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Abstract: Acinetobacter baumannii isolate ATCC 19606 was recovered in the US prior to 1948. It has
been used as a reference and model organism in many studies involving antibiotic resistance
and pathogenesis of A. baumannii, while, until recently, a complete genome of this strain was
not available. Here, we present an analysis of the complete 3.91-Mbp genome sequence, generated via
a combination of short-read sequencing (Illumina) and long-read sequencing (MinION), and show
it contains two small cryptic plasmids and a novel complete prophage of size 41.2 kb. We also
characterised several regions of the ATCC 19606 genome, leading to the identification of a novel
cadmium/mercury transposon, which was named Tn6551. ATCC 19606 is an antibiotic-sensitive strain,
but a comparative analysis of all publicly available ST52 strains predicts a resistance to modern
antibiotics by the accumulation of antibiotic-resistance genes via plasmids in recent isolates that
belong to this sequence type.

Keywords: Acinetobacter baumannii ATCC 19606; complete genome; plasmid; antibiotic resistance;
ST52 and Multi-Locus Sequence Typing (MLST)

1. Introduction

Acinetobacter baumannii is a Gram-negative opportunistic pathogen that has emerged in recent
decades as a global challenge to healthcare. It causes pneumonia, wound, soft tissue and bloodstream
infections and is a major cause of infections in intensive care units (ICUs) [1]. Eradicating A. baumannii is
problematic mainly because of its natural resistance to extreme environmental conditions and its ability
to acquire a range of antibiotic resistance genes [2–4]. A. baumannii strains have highly plastic genomes,
which elevates a need for knowledge of the genomic features at the strain level.

A. baumannii ATCC 19606 was recovered in a urine sample prior to 1948 in the US and is one of the
earliest isolates available in current collections [5]. It is one of the most antibiotic susceptible strains
available to researchers and, hence, has been widely used in studies both as a reference and model
strain for studying the emergence and evolution of resistance, pathogenesis and for the discovery of
new antibacterial targets [6,7].

Several draft genomes are available for ATCC 19606 (GenBank acc. nos. JMRY01000000 [8],
ACQB01000000 and APRG01000000). We deposited the first complete genome for ATCC 19606 in
GenBank in October 2019 (GenBank acc. no. CP045110), but in quick succession, two further complete
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genomes for ATCC 19606 were also made publicly available (GenBank acc. nos. CP046654 and AP022836).
One of these genomes was completed using PacBio only (GenBank acc. nos. CP046654) [9], and the
latest genome was completed using a combination of Illumina MiniSeq (short-read) and MinION
(long-read) sequence data (GenBank acc. nos. AP022836) [10]. Zhu et al. performed a comparative
analysis of ATCC 19606 with 98 diverse A. baumannii genomes belonging to a variety of sequence types
(ST) [9], while the study of Tsubouchi et al. included no analysis of this genome [10].

Here, we report a complete genome for ATCC 19606 generated from a combination of Illumina
MiSeq and Oxford Nanopore (MinION) sequence data, as well as an analysis of its genomic features
and other ST52 strains. To complement our genome and strengthen the confidence in inferences made
from our genomic analysis, we also performed a set of phenotypic assays for antibiotic resistance,
mercury resistance, biofilm production and phage lytic ability. Our complete genome for ATCC 19606
includes two cryptic plasmids and a prophage never previously described. Here, we aimed to provide
a detailed characterisation of the genetic features and evolutionary relationships of ATCC 19606 and
other ST52 strains to further understand the genomic features and mechanisms for the development of
antibiotic resistance.

2. Materials and Methods

2.1. Antibiotic Resistance Profile and Resistance to Mercury

Antibiotic resistance profile of A. baumannii ATCC 19606, which was obtained from the ATCC
culture collection and kindly supplied by Prof. Ruth Hall of the University of Sydney, Australia,
against 22 antibiotics was determined using the standard disc diffusion method, as previously
described [11]. Antibiotic discs tested were: ampicillin (25 µg), ampicillin/sulbactam (10/10 µg),
cefotaxime (30 µg), ceftazidime (30 µg), imipenem (10 µg), meropenem (10 µg), piperacillin/tazobactam
(100-10 µg), timentin (ticarcillin/clavulanic acid) (75/10 µg), streptomycin (25 µg), spectinomycin (25 µg),
sulfamethoxazole (100 µg), trimethoprim (5 µg), kanamycin (30 µg), neomycin (30 µg), gentamicin
(10 µg), amikacin (30 µg), tobramycin (10 µg), netilmicin (30 µg), rifampicin (30 µg), tetracycline
(30 µg), ciprofloxacin (5 µg) and nalidixic acid (30 µg). Resistance and susceptibility were interpreted
according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for Acinetobacter spp. [12]
and calibrated dichotomous sensitivity disc diffusion assay (CDS) (http://cdstest.net/) when a CLSI
breakpoint for Acinetobacter spp. was not available (e.g., for netilmicin, streptomycin, spectinomycin,
sulfamethoxazole, nalidixic acid and rifampin). Antibiotic resistance profile was determined using
two individual colonies of ATCC 19606. All antibiotics were purchased from OXOID, UK.

To examine whether ATCC 19606 is resistant to mercury, 10 fresh colonies were patched onto
L-agar supplemented with 20-µg/mL HgCl2 followed by overnight incubation at 37 ◦C and visual
inspection for the presence and absence of growth, as previously described [13].

2.2. Static Biofilm Assay and Quantification of Biofilm Production Using Fluorescence Microscopy

Biofilm formation was measured using the standard crystal violet assay in 96-well plates, as
described previously [14]. Briefly, ATCC 19606 and controls were grown overnight at 37 ◦C in
Cation-adjusted Muller-Hinton broth (CaMHB; Sigma-Aldrich, St. Louis, MO, USA). All cultures were
then normalised to OD600 of 0.05 (~1 in 100 dilution) and then 100 µL of cells transferred to each well
of a 96-well plate. Growth and media-only controls were also included. The 96-well plate was covered
with Aeroseal (Thermo FisherTM, Waltham, MA, USA) and incubated for 24 h and a second plate for
48 h at 37 ◦C. After the incubation, plates were washed with PBS buffer (Phosphate-buffered Saline)
using an automatic plate washer (BIO-TEK ELx405TM, Winooski, VT, USA), followed by staining with
150 µL of 0.2% CV (Crystal Violet) per well and incubating at room temperature for 1 h on an automatic
rocker. The washing step was repeated, followed by adding 170 µL of 33% acetic acid to each well and
incubating at room temperature on a rocker for 30 min. Absorbance at 600 nm was measured using
a plate reader (Tecan M200, Männedorf, Switzerland).

http://cdstest.net/


Microorganisms 2020, 8, 1851 3 of 22

Fluorescence microscopy was used to visualise biofilm microcolonies and to measure their
properties. Briefly, 1 mL of normalised cell culture (as prepared for CV assay) was grown for 24 or 48 h
at 37 ◦C in CaMHB in WPITM dishes. After the incubation, dishes were washed gently with saline and
stained with 1 mL of 2-uM Syto-9 for 1 h, then washed again and fixed with 1 mL of freshly prepared
4% PFA for 1 h prior to imaging. DeltaVision Elite microscope (Applied Precision) was used to acquire
Z-stack wide-field fluorescence images; 5 randomly selected fields of view (FOV) were captured in the
FITC channel at 20×magnification. All images were analysed using IMARIS softwarev.9.5.1 with the
Biofilm Analysis tool (https://imaris.oxinst.com).

