ⊙ zgbl,Kgbl
(xi) (1 − ιAi )⊙ zgbl,1(xi) ⋯ (1 − ιAi )⊙ zgbl,Kgbl

(xi) ]

and

Zgrp,i = [ ιAi ⊙ zgrp,1(xi) ⋯ ιAi ⊙ zgrp,Kgrp(xi) (1 − ιAi )⊙ zgrp,1(xi) ⋯ (1 − ιAi )⊙ zgrp,Kgrp(xi) ].

Here ιAi is the ni × 1 vector of ιAij values, defined by (2.16), and a⊙ b denotes the
element-wise product of equal-sized vectors a and b.
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In the case of best linear unbiased prediction, the updates for the Bi matrices in
Algorithm 1 need to be replaced by:

Bi ←Ð

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X i σ−1

ε Zgbl,i

O m−1/2 [
(σA

gbl)
−1IKgbl 0
0 (σB

gbl)
−1IKgbl

]

O O
O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the output coefficient vectors change to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂

ûA
gbl

ûB
gbl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ûA
lin,i

ûB
lin,i

ûA
grp,i

ûB
grp,i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the case of mean field variational Bayes, the updates of the Bi matrices in
Algorithm 2 need to be replaced by:

Bi ←Ð

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X i µ

1/2
q(1/σ2

ε )
Zgbl,i

m−1/26
−1/2
β

O

O m−1/2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/(σA

gbl)
2)

IKgbl 0

0 µ
1/2
q(1/(σB

gbl)
2)

IKgbl

⎤
⎥
⎥
⎥
⎥
⎥
⎦

O O
O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A contrast curves adjustment to the mean field variational Bayes updates is also
required for some of the covariance matrix parameters. However, these calculations
are comparatively simple and analogous to those given in Section S.5 of the
supplementary materials.

We now demonstrate the use of the contrast curves extension for data from a
longitudinal study on adolescent somatic growth. The study was concerned with
the mechanisms of human hypertension development and conducted at the Indiana
University School of Medicine, Indianapolis, Indiana, USA. More details on these
data can be found in Pratt et al. (1989). The data used is a subset for which
only adolescents having 9 or more height measurements are included. The resulting
number of subjects is 216, for which the number of height measurements ranges from
9 to 27 with an average of about 19 height measurements per subject. The variables
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Streamlined variational inference for higher level group-specific curve models 19

of interest are

yij = jth height measurement (centimetres) of subject i, and
xij = age (years) of subject i when yij is recorded,

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. The subjects are categorized into black ethnicity and white
ethnicity and comparison of mean height between the two populations is of interest.
Our group-specific curve model analyses involved spline bases of dimensions Kgbl = 22
and Kgrp = 12. For the Bayesian fitting and inference, the data were transformed to
have zero mean and unit standard deviation and hyperparameters were set to be

µβ = 0, 6β = 1010I, νε = νgbl = νgrp = 1, ν6 = 2, sε = s2
6, 1 = s2

6, 2 = 105. (2.18)

The fits were then back-transformed to correspond to the original units. These choices
impose approximate noninformativity on the fixed effects vector β as well as all
standard deviation and correlation parameters (Huang and Wand, 2013). In the
common situation where there is no useful prior knowledge of model parameters, or
when automation is important, we recommend such noninformative hyperparameter
choices. The results are insensitive to large values of the hyperparameters appearing
in (2.18).

The fits from Algorithm 2 are seen to have good agreement with the data in
each sub-panel of the top two plots in Figure 2. The bottom panels of Figure 2
show the estimated height gap between black and white adolescents as a function of
age. For the females, there is a significant height difference, with white adolescents
taller than black adolescents, at 16–17 years old. Between 5 and 15 years, there
is no obvious height difference. For the males, the difference is at its highest and
statistically significant up to about 14 years of age, peaking at 13 years of age with
black adolescents taller than white adolescents. Between 17 and 20 years old, there
is no discernible height difference between the two populations.

3 Three-level models

The three-level version of group-specific curve models corresponds to curve-type data
having two nested groupings. For example, the data in each panel of Figure 1 are
first grouped according to slice, which is the level 2 group, and the slices are grouped
according to tumour which is the level 3 group. We denote predictor/response pairs
as (xijk,yijk) where xijk is the kth value of the predictor variable in the ith level 3
group and (i, j)th level 2 group and yijk is the corresponding value of the response
variable. We let m denote the number of level 3 groups, ni denote that number of
level 2 groups in the ith level 3 group and oij denote the the number of units within
the (i, j)th level 2 group. The Figure 1 data, which happen to be balanced, are such
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Figure 2 Top panels: Fitted group-specific growth curves for random subsets of 25 female subjects (left)
and 25 male subjects (right) from the data on adolescent somatic growth (Pratt et al., 1989). The shading
corresponds to approximate pointwise 99% credible intervals. Middle panels: Estimated mean growth
curves with approximate 95% credible intervals. Bottom panels: Similar to the top panels but for the
estimated contrast curve. Each contrast curve corresponds to mean height for black adolescents minus
mean height for white adolescents. The left panel contrasts female adolescents and the right panel
contrasts male adolescents. The shaded regions correspond to approximate pointwise 95% credible
intervals
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Streamlined variational inference for higher level group-specific curve models 21

that

m = number of tumours = 10,
ni = number of slices for the ith tumour = 5

and oij = number of predictor/response pairs for the ith tumour and jth slice = 128.

