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Abstract

Australia’s National Electricity Market (NEM) is experiencing one of the world’s fastest

and marked transitions toward variable renewable energy generation. This transformation

poses challenges to system security and reliability and has triggered increased variability and

uncertainty in electricity prices. By employing an exponential generalized autoregressive con-

ditional heteroskedasticity (eGARCH) model, we gauge the effects of wind power generation

on the dynamics of electricity prices in the NEM. We find that a 1 GWh increase in wind gen-

eration decreases daily prices up to 1.3 AUD/MWh and typically increases price volatility up

to 2%. Beyond consumption and gas prices, hydro generation also contributes to an increase

in electricity prices and their volatility. The cross-border interconnectors play a significant

role in determining price levels and volatility dynamics. This underscores the important role

of strategic provisions and investment in the connectivity within the NEM to ensure the re-

liable and effective delivery of renewable energy generation. Regulatory interventions, such

as the carbon pricing mechanism and nationwide lockdown restrictions due to COVID-19

pandemic, also had a measurable impact on electricity price dynamics.
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1 Introduction

In recent years, there has been a dramatic increase in variable renewable energy (VRE) gen-

eration in the Australian National Electricity Market (NEM), with rates ten times higher than

the global average.1 This has been driven by high electricity prices, the declining cost of VRE,

and government policy incentives, including the Renewable Energy Target (RET) scheme (Stocks

et al., 2019; de Atholia et al., 2020; Simshauser and Gilmore, 2020). The RET consists of two

sub-schemes, the Large-scale Renewable Energy Target (LRET) and the Small-scale Renewable

Energy Scheme (SRES). The former provides an incentive for large-scale generation, such as VRE

farms and hydro-electric power stations. The SRES incentivizes small-scale generation, such as

rooftop solar, small-scale wind and hydro systems. The LRET aims at achieving 33,000 GWh of

electricity sourced from large-scale renewable projects by 2020, which is equivalent to about 23.5%

of Australia’s electricity generation capacity (AER, 2018). This target was met in September 2019,

one year ahead of schedule (CEC, 2020). Although this is a tremendous outcome, it has raised

concern about the impact of VRE on the system security and reliability of the NEM.

The NEM is a diverse electricity market involving an interconnected network of states with very

different generation mixes and VRE penetration rates. The surge in VRE has been associated with

a marked reduction in greenhouse gas, electricity prices, and sustainability of the electricity energy

sector. Compelling empirical evidence has demonstrated the negative impact of VRE output on

the level of electricity prices known as merit order effect (MOE) (Forrest and MacGill, 2013;

Cludius et al., 2014a; Ketterer, 2014; Clò et al., 2015; Kyritsis et al., 2017; Csereklyei et al.,

2019; Maciejowska, 2020). However, one of the largest challenges currently facing the NEM is

the assessment and management of electricity price volatility. This challenge primarily arises

from the intermittent nature of VRE, which makes it harder to equilibrate supply and demand

(Baldick, 2011; Hirth, 2013; Rai and Nunn, 2020; Kelley et al., 2020). The cyclic nature of demand

and constraints in supply due to outages in transmission networks, strategic bidding practices,

ramping up of plants, and volatility in fuel prices all combine so that electricity markets tend

to exhibit substantially greater price variability than is typical in financial markets (Ward et al.,

2019; Han et al., 2020). With the recent closure and mothballing of several coal-fired generators,

price variability has become more pronounced in the NEM. Reacting to the sharp increase in

VRE, the frequency of negative pricing increased substantially over the last few years. Between

2017–2020, major changes linked to policy uncertainties and the investment megacycle in the NEM

jeopardized the power system’s reliability and security and increased operator interventions in the

security-constrained dispatch process (Simshauser and Gilmore, 2020). Higher volatility can result

1Between 2018 and 2020, Australia would install more than 16 GW of wind and solar, which is equivalent to an
average rate of 220 W per person per year. This capacity is more than two and a half times that of Germany, the
next fastest country in the installation of renewable electricity capacity, and is more than four to five times faster
than the European Union, Japan, the United States, and China (Stocks et al., 2019; COAG, 2019).
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in higher wholesale contract prices and in turn, higher prices for end-consumers, offsetting some

or all of the price reduction via the MOE.