All biofilm assays were performed with technical triplicates and included three additional strains,
AB0057 (member of global clone 1), ACICU (member of global clone 2) and ATCC 17978 (widely used
reference strain). Results were analysed and plotted using the Prism GraphPad software v8.2.0. 2.3.
whole-genome sequencing and assembly.

2.3. Genome Sequencing

Whole-cell genomic DNA of ATCC 19606 was isolated using the DNeasyTM UltraClean Microbial
Kit (QiagenTM, Germantown, MD, USA) from cells grown overnight at 37 ◦C in LB inoculated from
a single colony. Library preparation and barcoding for Illumina MiSeq and MinION (Oxford Nanopore
Technologies ®, Oxford, UK) sequencing was performed by the UTS Core Sequencing Facility at the
ithree Institute, as described previously [15,16]. Illumina sequencing generated 1,024,087 paired-end
short reads with 50-fold coverage and an average length of 250 bp; MinION generated a total of
10,687 reads with an N50 of 18.2 kbp and 30-fold coverage. FastQC (v.0.11.9) (https://bioinformatics.
babraham.ac.uk/projects/fastqc/) and Filtlong (v.0.2.0) (https://github.com/rrwick/Filtlong) were used
to check the quality of Illumina and MinION reads, respectively. Filtlong filtered long reads by quality
and length. The high=quality Illumina and MinION reads were assembled de novo using a hybrid
assembly approach with the Unicycler program (v0.4.7) [17]. Protein coding, rRNA and tRNA gene
sequences were annotated using Prokka [18], and the resistance and polysaccharide loci (outlined
below) were annotated manually.

2.4. Phylogenetics and Sequence Analysis

Phylogenetic relationships of all available ST52 strains were examined by generating a core
genome alignment. Briefly, Illumina sequence reads for all isolates were mapped to ATCC 19606,
which was also used as a reference using snippy (available at https://github.com/tseemann/snippy)
to generate a whole-genome alignment. Snippy mapped all reads to the reference genome using bwa
v0.7.12 and minimap2 v 2.0 using default parameters. High-quality variant sites were called using
SAMtools v1.3.1.24 with standard-quality filtering, as described previously (10). Single-nucleotide
differences (SNDs) in recombinant regions were identified and removed using Gubbins v2.1.025 (33)
with default parameters, including the default taxa filtering percentage of 25%. A maximum likelihood
phylogenetic tree was inferred from the resulting recombination-filtered alignment using RAxML (v.8)
with the GAMMA model. The tree was visualised and annotated using the R package ggtree v1.12.027.
Recombination blocks were plotted against the phylogenetic tree in R v.3.5.2. using the ggtree v. 1.16.6
and ggplot2 v.3.2.1 packages and PlotTree available at https://github.com/katholt/plotTree. Bootstrap
values were calculated using ten independent runs of RAxML with 1000 bootstraps, which each gave
near-identical results.

A range of bioinformatic tools were used for the sequence analysis. A local database of the genome
sequence of the strains studied here was created, and sequence analysis was done locally using the
standalone BLAST program available at ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.
The Artemis Comparison Tool (ACT) 16.0.0 [19] was used to visualise comparisons of large regions
performed by Standalone BLAST. SnapGene Viewer v 4.2.4 was used to visualise, manipulate and
export the sequence data.

https://imaris.oxinst.com
https://bioinformatics.babraham.ac.uk/projects/fastqc/
https://bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/rrwick/Filtlong
https://github.com/tseemann/snippy
https://github.com/katholt/plotTree
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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Protein coding and gene features studied here were annotated manually using a combination
of BLASTP (http://blast.ncbi.nlm.nih.gov/Blast.cgi), Pfam (http://pfam.xfam.org/) and UniProt (https:
//www.uniprot.org) searches, as described elsewhere.

The IS-Finder (https://www-is.biotoul.fr/) database was used to identify and analyse insertion
sequences (IS).

The PHASTER (http://phaster.ca) database was used to look for integrated phage genomes.
The phage genome sequences were further analysed and annotated using the RAST server
(Rapid Annotation using Subsystem Technology; https://rast.nmpdr.org), BLAST (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) and the HHPRED bioinformatics toolkit (https://toolkit.tuebingen.mpg.de/tools/
hhpred). Figures were drawn to scale using SnapGene Viewer® v 4.2.4 and reconstructed using the
Inkscape v.1.0 program.

2.5. Data Availability

The complete genome sequence was deposited in DDBJ/ENA/GenBank under the accession no.
CP045110 (chromosome), CP045108 (p1ATCC 19606) and CP045109 (p2ATCC 19606). Illumina and
MinION sequence reads were deposited in the sequence read archive database under the accession
numbers SRR10248709 and SRR10248708, respectively.

2.6. Phage Induction and Isolation

In order to induce the expression of the prophage and its release from the bacteria, an overnight
culture of A. baumannii strain ATCC 19606 was diluted 1:100 in LB broth and incubated at 37 ◦C and
180 rpm. When the culture reached 0.5 OD (600 nm), mitomycin (10µg/mL) was added to the culture
and incubated until the culture was cleared by lysis. After 30 min of incubation at room temperature in
the presence of chloroform (1%), the culture was centrifuged at 3000× g for 15 min, and the supernatant
with the isolated phage was recovered and filtered through a 0.45-um filter.

2.7. Phage Concentration and Preparation for Transmission Electron Microscopy (TEM)

To concentrate the phage previously isolated, the lysate was incubated with NaCl to a final
concentration of 0.5 M and left on ice for 1 h. The suspension was centrifuged at 3400× g for 40 min at
4 ◦C, and the supernatants were transferred to sterile tubes. PEG 6000 (10% w/v) (polyethylene glycol)
was added, dissolved and incubated overnight at 4 ◦C. Bacteriophages were then precipitated at 3400
g for 40 min at 4 ◦C and resuspended in SM buffer (0.1-M NaCl, 1-mM MgSO4 and 0.2-M Tris-HCl,
pH 7.5).

For the visualisation of the phage by TEM, the samples of the phage in SM buffer were
negatively stained with 1% aqueous uranyl acetate in grids and then examined on a JEOL JEM-1011
electron microscope.