The Gaussian response three-level group-specific curve model for such data is

yijk = f(xijk) + gi(xijk) + hij(xijk) + εijk, εijk
ind.
∼ N(0, σ2

ε ),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij,
(3.1)

where the smooth function f is the global mean function, the gi functions, 1 ≤ i ≤ m,
allow for group-specific deviations according to membership of the ith level 3 group
and the hij, 1 ≤ i ≤ m and 1 ≤ j ≤ ni allow for an additional level of group-specific
deviations according to membership of the jth level 2 group within the ith level 3
group. The mixed model-based penalized spline models for these functions are

f(x) = β0 + β1 x +
Kgbl

∑
k=1

ugbl,k zgbl,k(x), ugbl,k

ind.
∼ N(0, σ2

gbl),

gi(x) = ug
lin,i0 + ug

lin,i1 x +
Kg

grp

∑
k=1

ug
grp,ik zg

grp,k(x), [
ug

lin,i0

ug
lin,i1

]
ind.
∼ N(0,6g), ug

grp,ik

ind.
∼ N(0, σ2

grp,g
)

and

hij(x) = uh
lin,ij0 + uh

lin,ij1 x +
Kh

grp

∑
k=1

uh
grp,ijk zh

grp,k(x),
⎡
⎢
⎢
⎢
⎢
⎣

uh
lin,ij0

uh
lin,ij1

⎤
⎥
⎥
⎥
⎥
⎦

ind.
∼ N(0,6h), uh

grp,ijk

ind.
∼ N(0, σ2

grp,h
),

with all random effect distributions independent of each other. For this three-level
case, we have three bases:

{zgbl,k(⋅) ∶ 1 ≤ k ≤ Kgbl}, {zg
grp,k(⋅) ∶ 1 ≤ k ≤ Kg

grp} and {zh
grp,k(⋅) ∶ 1 ≤ k ≤ Kh

grp}.

The variance and covariance matrix parameters are analogous to the two-level model.
For example, 6g and 6h are both unstructured 2 × 2 matrices corresponding to the
linear components of the gi and hij, respectively.

The following notation is useful for setting up the required design matrices: If
M1, . . . ,Md is a set of matrices each having the same number of columns then

stack
1≤i≤d

(Mi) ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

M1

⋮

Md

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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We then define, for 1 ≤ i ≤ m and 1 ≤ j ≤ ni,

xi ≡ stack
1≤j≤ni

(xij) and xij ≡ stack
1≤k≤oij

(xijk).

3.1 Best linear unbiased prediction

Model (3.1) is expressible as a Gaussian response linear mixed model as follows:

y∣u ∼ N(Xβ +Z u, σ2
ε I), u ∼ N(0,G), (3.2)

where the design matrices are

X = stack
1≤i≤m

(X i) with X i = stack
1≤j≤ni

(X ij) and X ij ≡ [1 xij]

and

Z ≡ [Zgbl blockdiag
1≤i≤m

[ stack
1≤j≤ni

([X ij Zg

grp,ij]) blockdiag
1≤j≤ni

([X ij Zh

grp,ij])]],

where

Zgbl ≡ stack
1≤i≤m

( stack
1≤j≤ni

(Zgbl,ij))

and the matrices Zgbl,ij, Zg

grp,ij and Zh

grp,ij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, contain, respectively, spline
basis functions for the global mean function f , the ith level one group deviation
functions gi and (i, j)th level two group deviation functions hij. Specifically,

Zgbl,ij ≡ [zgbl,1(xij)⋯ zgbl,Kgbl
(xij)], Zg

grp,ij = [zg

grp,1(xij)⋯zg

grp,Kg
grp
(xij)]

and Zh

grp,ij ≡ [zh

grp,1(xij)⋯zh

grp,Kh
grp
(xij)] for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

The fixed and random effects vectors are

β ≡ [
β0

β1
] and u ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ugbl

stack
1≤i≤m

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
ug

lin,i

ug

grp,i

]

[
uh

lin,i1

uh

grp,i1

]

⋮

[
uh

lin,ini

uh

grp,ini

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where ug

lin,i ≡ [
ug

lin,i0

ug
lin,i1

]
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with ug

grp,i, uh

lin,ij and uh

grp,ij defined similarly and the covariance matrix of u is

G = Cov(u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
gblI O

O blockdiag
1≤i≤m

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6g O O
O σ2

grp,gI O

O O Ini ⊗ [
6h O
O σ2

grp,hI
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.3)

We define matrices in a similar way to what is given in (2.5). The best linear unbiased
predictor of [β u] and corresponding covariance matrix are as shown in (2.6), but
with entries as described in this section. This covariance matrix grows quadratically
in both m and the nis, and so storage becomes impractical for large numbers of level
2 and level 3 groups. However, only certain sub-blocks are required for the addition
of pointwise confidence intervals to curve estimates. In particular, we only require
the sub-matrices of (CTR−1

BLUP
C +DBLUP)

−1 that correspond to the non-zero sub-blocks
of the general three-level sparse matrix given in Section 3 of Nolan and Wand (2020).

In the case of the three-level Gaussian response linear mixed model, Nolan and
Wand’s

A11 sub-block corresponds to a (2 +Kgbl) × (2 +Kgbl) matrix Cov([
β̂

ûgbl − ugbl

]) ;

A22,i sub-block corresponds to a (2 +Kg

grp) × (2 +Kg

grp) matrix Cov([
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

]) ;

A12,i sub-block corresponds to a (2 +Kgbl) × (2 +Kg

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

]

T⎫⎪⎪
⎬
⎪⎪⎭

, 1 ≤ i ≤ m;

A22,ij sub-block corresponds to a (2 +Kh

grp) × (2 +Kh

grp) matrix Cov([
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]) ;

A12,ij sub-block corresponds to a (2 +Kgbl) × (2 +Kh

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]

T⎫⎪⎪
⎬
⎪⎪⎭

;

A12, i, j sub-block corresponds to a (2 +Kg

grp) × (2 +Kh

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

[
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

] [
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]

T⎫⎪⎪
⎬
⎪⎪⎭

, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

As described in Nolan et al. (2020), the SolveThreeLevelSparseLeastSquares
algorithm arises in the special case where x is the minimizer of the least squares
problem given in equation (2.8), where B has the three-level sparse form and b
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is partitioned according to that given in Section 3 of Nolan and Wand (2020).
This algorithm can be used for fitting three-level group-specific curve models by
making use of Result 3. Note that Result 3 relies on notation for sub-blocks of
x = (BTB)−1BTb and A−1 where A = BTB. This notation is too verbose to list here,
but is given by (S.8) of the supplementary materials, as well as in Section 3 of Nolan
and Wand (2020).