Wind generation has been the dominant VRE. South Australia, with more than 50% wind

penetration, the highest in the NEM, is second only to Denmark in the world.2 Wind generation

has been the main contributor to this increasing variation and negative prices. Therefore, it would

be useful to focus on the effect of wind generation in the NEM and to comprehensively analyze

the determinants of not only the MOE but also most importantly, the volatility dynamics of

electricity prices. We also investigate the impact of government policies and regulations, including

the Carbon Pricing Mechanism (CPM) and the COVID-19 lockdown restrictions on the price level

and volatility dynamics.

This study aims to gauge the effects of increasing wind output on the level and volatility of

wholesale electricity prices in the NEM. Variables such as electricity consumption and gas prices

play an essential role in determining the dynamics of electricity prices. Natural gas–fired peak

load generators are commonly the marginal producers of electricity in the NEM. They tend to

drive prices. High gas prices in recent years due to the increase in the liquified natural gas

(LNG) exports (resulting in an export-driven deficit in the local supply) account substantially for

the upward movement in electricity prices in the NEM (Csereklyei et al., 2019; Simshauser and

Gilmore, 2020). We consider two additional factors reflecting the integration of the generation

mix and the market connectedness, and assess their contributions to the NEM dynamics. These

factors are hydro generation and interconnector flow. To the best of our knowledge, this is the

first study on the NEM that integrates the impact of hydro and interconnectors, which are two

key contributors, especially in the current fast-transforming network of the NEM. Cross-border

interconnectors offer a potential strategic solution to the intermittency of VRE by allowing pooling

and sharing of available generation capacities (Du et al., 2017; Alasseur and Féron, 2018; Mountain

and Percy, 2019; Rai and Nunn, 2020). Furthermore, it is well-known that hydro and pumped

hydro generation increased significantly during the carbon pricing period, at the expense of gas and

some coal plants (AER, 2014). Hydro is fast-start and flexible (like some gas plants), and thus this

extra generation might have contributed to reducing prices and smoothing price volatility during

this period.3 The changing energy landscape in the NEM also means that pumped hydropower

generation is becoming increasingly important for supplementing generation from VRE (de Atholia

2South Australia is on track to meet its target to be self-sufficient in renewables by 2030 (AEMO, 2019c; Stocks
et al., 2019). By the same year, Victoria and Queensland are each targeting a renewables share of 50%. Perhaps
the most interesting globally is Tasmania, which is on track to meet its 100% target as soon as 2022 (COAG, 2019).
Recently, the large-scale solar penetration accounted for part of this transformation in the NEM’s generation mix.
Nonetheless, wind power generation still dominates across all states except Queensland (QLD) and has been the
central concentration of LRTE scheme.

3Empirically, we use the aggregated regional output from run-of-river and pumped hydro plants. However, the
two types of plants can have different impacts on prices and volatility. For instance, pumped hydro is like a battery,
and therefore, can reduce down-and up-side volatility.
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et al., 2020; Huang et al., 2020).

We focus on the four most mature markets (in terms of wind generation) in the NEM, namely,

New South Wales (NSW), South Australia (SA), Victoria (VIC), and Tasmania (TAS). In the spirit

of Ketterer (2014), we apply the exponential generalized autoregressive conditional heteroskedas-

ticity (eGARCH) model proposed by Nelson (1991) to study the electricity price and volatility

dynamics. The main advantage of this approach is that both prices and volatility are modeled

simultaneously while taking into account heteroskedasticity and the asymmetry effect, which are

understood to be very important features of price volatility. In contrast to previous studies (Cutler

et al., 2011; Forrest and MacGill, 2013; Rintamäki et al., 2017), we include the negative prices

and price spikes without truncating or transforming the time series. We find both behaviors are

pronounced and important in studying price dynamics in the NEM.