2.8. Phage Host Range

The host range of the phage was established by applying a previously established spot test [20]
to a set of diverse 19 clinical strains of A. baumannii, of different STs, isolated from Spanish hospitals
during the GEIH-REIPI Spanish Multicentre A. baumannii Study II 2000–2010, GenBank Umbrella
project PRJNA422585. Briefly, an overnight culture of the A. baumannii strain host was diluted 1:100
and incubated at 37 ◦C and 180 rpm until it reached an optical density of 0.5 (OD600nm). TA soft
medium (agar 0.4%) supplemented with 10-mM CaCl2 was previously prepared and maintained at
50 ◦C. Four millilitres of the TA soft medium was mixed with 200 µl of the A. baumannii culture, and the
mix was poured on the top of a TA plate (agar 1.5%). When the soft medium was solidified, a spot of
10 µl of the phage suspension was dropped on the plate, and when adsorbed, it was incubated at 37 ◦C.
After 24 h, the plates were checked to detect the presence of a halo, which indicated lysis.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://pfam.xfam.org/
https://www.uniprot.org
https://www.uniprot.org
https://www-is.biotoul.fr/
http://phaster.ca
https://rast.nmpdr.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://toolkit.tuebingen.mpg.de/tools/hhpred
https://toolkit.tuebingen.mpg.de/tools/hhpred
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3. Result

3.1. Antibiotic Resistance Profile

The resistance profile for ATCC 19606 to individual antibiotics has been tested in previous studies.
However, to draw a complete picture of ATCC 19606′s resistance profile and to phenotypically
confirm the genome reported here, ATCC 19606 was tested against 22 antibiotics representing all
clinically important antibiotic classes. Overall, ATCC 19606 is susceptible to a wide range of antibiotics,
including nalidixic acid, ciprofloxacin and many antibiotics in the ß-lactam and aminoglycoside families
(Table 1). It was found to be resistant to ampicillin, streptomycin spectinomycin, chloramphenicol and
sulfamethoxazole (Table 1).

Table 1. Antibiotic resistance profile of ATCC 19606.

Antibiotic Family Antibiotic Growth Inhibition Zone
(Diameter in mm) 1

ß-lactams

Ampicillin 0
Cefotaxime 15
Ceftazidime 18
Ceftriaxone 17
Imipenem 19

Meropenem 21
Ampicillin/Sulbactam 19

Aminoglycosides

Gentamicin 14
Kanamycin 15
Neomycin 14

Tobramycin 13
Netilmicin 16
Amikacin 15

Streptomycin 7
Spectinomycin 0

Fluoroquinolones Nalidixic acid 13
Ciprofloxacin 16

Tetracyclines Tetracycline 15

Chloramphenicol Chloramphenicol 0

RNA Synthesis inhibitor Rifampicin 14

Folic acid Synthesis Inhibitors Trimethoprim 12
Sulfamethoxazole 0

1 Bold indicate antibiotics to which the resistance was observed.

3.2. Complete Genome Sequence of ATCC 19606, Antibiotic Resistance Gene and Its Genomic Context

To determine the complete genome sequence of ATCC 19606, we used a combination of Illumina
and MinION sequence data. We used the long reads to generate the genome scaffold and >50 rounds
of polishing using the Illumina reads, given the accuracy of Illumina reads, to minimise the sequencing
errors in the final assembly. The genome sequence of ATCC 19606 was completed and submitted
to GenBank in October 2019 (https://www.ncbi.nlm.nih.gov/nuccore/CP045110). The final assembly
consists of 3,981,968 bases, including the chromosome (3,981,941 bp; Figure 1) and two plasmids,
p1ATCC19606 (7655 bp) and p2ATCC19606 (pMAC) (9540 bp), with a copy number of 11x and 13x for
each plasmid, respectively. The chromosome of ATCC 19606 has an average GC content of 39.15%
(highest 51.66% and lowest 22.5%) and encodes a total of 3693 putative proteins, 74 tRNAs and
6 rRNA regions.

https://www.ncbi.nlm.nih.gov/nuccore/CP045110
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Figure 1. Schematic representation of the complete genome of Acinetobacter baumannii ATCC 19606.
Important genes, genomic islands, transposons and surface polysaccharide loci (OC and K) are marked
on the outermost ring representing the chromosome. The inner most ring represents the GC skew,
and the middle ring represents the GC content of the ATCC 19606 chromosome.

Recently, the genome of ATCC 19606 was also completed by two other groups: (i) using the PacBio
technology (Table 2) [9] and (ii) a combination of Illumina MiniSeq and MinION [10]. To examine
the differences in the genomes generated by the three groups, we compared all three genomes.
The chromosome sequence of our assembly is 1093-bp longer than that in CP046654 due to the
absence of a copy of the insertion sequence ISAba11, which was found at positions 998797–999897 of
our assembly. The two chromosome assemblies also differ by 50 single-nucleotide differences (SNDs)
and small insertions/deletions of mainly one–five bases (50 bp in total) spread across the chromosome.
The chromosome of ATCC 19606 deposited in GenBank acc. no. AP022836 differs from our assembly
again by the absence of the additional ISAba11 found in our assembly, 270 SNDs and a substantial
number of small insertions/deletions (1660 bp in total) of mainly up to 10 bases in the chromosome.
Notably, there are far less differences between our assembly and that completed using PacBio by
Zhu et al. [9] than the genome reported by Tsubouchi et al. [10]. The additional ISAba11 copy in
our assembly is presumably due to IS movement, given that there is already another ISAba11 in
all ATCC 19606 chromosomes, while SNDs and short insertions/deletions could be due to either
sequencing/assembly errors, real mutations or, likely, a combination of both.

The complete genome of ATCC 19606 includes a single acquired antibiotic resistance gene,
the sul2 sulfonamide resistance gene, which confers resistance to sulfamethoxazole and accounts for
the sulfamethoxazole resistance phenotype observed in this strain [21]. We previously predicted,
using the publicly available draft genome sequences of ATCC 19606, a chromosomal genomic island
in ATCC 19606 containing the sul2 gene in the GIsul2 genomic island [21]. This GI will be referred
to as GI19606 hereafter. The complete ATCC 19606 genome reported here confirms the structure of
GI19606 as a 36,157-bp genomic island located at bases 80477–116633 of the ATCC 19606 chromosome
(GenBank acc. no. CP045110) spanning locus_ids FQU82_00080 to FQU82_00125 (Figure 1). The other
two ATCC 19606 complete genomes also contain GI19606 [9,10].
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Table 2. Properties of the complete ATCC 19606 genomes.

ATCC 19606
Genomes Length GC% Reading

Frames
Sequencing
Technology

Assembly
Program GenBank no. Ref.

Chromosome 3,981,941 39.1 3727
Illumina
MiSeq &
MinION

Unicycler CP045110 This study

p1ATCC
19606 7655 33.3 14 CP045108

p2ATCC19606
(pMAC) 9540 34.6 14 CP045109

Chromosome 3,980,848 39.1 3709 PacBio SMRT CP046654 [9]
pMAC 9540 34.6 14 plasmidSPAdes CP046655

Chromosome 3,978,812
Illumina
MiSeq &
MinION

Unicycler AP022836 [10]

pATCC
19606-1 9408 34.6 14 AP022837

pATCC
19606-2 7631 33.3 12 AP022838

ATCC 19606 is susceptible to third-generation cephalosporins and carbapenems, and consistent
with this, no ISAba1 copy was found upstream of the intrinsic ampC and oxa-Ab genes. However, in our
complete genome assembly, the ATCC 19606 chromosome contains a copy of the intrinsic ant(3”)-IIa
aminoglycoside resistance gene (located at bases 225025–225813; locus id FQU82_00218), accounting for
the streptomycin and spectinomycin resistance phenotypes observed (Table 1). This intrinsic ant(3”)-IIa
aminoglycoside resistance gene is also present in the other two complete genomes.