Result 3Computation of [β̂
T

ûT
]T and each of the sub-blocks of Cov([β̂

T
(û − u)T]T)

listed in (2.7) are expressible as the three-level sparse matrix least squares form:

∥b − B [
β

u
]∥

2

,

where according to the notation in Section 3.1 of Nolan and Wand (2020), the
non-zero sub-blocks of B and b for 1 ≤ i ≤ m and 1 ≤ j ≤ ni are as follows:

bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε yij

0

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X ij σ−1

ε Zgbl,ij

O (∑
m
i=1 ni)

−1/2
σ−1

gbl IKgbl

O O

O O

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

●

Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X ij σ−1

ε Zg

grp,ij

O O

n−1/2
i 6−1/2

g O

O n−1/2
i σ−1

grp,gIKg
grp

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and
●●

Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ−1
ε X ij σ

−1
ε Zh

grp,ij

O O

O O

O O

6
−1/2
h O

O σ−1
grp,hIKh

grp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with each of these matrices having õij = oij +Kgbl + 2 +Kg

grp + 2 +Kh

grp rows and with

Bi having p = 2 +Kgbl columns,
●

Bi having q1 = 2 +Kg

grp columns and
●●

Bij having q2 =

2 +Kh

grp columns. The solutions are, with sub-block labelling according to (S.8) of the
supplementary materials and Section 3 of Nolan and Wand (2020),

[
β̂

ûgbl

] = x1, Cov([
β̂

ûgbl − ugbl

]) = A11
,
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[
ûg

lin,i

ûg

grp,i

] = x2,i, E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,i
,

Cov([
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

]) = A22,i
, 1 ≤ i ≤ m,

[
ûh

lin,ij

ûh

grp,ij

] = x2,ij, E
⎧⎪⎪
⎨
⎪⎪⎩

[
β̂

ûgbl − ugbl

] [
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,ij
,

E
⎧⎪⎪
⎨
⎪⎪⎩

[
ûg

lin,i − ug

lin,i

ûg

grp,i − ug

grp,i

] [
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12, i, j

and

Cov([
ûh

lin,ij − uh

lin,ij

ûh

grp,ij − uh

grp,ij

]) = A22,ij
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

A derivation of Result 3 is given in Section S.7 of the supplementary materials.
Result 3 combined with Theorem 3.3 of Nolan and Wand (2020) leads to Algorithm
3. The SolveThreeLevelSparseLeastSquares algorithm is given in Section S.13 of the
supplementary materials.

3.2 Mean field variational bayes

A Bayesian extension of (3.2) and (3.3) is as follows:

y∣β,u, σ2
ε ∼ N(Xβ +Z u, σ2

ε I), u∣σ2
gbl, σ

2
grp,g,6g, σ

2
grp,h,6h ∼ N(0,G), G as defined in (3.3),

β ∼ N(µβ,6β), σ2
ε ∣aε ∼ Inverse-χ2(νε,1/aε), aε ∼ Inverse-χ2(1,1/(νεs2

ε)),

σ2
gbl∣agbl ∼ Inverse-χ2(νgbl,1/agbl), agbl ∼ Inverse-χ2(1,1/(νgbls2

gbl)),

σ2
grp,g∣agrp, g ∼ Inverse-χ2(νgrp, g,1/agrp, g), agrp, g ∼ Inverse-χ2(1,1/(νgrp, gs2

grp, g)),

σ2
grp,h∣agrp, h ∼ Inverse-χ2(νgrp, h,1/agrp, h), agrp, h ∼ Inverse-χ2(1,1/(νgrp, hs2

grp, h)),
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6g∣A6g ∼ Inverse-G-Wishart(Gfull, ν6g + 2,A−1
6g

),

A6g ∼ Inverse-G-Wishart(Gdiag,1,3A6g
), 3A6g

≡ {ν6gdiag(s2
6g , 1
, s2

6g , 2
)}−1,

6h∣A6h
∼ Inverse-G-Wishart(Gfull, ν6h

+ 2,A−1
6h

),

A6h
∼ Inverse-G-Wishart(Gdiag,1,3A6h

), 3A6h
≡ {ν6h

diag(s2
6h , 1
, s2

6h , 2
)}−1.

(3.4)

Algorithm 3 Streamlined algorithm for obtaining best linear unbiased predictions
and corresponding covariance matrix components for the three-level group specific
curves model

Inputs: yij(oij × 1), X ij(oij × 2), Zgbl,ij(oij × Kgbl), Zg
grp,ij(oij × Kg

grp),

Zh
grp,ij(oij × Kh

grp),1 ≤ i ≤ m, 1 ≤ j ≤ ni; σ
2
ε , σ

2
gbl, σ

2
grp,g, σ

2
grp,h > 0,

6g(2 × 2), 6h(2 × 2), symmetric and positive definite.

For i = 1, . . . ,m:

For j = 1, . . . ,ni:

bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε yij

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε X ij σ

−1
ε Zgbl,ij

O (∑m
i=1 ni)−1/2

σ
−1
gbl IKgbl

O O

O O

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

●
Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε X ij σ

−1
ε Zg

grp,ij

O O

n−1/2
i 6−1/2

g O

O n−1/2
i σ

−1
grp,gIKg

grp

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
●●
Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
−1
ε X ij σ

−1
ε Zh

grp,ij

O O

O O

O O

6
−1/2
h

O

O σ
−1
grp,hIKh

grp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S3 ←Ð SolveThreeLevelSparseLeastSquares({(bij,Bij,
●

Bij,
●●
Bij) ∶ 1 ≤ i ≤ m,

1 ≤ j ≤ ni})

⎡⎢⎢⎢⎢⎣

β̂

ûgbl

⎤⎥⎥⎥⎥⎦
←Ð x1 component of S3 ; Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎞
⎠
←Ð A11 component of S3

continued on a subsequent page . . .
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Algorithm 3 continued. This is a continuation of the description of this algorithm
that commences on a preceding page