Using daily data (aggregated from high-frequency data) from the NEM from 2011 to 2020,

we confirm the merit order effect of wind generation for all four regional markets. We also find

evidence that electricity consumption, gas prices, and hydro generation are positively correlated

to electricity prices. The high generation costs due to the prolonged period of dry conditions that

stretched across much of Australia may explain the absence of the MOE for hydro generation. The

interconnectors exhibit substantial but varying impacts on electricity prices depending primarily

on the state’s position (exporter or importer) as well as the thermal capacity of the respective

interconnectors. In particular, all interconnector flows to NSW (Terranora (NSW–QLD), QNI

(NSW–QLD), and VNI (VIC–NSW)) contribute substantially to lowering electricity prices. NSW

is the most traditional importing region and has the largest capacity of interconnectors in the

NEM. The impact of the other interconnectors is not consistent, reflecting the changing positions

over time due to the increase in VRE penetration and the closure of coal-fired plants. In SA, the

Heywood (VIC–SA) interconnector contributes to lowering electricity prices due to relatively high

average imports from VIC, while Murraylink (VIC–SA) is positively related to price levels due

to the high average exports to VIC. Similarly, the high average exports to SA and NSW via the

Heywood interconnector and VNI respectively, contribute to lowering prices in VIC. Although the

exports from TAS to VIC via the Basslink (TAS–VIC) interconnector are relatively higher over

the sample period, we find evidence for a positive relationship with electricity prices in VIC and

TAS.

In terms of price volatility, we find pronounced own-innovation and lagged volatility spillovers,

and good news increases volatility more than bad news in NSW. Moreover, in states with high

wind generation, its impact on price volatility is significant. Specifically, volatility increases by 2%

and 1% in SA and VIC, respectively, for each 1 GWh rise in daily wind generation. In contrast,

we find strong evidence for the opposite effect in TAS, where an increase in wind generation by

the same amount reduces price volatility by 5%. Wind penetration exhibits a significant effect of
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the same sign for states with moderate penetration levels (around 13% in 2020); i.e., increasing

wind penetration by 1% reduces and amplifies price volatility by the same magnitude in TAS and

VIC, respectively. Electricity consumption, gas prices, and hydro generation increase the volatility

of electricity prices. Higher volatility due to hydro generation follows from its dependence on

weather conditions, which tends to vary over time. SA experiences a substantial impact of wind

generation and gas prices on volatility compared to the other regions in the NEM, reflecting the

heavy reliance on and relatively higher proportions of these variables in the region’s generation

mix. The interconnectors impact price volatility significantly, and their varying impacts reflect

the increasing investments in VRE and the withdrawal of coal-fired generation in the connected

markets. The VNI and Murraylink interconnectors increase price volatility in NSW and SA,

respectively, and smooth out price volatility in VIC. The effect observed in NSW and SA may

be linked primarily to the withdrawal of the Hazelwood power station, which removed 1600 MW

of brown coal generation in VIC (5% of the NEM’s total output). In contrast, the Heywood

interconnector impacts VIC’s price variability positively. Furthermore, the Basslink interconnector

contributes significantly to reducing price volatility in TAS. Based on an outlier treatment analysis,

we conclude that higher volatility in the NEM is associated with the high frequency of prices

between 100 AUD/MWh and 500 AUD/MWh rather than extreme prices outside this range.

At the turn of this decade, two major regulatory measures impacted price and volatility dy-

namics in the NEM, the CPM and the COVID-19 lockdown restrictions. The former was part of

the Australian Clean Energy Act and operated from July 1, 2012, to July 1, 2014. The legislation

targeted at reducing greenhouse emissions in the electricity sector. Existing studies restricted their

investigations to the impact of this reform on the level of electricity prices, electricity demand,

and changes in the emissions intensity (O’Gorman and Jotzo, 2014; Nazifi, 2016; Maryniak et al.,

2019). No studies examined the contribution of inter alia wind and hydro generation despite the

increased investment in VRE and the competitiveness of hydro generation during this period. In

addition, no known empirical research has focused on exploring the impact of the CPM along with

price determinants on the volatility of electricity prices. The COVID-19 lockdown restrictions were

more recent nationwide government measures imposed in late March 2020 to prevent the spread of

the COVID-19 pandemic. To date, little is known about the impact of this pandemic on the energy

sector. To our knowledge, this is the first study to shed light on how the dynamics of electricity

prices and the associated determinants were affected by the imposition of these restrictions.