3.3. Tn6551, a Novel Mercury/Cadmium Transposon Found in ATCC 19606

Given that genes conferring resistance to antibiotics and resistance to heavy metals can occur
together on the same genetic element, we searched the complete genome of ATCC 19606 for genetic
elements associated with heavy metal resistance. A set of mer resistance genes predicted to confer
resistance to mercury were found on an approx. 6.5-kbp region that was flanked by a set of cadmium/zinc
resistance genes and a partial tnpA gene, which were identical to those in Tn6018 [3]. Tn6018 is a 3372-bp
cadmium/zinc transposon that is often found embedded in the AbaR-type resistance islands in members
of global clone 1 [3]. Tn6018 is flanked by 24-bp inverted repeats (IR) and generates 8-bp target site
duplication upon insertion [3]. Further analysis of this region showed that this mercury/cadmium/zinc
region in ATCC 19606 includes properties of a class II transposon and is related to Tn6018. Hence,
this transposon was named Tn6551 (Figure 2). Tn6551 is a 6582-bp novel transposon bounded by
24-bp IRs and flanked by the 5′-ATTTTTTT-3′ 8-bp target site duplications (TSD). Tn6551 is located
at bases 1237446–1244027 of the ATCC 19606 chromosome (GenBank acc. no. CP045110) between
FQU82_01194 (encoding a hypothetical protein) and the fic gene (FQU82_01201, encoding a putative
adenosine monophosphate-protein transferase). In Tn6551, the 5′-end of the tnpA gene is interrupted
by the merACPR genes (Figure 2). However, the other end of this mer module appears to be deleted,
as the IRtnp of Tn1696 could not be detected. Analysis of the mer region indicated that it is a hybrid
Tn501/1696/5053 mer module (GenBank acc. no. Z00027: Tn501, Y09025: Tn1696 and L40585: Tn5053)
with an IR1696 located at the 3′-end of merR.
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Figure 2. Genetic structure of Tn6551 (A) and its comparison to Tn6018 (B). Horizontal arrows
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Inverted repeats (IR) are indicated using black vertical lines. Target site duplications generated
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The vertical grey arrow indicates the position of the 96-bp deletion in Tn6551-v1.

ATCC 19606 was tested for mercury resistance; however, none of the colonies patched onto L-agar
supplemented with 20-µg/mL HgCl2 generated a visible colony, suggesting that this mercury operon
is likely to be nonfunctional.

To track Tn6551, the GenBank nonredundant database was searched using the sequence of
Tn6551 as a query. Tn6551 and/or variants of it were found in related strains, unrelated strains,
different Acinetobacter species and a different bacterial genus. A copy of Tn6551 was found precisely
in the same chromosomal location in an ST52 clinical strain recovered in 2015 in the US (strain
ab736; Table 3). This suggests a link to ATCC 19606, given that both strains belong to the same
sequence type (see a comparative analysis of ST52 strains below). An almost identical copy of Tn6551
(with 99.9% DNA identity) was identified also in two other completely unrelated Acinetobacter strains,
AB031 and BEC1-S18-ESBL-01 (Table 3). Notably, the latter belongs to a different species, A. pittii,
suggesting the transfer of Tn6551 across species. In addition, a variant of Tn6551, which we named
Tn6551-v1, was found in several strains belonging to different species of the Acinetobacter genus,
indicating that both Tn6551 and Tn6551-v1 are widely spread (Table 3). Compared to Tn6551, the -v1
variant is 96-bp longer and was likely generated due to a separate deletion event truncating the hybrid
mer501/1696/5053 module, leaving an additional 96 bp of the mer module behind (vertical grey arrow in
Figure 2A). Alternatively, it is possible that Tn6551 is a derivative of Tn6551-v1 that was generated as
a result of a second deletion event; however, this could not be verified, as no intermediate structure is
currently available in GenBank. Unexpectedly, a copy of Tn6551-v1 was also found in the chromosome
of a Neisseria brasiliensis strain, N.177.16, recovered in 2016 in Brazil (Table 3). N.177.16 belongs to
a completely different bacterial genus, suggesting its transposition across two different bacterial genera.
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Table 3. Distribution of Tn6551 and related transposons in Acinetobacter.

Genus/Species Strain Date Country Source ST (IP) Tn TSD
5′-3′ 1

GenBank
no.

A. baumannii ATCC 19606 <1948 USA Urine 52 6551 ATTTTTTT CP045110
A. baumannii ab736 2015 USA Blood 52 6551 ATTTTTTT CP015121
A. baumannii AB031 2010 Canada Blood 638 6551 ATTTTTTT CP009256

A. pittii BEC1-S18-ESBL-01 2018 Japan Water 2 457 6551 ATTTTTTT AP022302
A. baumannii NCTC7364 2014 UK nk 3 494 6551-v1 4 ATTTTTTT LT605059

A. indicus Yy_1 2019 China Soil - 6551-v1 ATTTTTTT CP039031
A. junii WCHAJ59 2015 China Sewage - 6551-v1 ATTTTTTT CP028800

A. nosocomialis AC1530 2015 Malaysia Blood - 6551-v1 ATAATTAA CP045560
Neisseria

brasiliensis N.177.16 2016 Brazil Ulcer
exudate - 6551-v1 ATGTATTT CP046027

1 TSD, target site duplication. 2 Oceanic water. 3 Not known. 4 Includes a 96-bp-longer mer module.

We previously showed that DNA fragments containing an ISAba1-activated ampC gene or an entire
genomic island could be acquired from an exogenous source via homologous recombination [22,23].
To examine whether homologous recombination is the mechanism for the Tn6551 and Tn6551-v1
exchange events, we analysed the chromosomal sequences flanking Tn6551 and the -v1 variant.
Analysis of the flanking sequences of Tn6551 showed that a 7044 bp on the left and a 3934 bp on the
right of Tn6551 in ATCC 19606 were 100% and 99.99% (1-bp difference), respectively, identical to the
corresponding sequences in AB301 (GenBank acc. no. CP009256). This suggests a possible homologous
recombination exchange event of a 17,560-bp DNA fragment (including Tn6551) between ATCC 19606
and AB301 (Table 3). AB301 belongs to ST638, which is a very rare sequence type with only one
complete genome available in GenBank. No other exchange event was detected, indicating that the
acquisition of Tn6551 and Tn6551-v1 by different strains of Acinetobacter species occurred through
multiple transposition events. In all but A. nosocomialis AC1530 and Neisseria brasiliensis N.177.16,
Tn6551 and Tn6551-v1 are present in precisely the same chromosomal location, suggesting a preference
for this particular chromosomal site. Nonetheless, the presence of Tn6551-v1 copies in completely
different chromosomal locations in A. nosocomialis AC1530 and Neisseria brasiliensis N.177.16 indicates
that these transposons could also target alternative genomic spots.