For i = 1, . . . ,m:
⎡⎢⎢⎢⎢⎣

ûg
lin,i

ûg
grp,i

⎤⎥⎥⎥⎥⎦
←Ð x2,i component of S3

Cov
⎛
⎝

⎡⎢⎢⎢⎢⎣

ûg
lin,i
− ug

lin,i

ûg
grp,i − ug

grp,i

⎤⎥⎥⎥⎥⎦

⎞
⎠
←Ð A22,i component of S3

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûg
lin,i
− ug

lin,i

ûg
grp,i − ug

grp,i

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,i component of S3

For j = 1, . . . ,ni:
⎡⎢⎢⎢⎢⎣

ûh
lin,ij

ûh
grp,ij

⎤⎥⎥⎥⎥⎦
←Ð x2,ij component of S3

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,ij component of S3

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

ûg
lin,i
− ug

lin,i

ûg
grp,i − ug

grp,i

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12, i, j component of S3

Cov
⎛
⎝

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

⎞
⎠
←Ð A22,ij component of S3

Output:

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl

⎤⎥⎥⎥⎥⎦
, Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

ûlin,i

ûgrp,i

⎤⎥⎥⎥⎥⎦
, Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûlin,i − ulin,i

ûgrp,i − ugrp,i

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠
∶ 1 ≤ i ≤ m,

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

ûh
lin,ij

ûh
grp,ij

⎤⎥⎥⎥⎥⎦
, E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

β̂

ûgbl − ugbl

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

ûg
lin,i
− ug

lin,i

ûg
grp,i − ug

grp,i

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
, Cov

⎛
⎝

⎡⎢⎢⎢⎢⎣

ûh
lin,ij − uh

lin,ij

ûh
grp,ij − uh

grp,ij

⎤⎥⎥⎥⎥⎦

⎞
⎠
⎞
⎟
⎠
∶

1 ≤ i ≤ m, 1 ≤ j ≤ ni})

The following mean field restriction is imposed on the joint posterior density function
of all parameters in (3.4):

p(β,u,aε,agbl,agrp, g,A6g,agrp, h,A6h
, σ2

ε , σ
2
gbl, σ

2
grp,g,6g, σ

2
grp,h,6h∣y)

≈ q(β,u,aε,agbl,agrp, g,A6g,agrp, h,A6h
) q(σ2

ε , σ
2
gbl, σ

2
grp,g,6g, σ

2
grp,h,6h).

(3.5)
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The optimal q-density functions for the parameters of interest are

q∗(β,u) has a N(µq(β,u),6q(β,u)) distribution,

q∗(σ2
ε ) has an Inverse-χ2(ξq(σ2

ε )
, λq(σ2

ε )
) distribution,

q∗(σ2
gbl) has an Inverse-χ2(ξq(σ2

gbl)
, λq(σ2

gbl)
) distribution,

q∗(σ2
grp,g) has an Inverse-χ2(ξq(σ2

grp,g)
, λq(σ2

grp,g)
) distribution

q∗(σ2
grp,h) has an Inverse-χ2(ξq(σ2

grp,h)
, λq(σ2

grp,h)
) distribution

q∗(6g) has an Inverse-G-Wishart(Gfull, ξq(6g)
,3q(6g)

) distribution

and q∗(6h) has an Inverse-G-Wishart(Gfull, ξq(6h)
,3q(6h)

) distribution.

The optimal q-density parameters are determined through an iterative coordinate
ascent algorithm, details of which are given in Section S.10 of the supplementary
materials. As in the two-level case, the updates for µq(β,u) and 6q(β,u) may be written
in the same form as (2.13), but with a three-level version of the C matrix and

DMFVB ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6−1
β O O

O µq(1/σ2
gbl)

I O

O O Im ⊗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mq(6−1
g )

O O

O µq(1/σ2
grp,g)

I O

O O Ini ⊗ [
Mq(6−1

h )
O

O µq(1/σ2
grp,h)

I ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(3.6)

For large numbers of level 2 and level 3 groups, 6q(β,u)’s size becomes infeasible
to deal with. However, only relatively small sub-blocks of 6q(β,u) are needed
for variational inference regarding the variance and covariance parameters. These
sub-block positions correspond to the non-zero sub-block positions of a general
three-level sparse matrix defined in Section 3 of Nolan and Wand (2020). Here,
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Nolan and Wand’s

A11 sub-block corresponds to a (2 +Kgbl) × (2 +Kgbl) matrix 6q(β,ugbl)
;

A22,i sub-block corresponds to a (2 +Kg

grp) × (2 +Kg

grp) matrix 6q(ug
lin,i,u

g
grp,i)

;

A12,i sub-block corresponds to a (2 +Kgbl) × (2 +Kg

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

([
β

ugbl

] −µq(β,ugbl)
)([

ug

lin,i

ug

grp,i

] −µq(ug
lin,i,u

g
grp,i)

)

T⎫⎪⎪
⎬
⎪⎪⎭

, 1 ≤ i ≤ m;

A22,ij sub-block corresponds to a (2 +Kh

grp) × (2 +Kh

grp) matrix 6q(uh
lin,ij,u

h
grp,ij)

;

A12,ij sub-block corresponds to a (2 +Kgbl) × (2 +Kh

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

([
β

ugbl

] −µq(β,ugbl)
)([

uh

lin,ij

uh

grp,ij

] −µq(uh
lin,ij,u

h
grp,ij)

)

T⎫⎪⎪
⎬
⎪⎪⎭

;

A12, i, j sub-block corresponds to a (2 +Kg

grp) × (2 +Kh

grp) matrix

E
⎧⎪⎪
⎨
⎪⎪⎩

([
ug

lin,i

ug

grp,i

] −µq(ug
lin,i,u

g
grp,i)

)([
uh

lin,ij

uh

grp,ij

] −µq(uh
lin,ij,u

h
grp,ij)

)

T⎫⎪⎪
⎬
⎪⎪⎭

,

1 ≤ i ≤ m, 1 ≤ j ≤ ni.

(3.7)

We appeal to Result 4 for a streamlined mean field variational Bayes algorithm.