We find strong evidence that during the operation of the CPM, prices increased substantially

in coal-dominant regions, namely, NSW and VIC, and less in renewables-rich states, that is, SA

and TAS. Wind and hydro generation played an essential role by exerting substantial downward

pressure on the level of electricity prices. SA and TAS, both of which had a relatively large share

of wind generation during this period, experienced a more substantial impact. In the same line,

wind generation contributed to a marginal reduction in price volatility. Moreover, we find evidence
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that electricity prices decreased during the COVID-19 lockdown restrictions period. The drop in

prices primarily reflects the decline in demand, lower gas and coal prices, lower-priced offers, and

increased renewable output. We observe no major changes associated with the merit order effect

of wind generation and the marginal impact of the restrictions on price volatility.

These findings have significant implications for understanding the challenges associated with

the recent influx of VRE in the NEM. In particular, the surge in wind generation has increased the

variability and uncertainty of electricity prices, posing a significant risk to investors and consumers.

The infrequent, very high, or low prices for very short periods call for well-established strategies

for dealing with real-time power system security and reliability to be set. Priority should be given

to investing in a more flexible system to accommodate the intermittency of the VRE sector, en-

hancing effective trade among regional markets through effective interconnections, and investing in

electricity storage. Moreover, system architecture, regulation, and governance should be designed

appropriately to deal with a range of potential future disruptions, such as COVID-19 pandemic.

The rest of the paper is structured as follows. In Section 2, we provide a review of relevant

literature. In Section 3, we describe the data and the model for the dynamics of electricity prices.

In Section 4, we discuss the effects of wind generation on electricity prices and volatility. In Sec-

tion 5, we analyze the impact of federal regulatory measures on electricity dynamics. In Section 6,

we provide concluding remarks and policy implications.

2 Literature review

The growth and increased investment in renewable energies have attracted theoretical and em-

pirical interest in the MOE in renewables-rich countries, such as Germany, Denmark, and Australia.

The literature has shown that near-zero marginal cost characteristics of wind generation manifest

through the decrease in the level of electricity prices (Forrest and MacGill, 2013; Cludius et al.,

2014a; Ketterer, 2014; Clò et al., 2015; Csereklyei et al., 2019). These findings are unlikely to be

due to chance, as most authors came to the same conclusion.4 Although research on the subject

has been mostly restricted to the MOE, several researchers investigated the impact of VRE on price

volatility as either a stand-alone or integrated study with the MOE (Tveten et al., 2013; Pereira

and Rodrigues, 2015; Ketterer, 2014; Rintamäki et al., 2017; Kyritsis et al., 2017; Maciejowska,

2020). In contrast, research findings regarding the volatility dynamics of electricity prices have

been inconsistent and contradictory, and vary across countries and time of day (reflecting changes

in demand profiles). We aim at establishing this relationship in the NEM. This study makes

4Several divergent accounts of the merit order have been observed. For instance, Bublitz et al. (2017) employed
agent-based modeling and a regression approach to study the main price drivers in Germany from 2011 and 2015.
In contrast to other studies, the findings indicate that fuel and carbon prices are still dominant, and reductions
in their prices rather than the increase in renewable energy generation (wind and solar Photovoltaics (PV)) are
responsible for the downward pressure on the electricity prices.
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contributions to the current literature in three major dimensions:

First, we conduct a comprehensive analysis of the impact of wind generation on the volatility

of electricity prices in the NEM. To our knowledge, this is the first study of substantial duration

(2011–2020) to examine the variability of electricity prices in Australia. Moreover, we add to

previous empirical studies on the MOE by including recent years that witnessed large-scale VRE

investments in the NEM (Simshauser and Gilmore, 2020). In particular, the share of electricity

generation from VRE increased rapidly since 2018, breaking NEM records (de Atholia et al., 2020).

One aspect overlooked by previous studies is cross-border interconnector flow and hydro generation.