3.4. ATCC 19606 Carries Two Cryptic Plasmids

Our complete ATCC 19606 genome carries two cryptic plasmids, which are named p1ATCC19606
and p2ATCC19606 (pMAC). In addition to our assembly, the entire sequence of p1ATCC19606 is present
in all available draft genomes of ATCC 19606 (GenBank acc. no. JMRY01000000, ACQB01000000 and
APRG01000000) and in the complete genome of the Tsubouchi et al. group [10] (Table 2), but it is absent
from the genome reported by Zhu et al. [9], likely due to sequencing/assembling error. p1ATCC19606
is a novel 7655-bp cryptic plasmid that encodes 14 open reading frames, one of which is a novel RepAci
putative replication initiation protein (Figure 3). Its closest known match is RepAci2 (encoded by
pABVA01; GenBank acc. no. FM210331) with 95% aa identity. p1ATCC19606 also encodes the higAB
toxin-antitoxin system, a prevalent toxin-antitoxin type in small plasmids of A. baumannii.
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Recently, a number of A. baumannii plasmids have been shown to include pdif sites, consisting
of inversely oriented binding sites for the XerC and XerD recombinases separated by 6 bp [13,24–26].
Here, our manual inspection of p1ATCC19606 identified three pdif sites (XerC/D at bases 1971–1998,
XerD/C at bases 2613–2640 and XerD/C at bases 4973–5000), as well as an 11 bp that resembles
a XerC-binding site at bases 3758–3768 of p1ATCC19606 (GenBank acc. no. CP045108; Figure 3).
The pdif module, carrying higAB and flanked by D/C and D/C sites, is in a wide range of small plasmids
(data not shown). The sequence of this plasmid in the genome completed by the Tsubouchi et al.
group [10] is 24-bp shorter due to the absence of the C/D site of the module carrying a single orf.
This might represent a sequencing/assembling error, as careful inspection of the flanking sequence did
not reveal any evidence to explain the deletion. However, this could not be verified, as ATCC 19606T

was not available.
p2ATCC19606, also known as pMAC, is a well-studied 9540-bp cryptic plasmid first reported in

2006 [27]. The sequence of p2ATCC19606 (pMAC) in our assembly and that sequenced by Zhu et al. [9]
are identical to the original sequence of pMAC (GenBank acc. no. AY541809.1) (Table 2). However,
the sequence of this plasmid is 132-bp shorter in the sequence reported by Tsubouchi et al. [10],
again likely due to sequencing errors.

Our manual inspection of p2ATCC19606 (pMAC) identified five pdif sites, including XerC/D at
bases 1868–1895, XerD/C at bases 2510–2537, XerD/C at bases 5226–5253, XerC/D at bases 6264–6291
and XerD/C at bases 6809–6836 of GenBank acc. no. CP045109 (picture not shown), which indicates
that it consists of five pdif modules. This was not noted before.

3.5. ATCC 19606 Carries a Novel Prophage, vB_AbaS_LC1

Our analysis of the genomic sequence of ATCC 19606 established the presence of a 41,282-bp
complete prophage. This prophage was located at the genomic position 1336408–1377688 bp (GenBank
acc. no. CP045110; Figure 1) and had a GC content of 40.4%. This prophage region encodes 59 open
reading frames (Table 4), of which 41% have unknown functions; 10% have putative replication,
recombination and synthesis functions; 17% are structural proteins; 5% involved in defence against
the host; 6% involved in the lytic-lysogenic cycle and 5% have putative functions related to the entry
and exit of the virus from the cell, including a lysozyme and a sialidase. These have potential as
enzymes for phage therapy.

To find out if there were any homologues of the prophage that we identified, we first performed
a homology analysis by BLAST of the prophage sequence. This showed the presence of an identical
genomic region in the chromosome of A. baumannii strain Ab736 (GenBank acc. no. CP015121).
Ab736 belongs to the sequence type ST52 and is, therefore, related to ATCC 19606. However,
this genomic region is not annotated and/or reported as a prophage. Secondly, we performed
a bacteriophage homology analysis by comparing the genomic sequence of the phage with the viral
genomes deposited in the GenBank nonredundant database. No homology was obtained for any
known phage, suggesting that the prophage we found in ATCC 19606 is a novel phage. We named this
phage vB_AbaS_LC1.
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Table 4. Annotation and function of the 59 proteins identified in the phage vB_AbaS_LC1.

Predicted Function Biological
Function Protein Id 1 E-Value Tool

Hypothetical protein Unknown function QFQ04715.1 4.00 × 10−177 BLASTp

Hypothetical protein Unknown function QFQ04716.1 5.00 × 10−114 BLASTp

Hypothetical protein Unknown function QFQ04717.1 4.00 × 10−53 BLASTp

Hypothetical protein Unknown function QFQ04718.1 0 BLASTp

Hypothetical protein Unknown function QFQ04719.1 1.00 × 10−42 BLASTp

RecA protein; Recombination,
Radio-resistance, DNA repair,

ATPase, DNA binding; HET: AGS;
2.5A {Deinococcus radiodurans}

SCOP: d.48.1.1, c.37.1.11

Recombination QFQ04720.1 1.30 × 10−10 HHpred

Hypothetical protein Unknown function QFQ04721.1 1.00 × 10−73 BLASTp

50S ribosomal protein L2, 50S;
Ribosome, bacterial ribosome,

proline-rich antimicrobial;
Protein synthesis QFQ04722.1 0.3 HHpred

Hypothetical protein Unknown function QFQ04723.1 1.00 × 10−102 BLASTp

Helix-turn-helix
domain-containing protein Lysogeny QFQ04724.1 0 BLASTp

Cro/Cl family transcriptional
regulator Lysogeny QFQ04725.1 7.00 × 10−54 BLASTp

XRE family transcriptional
regulator Lysogeny QFQ04726.1 4.00 × 10−117 BLASTp

Hypothetical protein Unknown function QFQ04727.1 7.00 × 10−64 BLASTp

DNA cytosine methyltransferase Defence QFQ04728.1 0 BLASTp

YdaU family protein Unknown function QFQ04729.1 0 BLASTp

Replicative DNA helicase
(E.C.3.6.4.12), Bacteriophage;

Helicase-loader, Helicase, DNA
replication; HET: ADP; 4.1A

{Escherichia coli O111:NM}; Related
PDB entries: 6BBM_W 6BBM_V

6BBM_X 6BBM_Y

Replication QFQ04730.1 1.20 × 10−13 HHpred

Hypothetical protein Unknown function QFQ04731.1 6.00 × 10−80 BLASTp

Hypothetical protein Unknown function QFQ04732.1 6.00 × 10−109 BLASTp

Hypothetical protein Unknown function QFQ04733.1 2.00 × 10−75 BLASTp

DUF1064 domain-containing
protein Unknown function QFQ04734.1 4.00 × 10−94 BLASTp

Antitermination protein Replication QFQ04735.1 4.00 × 10−97 BLASTp

Hypothetical protein Replication QFQ04736.1 2.00 × 10−32 BLASTp

Hypothetical protein Unknown function QFQ04737.1 6.00 × 10−164 BLASTp

Hypothetical protein Unknown function QFQ04738.1 1.00 × 10−60 BLASTp

DNA mismatch endonuclease
(E.C.3.1.-.-)/DNA complex;
PROTEIN-DNA complex,

mismatch, intercalation, zinc; 2.3A
{Escherichia coli} SCOP: c.52.1.15

DNA repair QFQ04739.1 9.50 × 10−9 HHpred
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Table 4. Cont.