Result 4The mean field variational Bayes updates ofµq(β,u) and each of the sub-blocks
of 6q(β,u) in (3.7) are expressible as a three-level sparse matrix least squares problem
of the form:

∥b − B [
β

u
]∥

2

,

where the non-zero sub-blocks B and b, according to the notation in Section 3.1 of
Nolan and Wand (2020), are for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
yij

(∑
m
i=1 ni)

−1/2
6
−1/2
β

µβ

0

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X ij µ

1/2
q(1/σ2

ε )
Zgbl,ij

(∑
m
i=1 ni)

−1/2
6
−1/2
β

O

O (∑
m
i=1 ni)

−1/2
µ

1/2
q(1/σ2

gbl)
IKgbl

O O

O O

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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●

Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X ij µ

1/2
q(1/σ2

ε )
Zg

grp,ij

O O

O O

n−1/2
i M1/2

q(6−1
g )

O

O n−1/2
i µ

1/2
q(1/σ2

grp,g)
IKg

grp

O O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and
●●

Bij ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ
1/2
q(1/σ2

ε )
X ij µ

1/2
q(1/σ2

ε )
Zh

grp,ij

O O

O O

O O

O O

M1/2
q(6−1

h )
O

O µ
1/2
q(1/σ2

grp,h)
IKh

grp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with each of these matrices having õij = oij + 2 +Kgbl + 2 +Kg

grp + 2 +Kh

grp rows and with

Bi having p = 2 +Kgbl columns,
●

Bi having q1 = 2 +Kg

grp columns and
●●

Bij having q2 =

2 +Kh

grp columns. The solutions are, with sub-block labelling according to (S.8) of the
supplementary materials and Section 3 of Nolan and Wand (2020),

µq(β,ugbl)
= x1, 6q(β,ugbl)

= A11
,

µq(ug
lin,i,u

g
grp,i)

= x2,i, Eq

⎧⎪⎪
⎨
⎪⎪⎩

[
β −µq(β)

ugbl −µq(ugbl)

] [
ug

lin,i −µq(ug
lin,i)

ug

grp,i −µq(ug
grp,i)

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,i
,

6q(ug
lin,i,u

g
grp,i)

= A22,i
, 1 ≤ i ≤ m,

µq(uh
lin,ij,u

h
grp,ij)

= x2,ij, Eq

⎧⎪⎪
⎨
⎪⎪⎩

[
β −µq(β)

ugbl −µq(ugbl)

] [
uh

lin,ij −µq(uh
lin,ij)

uh

grp,ij −µq(uh
grp,ij)

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12,ij
,

Eq

⎧⎪⎪
⎨
⎪⎪⎩

[
ug

lin,i −µq(ug
lin,i)

ug

grp,i −µq(ug
grp,i)

] [
uh

lin,ij −µq(uh
lin,ij)

uh

grp,ij −µq(uh
grp,ij)

]

T⎫⎪⎪
⎬
⎪⎪⎭

= A12, i, j

and

6q(uh
lin,ij,u

h
grp,ij)

= A22,ij
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Algorithm 4 makes use of Result 4 to facilitate streamlined computation of all
variational parameters in the three-level group-specific curves model. Section S.11
of the supplementary materials derives and provides an explicit expression for the
approximate marginal log-likelihood.
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Algorithm 4 QR-decomposition-based streamlined algorithm for obtaining mean
field variational Bayes approximate posterior density functions for the parameters
in the Bayesian three-level group-specific curves model (3.4) with product density
restriction (3.5)

Data Inputs: yij(oij × 1), X ij(oij × 2), Zgbl,ij(oij × Kgbl),Zg
grp,ij(oij × Kg

grp),

Zh
grp,ij(oij × Kh

grp) 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Hyperparameter Inputs: µβ(2 × 1), 6β(2 × 2) symmetric and positive definite,

sε, νε, sgbl, νgbl, s6g , 1, s6g , 2, ν6g , sgrp, g, νgrp, g, s6h , 1
, s6h , 2

, ν6h
, sgrp, h, νgrp, h > 0.

For i = 1, . . . ,m ∶
For j = 1, . . . ,ni ∶

Cgbl,ij ←Ð [X ij Zgbl,ij] ; Cg
grp,ij ←Ð [X ij Zg

grp,ij] ; Ch
grp,ij ←Ð [X ij Zh

grp,ij]
Initialize: µq(1/σ2

ε
), µq(1/σ2

gbl
), µq(1/σ2

grp, g), µq(1/σ2
grp, h

), µq(1/aε), µq(1/agbl),

µq(1/agrp, g), µq(1/agrp, h) > 0, Mq(6−1
g )

(2 × 2),Mq(6−1
h
)(2 × 2),

Mq(A−1
g )

(2 × 2),Mq(A−1
h
)(2 × 2) symmetric and positive definite.

ξq(σ2
ε
) ←Ð νε +∑m

i=1∑
ni
j=1 oij ; ξq(σ2

gbl
) ←Ð νgbl + Kgbl ; ξq(6g) ←Ð ν6g + 2 +m

ξq(6h) ←Ð ν6h
+ 2 +∑m

i=1 ni ; ξq(σ2
grp,g) ←Ð νgrp, g +mKg

grp

ξq(σ2
grp,h

) ←Ð νgrp, h + Kh
grp∑

m
i=1 ni ; ξq(aε) ←Ð νε + 1 ; ξq(agbl) ←Ð νgbl + 1

ξq(agrp, g) ←Ð νgrp, g + 1 ; ξq(agrp, h) ←Ð νgrp, h + 1 ; ξq(A6g ) ←Ð ν6g + 2 ; ξq(A6h
) ←Ð ν6h

+ 2

Cycle:

For i = 1, . . . ,m:

For j = 1, . . . ,ni:

bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)yij

1√
∑m

i=1 ni
6
−1/2
β

µβ

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)X ij µ

1/2
q(1/σ2

ε
)Zgbl,ij

1√
∑m

i=1 ni
6
−1/2
β

O

O 1√
∑m

i=1 ni
µ

1/2
q(1/σ2

gbl
)IKgbl

O O

O O

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

●
Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)X ij µ

1/2
q(1/σ2

ε
)Z

g
grp,ij

O O

O O

n−1/2
i M1/2

q(6−1
g )