By controlling for these variables, this study provides a deeper understanding of the impact of VRE

generation on prices and volatility. Existing literature in this area includes Woo et al. (2011), who

investigated the four zone of Texas. Using an econometric analysis of high-frequency electricity

prices, these authors found that an increase in wind generation results in a reduction in spot

electricity prices, however, at the cost of increasing price volatility. Ketterer (2014) reached the

same conclusion using GARCH modeling with daily electricity data in Germany. Kyritsis et al.

(2017) applied GARCH-in-mean models to the German electricity market, grouping data into

peak and off-peak periods. These authors confirmed the merit order effect and the negative and

positive effects of solar and wind, respectively, in the volatility of electricity prices. In a similar

context, Rintamäki et al. (2017) divided data into off-peak and peak hours and estimated the

impact of renewable generation on electricity price levels in Germany and Denmark. Using an

autoregressive moving average (SARMA) model, these authors found that wind power reduces

the volatility of daily day-ahead electricity prices in Denmark, whereas it increases such volatility

in Germany. Nonetheless, the authors found consistent increase in weekly volatility when wind

generation increased. Maciejowska (2020) applied quantile regression and examined the inter-

quantile range (IQR) variability, to examine the impact of wind and solar generation. The author

found that during low demand for electricity, wind tends to increase price variability and reduces

it during high demand. In contrast, when electricity demand is moderate, solar power tends to

stabilize price variance. Similar studies are scant in the NEM. There are, however, a considerable

number of studies that investigated the intra- and inter-relationships of wholesale electricity prices

and price volatility between regional electricity markets (Worthington et al., 2005; Higgs, 2009;

Ignatieva and Trück, 2016; Han et al., 2020). Most of these studies apply GARCH-based models

finding the presence of significant own-mean spillovers and means spillovers from other lagged

markets. The occurrence of shocks in one market affects the price volatility of not only that

market but also other markets in the region, especially between adjoining and physically connected

markets. We build on these findings with a somewhat similar methodological approach based on

an eGARCH-type model to investigate prices and volatility. Where this analysis differs from other

analyses, however, is by accounting for seasonality, electricity spikes, and explicit incorporation

rather than removal of negative electricity prices.
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We provide a deeper insight into negative electricity prices in Australia, which appear far more

frequently following the upsurge in VRE penetration in the NEM. To capture the volatility of

electricity prices effectively, we include negative prices and price spikes in the empirical analysis

without applying any truncation or transformation. This contrasts with much of the literature

(Cutler et al., 2011; Forrest and MacGill, 2013; Cludius et al., 2014b; Ketterer, 2014), which

applies statistical approaches to adjust prices spikes or truncates electricity prices based on the

marginal cost of generation.

Second, this study is one of the first attempts to thoroughly examine the role of cross-border

interconnectors and hydro generation in the NEM. Interconnectors are essential in optimizing the

total generation supply through the transfer of energy between the major generation and demand

centers. Denny et al. (2010) investigated the impacts of interconnectors in Ireland, which has one

of the highest penetrations of wind generation in the world. The empirical findings suggest that

the increase in interconnectors has the potential for reducing the level and variability of electricity

prices. Similarly, Rai and Nunn (2020) examined the role of interconnectors in offsetting the

challenges associated with higher penetration of wind generation specifically in SA. This study

suggested that when interconnectors are unconstrained, and electricity demand between regional

markets is imperfectly correlated, the competitive tension between connected states (SA and VIC)

has potential to lower price levels and smooth out price volatility. The GARCH modeling with

copulae by Ignatieva and Trück (2016) found a significant interdependence between markets that

are well connected via interconnector transmission. This conclusion concurs with that of Han

et al. (2020), who used more recent NEM data and found pronounced volatility spillovers between

physically interconnected markets.