Predicted Function Biological
Function Protein Id 1 E-Value Tool

Hypothetical protein Unknown function QFQ04740.1 5.00 × 10−159 BLASTp

DUF2280 domain-containing
protein Unknown function QFQ04741.1 6.00 × 10−112 BLASTp

Phage terminase large subunit Replication QFQ04742.1 0 BLASTp

DUF1073 domain-containing
protein Unknown function QFQ04743.1 0 BLASTp

Phage head morphogenesis
protein Structural QFQ04744.1 0 BLASTp

Possible nuclease of RNase H fold,
RuvC/YqgF family Replication QFQ04745.1 1.00 × 10−129 BLASTp

Hypothetical protein Unknown function QFQ04746.1 5.00 × 10−66 BLASTp

Hypothetical protein Unknown function QFQ04747.1 1.00 × 10−38 BLASTp

Prohead core protein protease
(E.C.3.4.99.-); protease pentamer,

phage T4, prohead; 1.943A
{Enterobacteria phage T4}; Related

PDB entries: 5JBL_E 5JBL_B
5JBL_C 5JBL_A

Structural QFQ04748.1 3.7 HHpred

Capsid fibre protein;
bacteriophage, phi29, prohead,

VIRUS; HET: SO4; 1.8A {Bacillus
phage phi29}; Related PDB entries:

6QYY_E 6QYY_A 6QYY_D
6QYY_C 6QYY_F

Structural QFQ04749.1 0.0013 HHpred

Capsid Stabilising Protein, Major
Capsid; Major Capsid Protein,

Capsid Stabilising; 3.6A
{Pseudoalteromonas phage TW1};

Related PDB entries: 5WK1_A
5WK1_D 5WK1_C 5WK1_F

5WK1_E 5WK1_G

Structural QFQ04750.1 1.30 × 10−33 HHpred

Mu-like prophage FluMu protein
gp35; structural genomics,

Haemophilus influenzae,
hypothetical; NMR {Haemophilus

influenzae} SCOP: l.1.1.1, d.344.1.1,
a.140.3.2

Structural QFQ04751.1 0.005 HHpred

PORTAL PROTEIN, 15 PROTEIN,
HEAD; VIRAL PROTEIN, VIRAL

INFECTION, TAILED; 7.2A
{BACILLUS PHAGE SPP1};

Related PDB entries: 5A20_D
5A20_C 5A21_D 2KBZ_A

Structural QFQ04752.1 0.15 HHpred

Hypothetical protein Unknown function QFQ04753.1 1.00 × 10−38 BLASTp

Hypothetical protein Unknown function QFQ04754.1 2.00 × 10−111 BLASTp
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Table 4. Cont.

Predicted Function Biological
Function Protein Id 1 E-Value Tool

Minor tail protein U; Mixed
Alpha-Beta fold, VIRAL

PROTEIN; HET: MSE, SO4; 2.7A
{Enterobacteria phage lambda}
SCOP: d.323.1.1; Related PDB

entries: 3FZ2_L 3FZ2_K 3FZ2_F
3FZB_E 3FZB_B 3FZB_A 3FZB_I
3FZB_D 3FZB_J 3FZB_H 3FZB_C
3FZ2_I 3FZB_F 3FZ2_A 3FZB_G
3FZ2_D 3FZ2_J 3FZ2_H 3FZ2_E

3FZ2_B 3FZ2_G 1Z1Z_A

Structural QFQ04755.1 3.70 × 10−17 HHpred

Hypothetical protein Unknown function QFQ04756.1 0 BLASTp

Tail assembly chaperone;
Bacteriophage HK97,

morphogenesis, tail assembly;
HET: MSE; 2.3A {Enterobacteria

phage HK97}; Related PDB entries:
2OB9_B

Structural QFQ04757.1 6.5 HHpred

Hypothetical protein Unknown function QFQ04758.1 2.00 × 10−48 BLASTp

Zinc ribbon domain-containing
protein Unknown function QFQ04759.1 2.00 × 10−117 BLASTp

Phage tail protein Structural QFQ04760.1 0 BLASTp

DUF2460 Unknown function QFQ04761.1 1.00 × 10−161 BLASTp

DUF2163 domain-containing
protein Unknown function QFQ04762.1 0 BLASTp

SGNH/GDSL hydrolase family
protein (sialate

O-acetylesterase;cellulosome
enzyme)

Lysis QFQ04763.1 0 BLASTp

Putative Exo-alpha-sialidase;
Carbohydrate-Binding Module,
Bacterial Pathogen, Sialic; HET:

SIA; 2.2A {CLOSTRIDIUM
PERFRINGENS}; Related PDB

entries: 2V73_A

Lysis QFQ04764.1 0.0032 HHpred

C40 family peptidase Lysis QFQ04765.1 2.00 × 10−98 BLASTp

Putative phage tail protein Structural QFQ04766.1 0 BLASTp

Hypothetical protein Unknown function QFQ04767.1 4.00 × 10−87 BLASTp

Glycosyl hydrolase 108 Lysis QFQ04768.1 2.00 × 10−141 BLASTp

Anaerobic dehydrogenase Lysis QFQ04769.1 7.00 × 10−73 BLASTp

Hypothetical protein Unknown function QFQ04770.1 4.00 × 10−168 BLASTp

Y-family DNA polymerase Defence QFQ04771.1 0 BLASTp

Trans-lesion error-prone DNA
polymerase V autoproteolytic

subunit
Defence QFQ04772.1 6.00 × 10−115 BLASTp

Site-specific integrase Lysogeny QFQ04773.1 0 BLASTp
1 Protein IDs based on the complete genome of ATCC 19606, GenBank accession number CP045110.
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To determine whether our designation of the genomic region as a novel phage had functional relevance,
we isolated vB_AbaS_LC1 after inducing its exit from the bacterial cell with mitomycin. Once vB_AbaS_LC1
was isolated and concentrated, we visualised it by TEM. TEM showed that the phage has a morphotype
characteristic of a tailed phage from the Siphoviridae family, with a noncontractile tail of 250 µm and
an icosahedral capside of 60 µm (Figure 4). Spot test results showed that vB_AbaS_LC1 has a narrow
host range, as it was able to infect only two of the 19 A. baumannii clinical strains assayed (Table S1).
Each of the infected strains belonged to different STs, namely ST255 and ST265. Only one of the 19
strains assayed belonged to the same ST as ATCC 19606 (Ab22_GEIH2010; ST52), which was not
susceptible to the virus.Microorganisms 2020, 8, x FOR PEER REVIEW 13 of 21 
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3.6. Biofilm Formation

Biofilm formation is an important property that allows A. baumannii to survive on surfaces
for a long period of time. To date, multiple genes have been shown to be involved in biofilm
formation in A. baumannii, including ompA (encoding an outer membrane protein), the csuABCDE
operon (encoding a type I pili) and the bap and blp1 genes, which encode large biofilm-associated
proteins and often vary in sizes [4,28]. Differences in the sizes of the proteins encoded by the bap
and blp1 genes—differences that impact the presence/absence of domains present in the Bap and
Blp1 proteins—have been used to explain some of the variations observed in the biofilm formations
of A. baumannii strains. Knockouts that lack either of the bap and blp1 genes produce significantly
lower amounts of biofilm [4]. The complete genome of ATCC 19606 we report here encodes a 9831-bp
blp1 gene (locus_id FQU82_03028) and an 18,543-bp bap gene (locus_id FQU82_03059). Both differ
in size, mainly due to a different number of repeat units, compared to those encoded by AB0057 (GC1),
ACICU (GC2) and ATCC 17978, which is another commonly used A. baumannii reference strain.