O

O n−1/2
i µ

1/2
q(1/σ2

grp,g)
IKg

grp

O O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
continued on a subsequent page . . .
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Figure 3 provides illustration of Algorithm 4 by showing the fits to the Figure
1 ultrasound data. The number of spline basis functions used at each level are
Kgbl = Kg

grp = Kh

grp = 15. For the Bayesian fitting and inference, the data were transformed
to have zero mean and unit standard deviation and hyperparameters values were
analogous to those given in (2.18). The fits were then back-transformed to correspond
to the original units. Posterior mean curves and (narrow) 99% pointwise credible

Algorithm 4 continued. This is a continuation of the description of this algorithm
that commences on a preceding page

●●
Bij ←Ð

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
1/2
q(1/σ2

ε
)X i µ

1/2
q(1/σ2

ε
)Z

h
grp,ij

O O

O O

O O

O O

M1/2
q(6−1

h
) O

O µ
1/2
q(1/σ2

grp,h
)IKh

grp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S4 ←Ð SolveThreeLevelSparseLeastSquares({(bij,Bij,
●

Bij,
●●
Bij) ∶ 1 ≤ i ≤ m,

1 ≤ j ≤ ni})

µq(β,ugbl)
←Ð x1 component of S4 ; 6q(β,ugbl) ←Ð A11 component of S4

µq(ugbl)
←Ð last Kgbl rows of µq(β,ugbl)

6q(ugbl) ←Ð bottom-right Kgbl × Kgbl sub-block of 6q(β,ugbl)

λq(σ2
ε
) ←Ð µq(1/aε) ; 3q(6g) ←ÐMq(A−1

6g
) ; 3q(6h) ←ÐMq(A−1

6h
)

λq(σ2
grp, g) ←Ð µq(1/agrp, g) ; λq(σ2

grp, g) ←Ð µq(1/agrp, g)

For i = 1, . . . ,m:

µ
q(ug

lin,i
,ug

grp,i
) ←Ð x2,i component of S4

6
q(ug

lin,i
,ug

grp,i
) ←Ð A22,i component of S4

µ
q(ug

lin,i
) ←Ð first 2 rows of µ

q(ug
lin,i

,ug
grp,i

)

6
q(ug

lin,i
) ←Ð top left 2 × 2 sub-block of 6

q(ug
lin,i

,ug
grp,i

)

µ
q(ug

grp,i
) ←Ð last Kg

grp rows of µ
q(ug

lin,i
,ug

grp,i
)

6
q(ug

grp,i
) ←Ð bottom right Kg

grp × Kg
grp sub-block of 6

q(ug
lin,i

,ug
grp,i

)

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,i component of S4

For j = 1, . . . ,ni:

continued on a subsequent page . . .
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Algorithm 4 continued. This is a continuation of the description of this algorithm
that commences on a preceding page

µ
q(uh

lin,ij
,uh

grp,ij
) ←Ð x2,ij component of S4

6
q(uh

lin,ij
,uh

grp,ij
) ←Ð A22,ij component of S4

µ
q(uh

lin,ij
) ←Ð first 2 rows of µ

q(uh
lin,ij

,uh
grp,ij

)

6
q(uh

lin,ij
) ←Ð top left 2 × 2 sub-block of 6

q(uh
lin,ij

,uh
grp,ij

)

µ
q(uh

grp,ij
) ←Ð last Kh

grp rows of µ
q(uh

lin,ij
,uh

grp,ij
)

6
q(uh

grp,ij
) ←Ð bottom right Kh

grp × Kh
grp sub-block of 6

q(uh
lin,ij

,uh
grp,ij

)

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,ij component of S4

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

))
⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(uh
lin,ij

,uh
grp,ij

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
←Ð A12,i,j component of S4

λq(σ2
ε
) ←Ð λq(σ2

ε
) + ∥yij −Cgbl,ijµq(β,ugbl)

−Cg
grp,ijµq(ug

lin,i
,ug

grp,i
)

−Ch
grp,ijµq(uh

lin,ij
,uh

grp,ij
)∥

2

λq(σ2
ε
) ←Ð λq(σ2

ε
) + tr(CT

gbl,ijCgbl,ij6q(β,ugbl)) + tr((Cg
grp,ij)

TCg
grp,ij6q(ug

lin,i
,ug

grp,i
))

λq(σ2
ε
) ←Ð λq(σ2

ε
) + tr((Ch

grp,ij)
TCh

grp,ij6q(uh
lin,ij

,uh
grp,ij

))

λq(σ2
ε
) ←Ð λq(σ2

ε
) + 2 tr

⎡⎢⎢⎢⎢⎣
CT

grp,iCgbl,i Eq

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠

×
⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

λq(σ2
ε
) ←Ð λq(σ2

ε
) + 2 tr

⎡⎢⎢⎢⎢⎣
(Cg

grp,ij)
TCgbl,ij Eq

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠

×
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(uh
lin,ij

,uh
grp,ij

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

λq(σ2
ε
) ←Ð λq(σ2

ε
) + 2 tr

⎡⎢⎢⎢⎢⎣
(Cg

grp,ij)
TCh

grp,ij Eq

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

)
⎞
⎠

×
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(uh
lin,ij

,uh
grp,ij

)
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
3q(6h) ←Ð 3q(6h) + µq(uh

lin,ij
)µ

T
q(uh

lin,ij
) +6q(uh

lin,ij
)

λq(σ2
grp,h

) ←Ð λq(σ2
grp,h

) + ∥µ
q(uh

grp,ij
)∥

2 + tr(6
q(uh

grp,ij
))

until the increase in p(y;q) is negligible.

continued on a subsequent page . . .
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Algorithm 4 continued. This is a continuation of the description of this algorithm
that commences on a preceding page

3q(6g) ←Ð 3q(6g) + µq(ug
lin,i
)µ

T
q(ug

lin,i
) +6q(ug

lin,i
)