Third, we assess the extent to which federal regulatory measures, namely, the CPM and the

COVID-19 lockdown restrictions, impacted the level and volatility of electricity prices. Existing

research has been unable to confirm either the MOE of wind generation or its impact on volatility

dynamics during the CPM period. However, several researchers demonstrated substantial changes

in prices, demand, and emission intensity. Nazifi (2016) carried out an investigation in the NEM

from 2010 to 2013 and concluded that carbon costs resulted in higher wholesale spot electricity

prices and windfall profits for some generators. Beyond these effects, O’Gorman and Jotzo (2014)

showed that electricity demand decreased by 3.8% and overall emission by 8.2%, relative to the

two-year period before its introduction. Han et al. (2020), in contrast, found that the CPM had

an impact on dampening volatility spillover across the NEM. A recent analysis by the Australian

Energy Market Operator (AEMO) also suggested a moderate reduction in electricity demand dur-

ing the implementation of COVID-19 restrictions and lockdowns (AEMO, 2020e,f). A substantial

reduction was observed in QLD and NSW due to the decrease in commercial demand and a limited

increase in residential demand (due to mild weather conditions).

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3723117



3 Data and methodology

3.1 Data and preliminary analysis

We consider wind generation for four NEM regions, namely, NSW, SA, VIC, and TAS, and

study the effect on the level and volatility of electricity prices from January 1, 2011, to May 31,

2020. The main datasets for this analysis were obtained from the NEM via NEOpoint (2020).

We use daily data, aggregated from high-frequency (5- and 30-minute) wholesale electricity prices

(depicted in Figure 1), electricity consumption, wind electricity generation,5 hydro generation,

and interconnector flows (imports and exports). The daily gas price data for the same period for

Adelaide and Sydney, representing SA and NSW, respectively, were obtained from the Short Term

Trading Market (STTM) (AEMO, 2020g). The four-hourly gas price data for VIC were obtained

from the Declared Wholesale Gas Market (DWGM) (AEMO, 2020c).

Wind generation in the NEM has increased significantly since 2010. As shown in Figure 2a,

large-scale wind generation has grown exponentially across all states. The constant level of wind

generation in SA between 2018 and 2019 is attributed to the federal government’s RET of 33,000

gigawatt-hours of national electricity capacity being met in 2019, accounting for 23.5% of Aus-

tralian electricity. In 2020, NSW, VIC, and SA made approximately equal contributions to wind

generation in the NEM. The MOE of wind generation is well-established in the literature, and

we expect to observe the same impact in the NEM. However, the influence of wind on volatility

remains unclear. Generally, observations from similar studies in European markets, for instance,

Mauritzen (2010), Woo et al. (2011), Ketterer (2014), Clò et al. (2015), Rintamäki et al. (2017),

and Maciejowska (2020), suggest that wind generation has a significant positive impact on price

volatility. From these studies, and based on recent findings by Rai and Nunn (2020) for the NEM,

we infer that states with higher wind generation such as SA will exhibit a significant impact on

volatility compared to states with lower wind generation such as NSW.

Two key factors driving the electricity price dynamics of the NEM are consumption and gas

prices. Electricity consumption reflects demand profiles, which, given the non-storability of elec-

tricity, is expected to have a positive impact on prices across all NEM markets (Csereklyei et al.,

2019; Forrest and MacGill, 2013). The latter is more pronounced in SA and VIC, where gas ac-

counts for a substantial proportion of electricity generation. Notwithstanding this, Forrest and

MacGill (2013) showed that the increase in wind generation displaces gas output in the two re-

gions. The study by Csereklyei et al. (2019) suggested that the impact is still noteworthy. Since

5Except wind generation data series for TAS and VIC, no missing values were observed in the other variables.
For the first region, the percentage of missing values is 0.92, 0.03, and 0.11 for the years 2011, 2012, and 2013,
respectively. For the latter region, only two data points for the year 2011 are missing. We apply Kalman filters
to impute the missing wind generation values. This approach often produces the best results when one deals with
longer and more complex time series with trend and seasonality (Moritz and Bartz-Beielstein, 2017).
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Figure 1: The equally weighted daily average spot price (regional reference price (RRP)) for NSW, SA,
VIC, and TAS from January 1, 2011, to May 31, 2020. The RRP is estimated on a half-hour basis by
averaging six dispatch electricity prices.

the second half of 2019 (see Figure 3), electricity prices have trended lower due to a combination of

lower gas prices, decreasing consumption, and the influx of large-scale solar and wind generation

as depicted in Figure 2a.6 The uptake of rooftop solar PV generation contributed significantly

to reducing consumption by meeting more than 5.5% of Australia’s energy demand.7 In the last

three months of the sample period, the implementation of tighter pandemic restrictions due to

COVID-19 may have accelerated the reduction in electricity consumption. Therefore, we examine

the impact of wind generation on electricity prices and volatility dynamics while controlling for

electricity consumption and gas prices.