To complement the complete genome sequence of ATCC 19606 reported here, we quantified the
biofilm formation of ATCC 19606 by crystal violet assay and by measuring biomass and thickness
using fluorescence microscopy. A member of global clone 1 (AB0057), clone 2 (ACICU) and the
widely used reference strain ATCC 17978 were also included in biofilm studies as controls. Using the
standard crystal violet assay, and under the conditions examined here, visual inspection showed
both ATCC 19606 and ATCC 17978 formed a little biomass at the culture-air interface compared to
AB5007 and ACICU, which showed very strong staining around the well. These observations are
reflected in the crystal violet measurements of OD600 0.78 and 0.36 versus 3.9 and 3.5, respectively.
Using fluorescence microscopy, which captures cells fully submerged in the culture and directly
attached to the surface, biofilm macro-colonies could be visualised in all strains after 24 h. ATCC 19606
generated a biofilm biomass of approx. 1600 µm3/µm2, which was similar to that generated by ATCC
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17978 and higher than those generated by AB0057 and ACICU (Figure 5). Interestingly, after 48 h,
ATCC 17978 showed the highest increase in biofilm biomass, while the biomass decreased in ATCC
19606 and other controls (Figure 5). Biofilm thickness was measured to be approx. 10 µm for all strains
after 24 h, and all biofilms decreased by approx. 20% in the 48-h experiment (Figure 5). Differences in
biofilm formations observed in ATCC 19606 compared to other controls maybe explained by there
being differences in the size of the proteins encoded by the blp1 and bap genes between the strains tested.
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Figure 5. Analysis of the biofilms formed by ATCC 19606, ATCC 17078, AB5007 and ACICU using
fluorescence microscopy. (a) shows the quantification of biofilm biomass and thickness of ATCC 19606
and controls after 24 and 48 h. (b) Fluorescence microscopy images of biofilms stained with Syto-9 and
taken using the 20× lens after 24 and 48 h (top).
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3.7. Surface Polysaccharide Loci Types

Surface polysaccharides, including capsular polysaccharides (CPS, K or capsule), play a pathogenic
role for A. baumannii. These loci are particularly important for the production of surface polysaccharides
that function as virulence determinants for A. baumannii: the K locus that contains genes directing
the synthesis of the surface polysaccharide capsular polysaccharide and the OC locus that contains
genes involved in the synthesis of the outer core component of the lipooligosaccharide [29]. Previously,
draft genomes of ATCC 19606 were used to predict the presence of the surface polysaccharide loci,
including the KL3 capsule biosynthesis and OCL1 outer core [30]. Here, our assembly confirms the
KL3 and OCL1 assignments.

3.8. Comparative Analysis of ST52 Strains

ATCC 19606 belongs to ST52. To examine the evolution of strains belonging to ST52, GenBank
nonredundant and WGS (Whole Genome Shotgun) databases were explored and, then, phylogenetic
analysis performed using the genomes found. In addition to ATCC 19606, 12 genomes were found as
belonging to ST52 (Table 5). The additional genomes, all recovered after 2008, represent isolates from
diverse geographical regions and diverse sources, including soil, clinical samples and hospital
environments (Table 5). A phylogenetic analysis using the whole-genome alignment of ST52
strains showed, as expected, that they all cluster into a clade distinct from other major clonal groups,
such as ST1 and ST2 (Figure 6).

However, a further analysis revealed a high degree of diversity within this tight phylogenetic
group (Figure 6)—in particular, regarding their horizontally acquired resistance determinants. Within
the ST52 clade, two distinct subclades were found. The subclade that we hereafter refer to as subclade 1
(SC1) contains a single Chinese strain (WE2714) in a deep branch and distant from the other strains.
Subclade 2 (SC2) has two branches. In one branch, ATCC 19606, MSP4–16 and ab736 clustered tightly,
indicating their close relationship, despite differences in their sources of isolation, country and isolation
date (Table 5). The other branch of SC2 consists of a set of Japanese genomes, along with three
additional genomes, one from Thailand and two from Pakistan. These three additional genomes cluster
into a separate branch (Table 5 and Figure 6). Interestingly, the Japanese strains differed from each
other by <30 single-nucleotide variants across their entire genomes, suggesting that they are likely to
be outbreak strains given their isolation source and time (Table 5).



Microorganisms 2020, 8, 1851 17 of 22

Table 5. Properties of strains belonging to ST52 1.

Strain Country Date Isolation Source KL OC GI19606 Additional
Resistance Genes 2 Tn6551 Φ 3 p1/p2 4 GenBank

no.

ATCC 19606 US <1948 Urine 3 1 Y − + + +/+ CP045110
MSP4-16 India 2010 Mangrove soil 3 1 Y − + + +/+ AODW01

ab736 US 2015 Blood 3 1 Y − + + −/+ CP015121
NBRC 110495 Japan 2008 Human abscess 3 1 − aadB 5 − − −/+ 6 BBOR01
NBRC 110494 Japan 2008 Burned skin 3 1 − aadB 5 − − −/+ 6 BBTE01
NBRC 110493 Japan 2008 Burned skin 3 1 − aadB 5 − − −/+ 6 BBOQ01

GTC 03329 Japan 2008 Human abscess 3 1 − aadB 5 − − −/+ 6 BBNJ01
GTC 03325 Japan 2008 Burned skin 3 1 − aadB 5 − − −/+ 6 BBSP01
GTC 03324 Japan 2008 Burned skin 3 1 − aadB 5 − − −/+ 6 BBNH01

AB_095 Pakistan 2016 ICU washroom sink 3 1 −

tet(B), sul1, sul2,
blaGES-11,dfrA7,

aacA4, oxa23, aphA6
− − −/− RHZR01

AB_165 Pakistan 2016 Alcohol foam
dispenser in ICU 3 1 −

tet(B), sul1, sul2,
blaGES-11,dfrA7,

aacA4, oxa23, aphA6
− − −/− RHZA01

4300STDY7045730 Thailand 2016 na 7 57 1 − tet39 − − −/− UFJF01
WE2714 China na na 32 6 − − − − −/− QKVH01