λq(σ2
grp,g) ←Ð λq(σ2

grp,g) + ∥µ
q(ug

grp,i
)∥

2 + tr(6
q(ug

grp,i
))

λq(σ2
gbl
) ←Ð µq(1/agbl) + ∥µq(ugbl)

∥2 + tr (6q(ugbl))

µq(1/σ2
ε
) ← ξq(σε)/λq(σ2

ε
) ; µq(1/σ2

gbl
) ← ξq(σ2

gbl
)/λq(σ2

gbl
)

Mq((6g)−1) ← (ξq(6g) − 2 + 1)3−1
q(6g) ; Mq((6h)−1) ← (ξq(6h) − 2 + 1)3−1

q(6h)

µq(1/σ2
grp,g) ← ξq(σ2

grp,g)/λq(σ2
grp,g) ; µq(1/σ2

grp,h
) ← ξq(σ2

grp,h
)/λq(σ2

grp,h
)

λq(aε) ←Ð µq(1/σ2
ε
) + 1/(νεs2

ε) ; µq(1/aε) ←Ð ξq(aε)/λq(aε)

Mq(A−1
6g
) ←Ð ξq(A6g )

3−1
q(A6g )

; Mq(A−1
6h
) ←Ð ξq(A6h

)3
−1
q(A6h

)

3q(A6g )
←Ð diag{diagonal(Mq(6−1

g )
)} + {ν6g diag(s2

6g , 1
, s2
6g , 2

)}−1

3q(A6h
) ←Ð diag{diagonal(Mq(6−1

h
))} + {ν6h

diag(s2
6h , 1

, s2
6h , 2

)}−1

λq(agbl) ←Ð µq(1/σ2
gbl
) + 1/(νgbls

2
gbl) ; µq(1/agbl) ←Ð ξq(agbl)/λq(agbl)

λq(agrp, g) ←Ð µq(1/σ2
grp,g) + 1/(νgrp, gs2

grp, g) ; µq(1/agrp, g) ←Ð ξq(agrp, g)/λq(agrp, g)

λq(agrp, h) ←Ð µq(1/σ2
grp,h

) + 1/(νgrp, hs2
grp, h) ; µq(1/agrp, h) ←Ð ξq(agrp, h)/λq(agrp, h)

Outputs: µq(β,ugbl)
, 6q(β,ugbl), {µq(ug

lin,i
,ug

grp,i
),6q(ug

lin,i
,ug

grp,i
),

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶ 1 ≤ i ≤ m,

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

β

ugbl

⎤⎥⎥⎥⎥⎦
− µq(β,ugbl)

⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(uh
lin,ij

,uh
grp,ij

))
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

Eq

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝

⎡⎢⎢⎢⎢⎣

ug
lin,i

ug
grp,i

⎤⎥⎥⎥⎥⎦
− µ

q(ug
lin,i

,ug
grp,i

)
⎞
⎠
⎛
⎝

⎡⎢⎢⎢⎢⎣

uh
lin,ij

uh
grp,ij

⎤⎥⎥⎥⎥⎦
− µ

q(uh
lin,ij

,uh
grp,ij

)
⎞
⎠

T⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

µ
q(uh

lin,ij
,uh

grp,ij
),6q(uh

lin,ij
,uh

grp,ij
) ∶ 1 ≤ i ≤ m,1 ≤ j ≤ ni}, ξq(σε), λq(σ2

ε
), ξq(σ2

gbl
),

λq(σ2
gbl
), ξq(6g), 3

−1
q(6g), ξq(6h), 3

−1
q(6h)

, ξq(σ2
grp,g), λq(σ2

grp,g), ξq(σ2
grp,h

), λq(σ2
grp,h

).

intervals are shown. For this example, the fits for model (3.4) using our streamlined
variational inference approach are shown to be very good. A deeper analysis shows
that whilst the estimated f + gi + hij curves have good concordance with the slice
within tumour trajectories, the estimated f + gi curves do not align well with the
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Figure 3 Illustrative three-level curve-type data with approximate fitted group specific curves and
corresponding 99% credible sets based on mean field variational Bayes via Algorithm 4. The response
variable is 10 log10(backscatter coefficient) according to ultrasound technology. Level 1 corresponds to
different ultrasound frequencies and matches the horizontal axes in each panel. Level 2 corresponds to
different slices of a tumour due to differing probe locations. Level 3 corresponds to different tumours with
one tumour for each of 10 laboratory mice

combined trajectories for the ith tumour when i ∈ {3,7}. We suspect that this
phenomenon is driven by identifiability issues and may be worthy of further study.

As discussed in the next section, fits such as those shown in Figure 3 can be
obtained rapidly and accurately and Algorithm 4 is scalable to much larger datasets
of the type illustrated by Figures 1 and 3.
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4 Accuracy and speed assessment

In this section, we provide some assessment of the accuracy and speed of the inference
delivered by streamlined variational inference for group-specific curves models.

4.1 Accuracy assessment

Mean field restrictions such as (2.12) and (3.5) imply that there is some loss of
accuracy in inference produced by Algorithms 2 and 4. However, at least for the
Gaussian response case treated here, approximate parameter orthogonality between
the coefficient parameters and covariance parameters from likelihood theory implies
that such restrictions are mild and mean field accuracy is high. Figure 4 corroborates
this claim by assessing accuracy of the mean function estimates and 95% credible
intervals at the median values of frequency for each panel in Figure 3. As a benchmark,
we use Markov chain Monte Carlo-based inference via the rstan package (Guo et al.,
2018). After a warm-up of size 1000, we retained 5000 Markov chain Monte Carlo
samples from the mean function and median frequency posterior distributions and
used kernel density estimation to approximate the corresponding posterior density
function. For a generic univariate parameter θ, the accuracy of an approximation
q(θ) to p(θ∣y) is defined to be

accuracy ≡ 100{1 − 1
2 ∫

∞

−∞

∣q(θ) − p(θ∣y)∣dθ}%. (4.1)

The percentages in the top right-hand panel of Figure 4 correspond to (4.1) with
replacement of p(θ∣y) by the aforementioned kernel density estimate. In this case,
accuracy is seen to be excellent, with accuracy percentages between 97% and 99%
for all 40 curves. As explained in Section 3.1 of Menictas and Wand (2013) for a
similar setting, such high accuracy is expected due to parameter orthogonality results
that largely justify the product restrictions (2.12) and (3.5).