1 All strains encode the OXA-694 variant of the intrinsic oxa-Ab gene. 2 Additional antibiotic resistance genes (in addition to sul2, which is in the GIsul2 genomic island). 3 vB_AbaS_LC1.
4 p1, p1ATCC 19606 and p2, p2ATCC19606 (pMAC). 5 aadB in plasmid pRAY*. 6 An approx. 6-kb variant of p2ATCC 19606 (pMAC) present. 7 Not available.
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We screened the ST52 strains for additional genetic features that could differentiate/group them.
Interestingly, all strains in the ATCC 19606 branch, regardless of their country of origin and source
of isolation, differ from other strains by the acquisition of the GI19606 genomic island, Tn6551 and the
vB_AbaS_LC1 prophage (Figure 6), consistent with their phylogenetic placement in the same branch.
All of the Japanese strains contain a copy of the small plasmid pRAY* (Figure 6 and Table 5). Variants of
the small plasmid pRAY carry the aadB kanamycin, gentamicin and tobramycin resistance genes. So far,
the pRAY* variant has been mainly associated with members of global clone 1 [13,31]. The presence
of pRAY* in all Japanese strains here (Figure 6 and Table 5) suggests a local acquisition, as the other
strains in this subclade, which are from different countries, do not contain this plasmid. The Thai strain
(4300STDY7045730) in SC2 contains a copy of the tetracycline-resistant tet39 gene. An analysis of this
genome suggested that tet39 is located in a 9-kb plasmid, which appears to have a novel genetic structure.
This was not pursued further. AB 095 and AB 165, both belonging to SC2, both recovered in Pakistan,
contain several antibiotic resistance genes, including tet(B), sul1, sul2, blaGES-11, dfrA7, aacA4, oxa23
and aphA6, predicting resistance to tetracycline, sulfamethoxazole, extended spectrum beta-lactam,
trimethoprim and tobramycin, as well as carbapenems and amikacin, respectively. Interestingly,
an analysis of AB 095 and AB 165 genomes indicated that all of the resistance genes are carried
on a putative conjugative plasmid that encodes the RepAci6 replication initiation protein [32–34].
Plasmids that encode RepAci6 represent a group of conjugative plasmids that are mainly associated
with the spread of the aphA6 amikacin and oxa23 carbapenem resistance genes [32–34]. They often
carry aphA6 in a transposon called TnaphA6 and oxa23 either in Tn2006 or Tn2006 embedded in the
AbaR4 resistance islands [32–34]. Our analysis predicted a copy of TnaphA6 and Tn2006 on a RepAci6
plasmid in AB 095 and AB 165. TnaphA6 was found precisely in the location previously identified in
pAb-G7-2 (GenBank acc. no. KF669606) [33], and Tn2006 was in the location as in pK50 (GenBank acc.
no. LT984690). The remainder resistance genes—tet(B), sul1, sul2, blaGES-11, dfrA7 and aacA4—were
found in a MITE (Miniature Inverted-repeat Transposable Elements) region similar to that previously
reported in p1AB5075 (GenBank acc. no. CP008707.1), which also encodes RepAci6 [35]. Together,
the analysis of the antibiotic resistance genes in ST52 strains indicates that recent isolates have all
become resistant to multiple antibiotics via different plasmids, further highlighting the significance of
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these mobile elements in the acquisition and spread of antibiotic resistance genes. The capsule and
outer core surface polysaccharides (K and OC) loci are amongst the most variable genomic regions
of A. baumannii genomes, even in closely related strains [30,36]. While the majority of ST52 strains
encode the KL3 and OCL1 variants, WE2714, representing SC1, was found to contain KL32 and OCL6.
A single strain in SC2 was also differed from other strains by a KL3àKL57 replacement (Figure 6).

4. Discussion

A. baumannii has emerged as an important opportunistic pathogen frequently associated with
nosocomial infections—in particular, in intensive care units and in immunocompromised patients [1,2].
A. baumannii ATCC 19606 has been extensively used as a reference or model organism in studies
involving the antibiotic resistance, virulence and pathogenesis of A. baumannii [37–41]. It is one
of the earliest (isolated <1948) strains [5] available in current collections, making it an important
strain for studies that involve antibiotic resistance. Access to high-quality complete genomes is
especially important, as it provides insight into the malleability of plastic genomes; yet, until recently
a complete genome for ATCC 19606 was not available. Thus far, there has also been no reported
evidence of the evolutionary relationships and properties of members of ST52, a rare sequence type
to which ATCC 19606 belongs. Such evidence can illuminate mechanisms for the development of
antibiotic resistance, gene transfer between bacteria and increase of the resolution of outbreak tracing.
Here, we report the characterisation of the first ATCC 19606 complete genome to be deposited in
GenBank (October 2019) and present an analysis of its phenotypic and genomic features, as well as its
evolutionary relationships to other ST52 strains.

In addition to the chromosome, our complete genome contains two cryptic plasmids, one of which
(p2ATCC19606 or pMAC) was characterised in 2006 [27]. The ATCC 19606 genome completed by
Zhu et al. [9] was missing the small 7-kbp cryptic plasmid (here, called p1ATCC19606), while the size
and sequence of the second plasmid p2ATCC19606 (pMAC) was identical to our p2ATCC19606 sequence,
as well as the original pMAC sequence (GenBank acc. no. AY541809.1). Although the ATCC 19606
genome completed by Tsubouchi et al. [10] contained p1ATCC19606 and p2ATCC19606, our analysis
indicated both plasmids are likely to contain sequencing/assembling errors. In addition, given a large
number of SNDs and short in/dels in this genome (GenBank acc. no. AP022836), and that p1ATCC19606
is missing from the genome completed by Zhu et al. [9], it shows that our assembly reported here is the
most accurate genome for future studies of this strain.

In A. baumannii, antibiotic resistance genes are predominantly, although not exclusively,
found within a large chromosomal genomic island. However, in more recent A. baumannii isolates,
plasmids are significant in carrying and spreading antibiotic resistance genes [42–45]. We recently
analysed a set of closely related carbapenem-resistant isolates that belong to GC1, lineage 2 and showed
that they have become resistant to several antibiotics via six plasmids [46]. Similarly, here, we showed
that more recent ST52 strains have also acquired genes conferring a resistance to several antibiotics via
several plasmids, yet again highlighting the significance of these mobile elements in the acquisition
and spread of antibiotic resistance determinants.

We characterised a novel cadmium/zinc/mercury transposon, Tn6551, in ATCC 19606 and
showed it is related to Tn6018, a transposon commonly found in AbaR-type resistance islands in
members of global clone 1 [3]. We previously showed that GC1 strains can gain ISAba125- and
ISAba1-activated ampC genes [23] or an entire genomic island [22], along with a surrounding segment
of the chromosome, by horizontal transfer via homologous recombination from an exogenous source.
Here, we report another example where Tn6551, along with its flanking sequences (approx. 17 kbp in
total), were exchanged between ATCC 19606 and a ST638 strain, AB301.

To treat multi-resistant infections caused by A. baumannii strains, many studies have begun to
characterise nonantibiotic approaches, including phage therapy, which has led to the characterisation
of several phages with the potential to treat A. baumannii infections [47]. Here, we characterised
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a novel prophage, named vB_AbaS_LC1, which belongs to the Siphoviridae family, in ATCC 19606,
with a potential to be used in phage therapy, although further work is required to confirm this.

Here, we present an accurate complete genome sequence of A. baumannii ATCC 19606, which can
underpin future studies of A. baumannii. We also showed that ST52, to which ATCC 19606 belongs,
is rare, with only 13 representatives in the GenBank nonredundant and WGS databases. Despite the
popularity of ATCC 19606 as a model—driven initially by the early isolation and antibiotic susceptibility
of ATCC 19606— in studies aimed at understanding the pathogenicity and virulence of A. baumannii,
it might now be time to move away from ubiquitous reliance on ATCC 19606 to the selective use
of this strain for specific purposes, given that strains belonging to ST52 are not a common cause of
infections globally.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1851/s1:
Table S1. Bacterial strains employed to determine the host range of the phage vB_AbaS_LC1.
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