4.2 Speed assessment

We also conducted some simulation studies to assess the speed of streamlined
variational higher level group-specific curve models, in terms of both comparative
advantage over naı̈ve implementation and absolute performance. The studies were
run for both the two-level and three-level situations.

4.2.1 Two-level study
The focus of the two-level study was variational inference in the two-level case and
to probe maximal speed potential. Algorithm 2 was implemented in the low-level
computer language Fortran 77. An implementation of the naı̈ve counterpart of
Algorithm 2, involving storage and direct calculations concerning the full 6q(β,u)
matrix, was also carried out. We then simulated data according to model (2.1) with
σε = 0.2,
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Figure 4 Accuracy assessment of Algorithm 4. Each panel displays approximate posterior density
functions corresponding to mean function estimates according to the three-level group specific curve
model (3.1). In each case the estimate is at the median frequency value. The grey density functions are
based on Markov chain Monte Carlo and the black density functions are based on mean field variational
Bayes. The accuracy percentage scores are defined by (4.1)
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Table 1 Average (standard deviation) of elapsed computing times in seconds for fitting model (2.1)
naı̈vely versus with streamlining via Algorithm 2. The NA entries indicate non applicability due to the naı̈ve
computations not being feasible

m Naı̈ve Streamlined Naı̈ve/streamlined

100 75 (1.21) 0.748 (0.0334) 100
200 660 (7.72) 1.490 (0.0491) 442
300 2 210 (22.00) 2.260 (0.0567) 974
400 5 180 (92.20) 3.040 (0.0718) 1 700
500 NA 3.780 (0.0593) NA

f(x) = 3
√

x(1.3 − x)8(6x − 3) and gi(x) = α1α2 sin(2πxα3),

where for each i, α1, α2 and α3 are, respectively, random draws from the N(1
4 ,

1
4)

distribution and the sets {−1,1} and {1,2,3}. The level 2 sample sizes ni were
generated randomly from the set {30,31, . . . ,60} and the level 1 sample sizes m
ranging over the set {100,200,300,400,500}. All xij data were generated from a
Uniform distribution over the unit interval. Table 1 summarizes the timings based on
100 replications with the number of mean field variational Bayes iterations fixed at
50. The study was run on a MacBook Air laptop with a 2.2 GHz processor and 8
GB of random access memory.

For m ranging from 100 to 400, we see that the naı̈ve to streamlined ratios increase
from about 100 to 1700. When m = 500, the naı̈ve implementation fails to run due
to its excessive storage demands. In contrast, the streamlined fits are produced in
about 3 seconds. It is clear that streamlined variational inference is to be preferred
and is the only option for large numbers of groups.

We then obtained timings for the streamlined algorithm for m becoming much
larger, taking on values 100, 500, 2500 and 12500. The iterations in Algorithm 2
were stopped when the relative increase in the marginal log-likelihood fell below
10−5. The average and standard deviation times in seconds over 100 replications are
shown in Table 2. We see that the computational times are approximately linear in
m. Even with 12 and a half thousand groups, Algorithm 2 is able to deliver fitting
and inference on a contemporary laptop computer in about one and a half minutes.

For the contrast curves extension with two categories, the computing times are
higher since the number of columns in the spline basis design matrices is doubled
due to the presence of indicator variables. A running of the Figure 2 examples with
and without categorization and contrast curves, and with the number of iterations

Table 2 Average (standard deviation) of elapsed computing times in seconds for fitting model (2.1) with
streamlining via Algorithm 2 with implementation in the Fortran 77 language

m = 100 m = 500 m = 2, 500 m = 12500

0.635 2.900 16.90 95.00
(0.183) (0.391) (1.92) (4.92)
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Table 3 Average (standard deviation) of elapsed computing times in seconds for fitting a Bayesian
three-level group-specific curves model with streamlining via Algorithm 4 with implementation in the R
language

m = 25 m = 50 m = 100 m = 200 m = 400

82.4 174 394 978 2 650
(0.741) (0.740) (1.48) (2.84) (4.01)

kept constant, revealed an approximate fourfold increase in computing time for the
contrast extension.

4.2.2 Three-level study
Our three-level study involved an implementation of Algorithm 4 in the slower,
but friendlier, R computing language rather than Fortran 77. The data were
simulated in an analogous way to the two-level study with sample sizes m ∈
{25,50,100,200,400}, ni = 50 and oij = 25. The spline basis sizes were Kgbl = 15,
Kg

grp = 10 and Kh

grp = 7. The number of mean field variational Bayes iterations was
fixed at 50 and the number of replications was 100. The computer used for the
two-level study was also used for this study.

The results of the three-level timing study are given in Table 3. They show that
Algorithm 4 is approximately linear in m. The highest average computing time is
about 44 minutes. The slowness of nested loops in the R language is partly to blame.
Based on rough comparisons for our two-level R and Fortran 77 code, the highest
computing times in Table 3 could be reduced to minutes rather than tens of minutes
with low-level implementation.

5 Concluding remarks

We have used advanced matrix algebraic results to produce algorithms that allow the
fitting of group-specific curve models with several thousand curves within minutes
on contemporary personal hardware. In the Gaussian response setting considered
here, the inferential accuracy is excellent due to parameter orthogonality results that
imply the mildness of our mean field product restrictions. Our algorithms cover
both two-level and three-level group-specific curve models and provide templates for
higher level extensions.

6 Supplementary materials

Supplementary materials for this article containing

• derivations of all results,
• approximate marginal log-likelihood expressions
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• and listings of the SolveTwoLevelSparseLeastSquares and SolveThreeLevel-
SparseLeastSquares algorithms

are available from http://www.statmod.org/smij/archive.html.
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