Wind penetration is computed as the ratio between wind generation and consumption, and

6Detailed analysis of the price dynamics and its determinants during this period can be found in AEMO (2019b),
AEMO (2020e), and AER (2020b).

7Australia is a global leader in solar PV generation, originating mainly from household rooftop installations.
However, electricity generated from rooftop installations is not traded through the NEM. Given further that we
estimate electricity consumption from grid demand (demand net of rooftop solar PV output), assessing the impact
of rooftop solar generation on prices is beyond the scope of this study.
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Figure 2: Large-scale wind generation (left panel) and wind penetration (right panel) for NSW, SA, VIC,
and TAS, from 2011 to 2020. The year 2020 covers the sample period from January 1, 2020, to May 31,
2020.

captures the correlation between the two variables.8 The same amount of wind generation could

have a different impact on prices depending on the consumption levels over different times during

the day. Wind penetration encompasses these effects and entails better predictions for price equi-

librium. Figure 2a and 2b show the significant increase in wind generation and penetration from

2011 to 2019. This increase varies significantly between states. SA is the leader in the uptake of

wind energy. Its penetration was approximately 50.1% in 2018 and 49.7% in 2019, which are the

highest levels across the NEM and the second highest worldwide following Denmark. The drop

in penetration between 2018 and 2019 reflects increasing instances of wind curtailment/spilling in

2019.

In addition to these variables, we control for cross-border interconnector flow and hydro gen-

eration. The interconnectors allow for inter-regional trade, up to their physical capacity limits

(see Table 9 in Appendix A) and electricity price variations among the regional markets (Brins-

mead et al., 2014). There are six interconnectors, namely, Terranora (NSW-QLD), Queensland to

New South Wales (QNI), Victoria to New South Wales (VNI), Basslink (T-V-MNSP1), Heywood

8Denoting the wind penetration by wp, then if wp < 1, it implies that wind generation meets only a proportion
of consumption, and wp = 1 indicates that wind generation meets the entire electricity consumption. If wind
generation exceeds electricity consumption, then wp > 1. Generally, the higher the wind penetration, the higher
the negative impact on the level of electricity prices. This stems from the fact that the inverse of consumption and
wind generation are negatively correlated with prices.
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Figure 3: The daily electricity consumption and gas for NSW, SA, VIC, and TAS from January 1, 2011,
to May 31, 2020. The daily electricity consumption and daily gas prices are depicted in the left and right
graphs, respectively.

(VIC-SA), and Murraylink (VIC-SA). The flow in these interconnectors can either be in a forward

(export) or backward (import) direction. Evidence suggests that the interconnectors are among

the essential determinants of price volatility in the NEM (Yan and Trück, 2020). This interre-

lationship was well-established by Han et al. (2020), who found volatility spillovers were more

pronounced between adjoining and physically connected markets and less marked between geo-

graphically distant and unconnected markets.9 Rai and Nunn (2020) noted further that through

the interconnectors, demand and supply between states with imperfectly correlated demand are

equalized and thus, reduce price volatility. Figure 4 shows that NSW is a net importer of electric-

ity from VIC and QLD. VIC experienced a significant drop in exports to NSW and SA in 2017

following the closure of the Hazelwood power station.10 We expect to observe varying impact of

the interconnectors on prices depending on whether a state is an exporter or importer, and the

capacity limit. Moreover, hydro generation influenced electricity price behavior in the NEM. The

increase in prices observed in 2015–16 resulted from extended drought conditions, which depleted

dam levels for hydro generation (see Figure 6 in Appendix A) (AER, 2015). The interrelation

between carbon pricing and hydro generation is also of interest. Between 2012 and 2014, the

noticeable upsurge and price plunge resulted from the introduction and repeal of carbon pricing

(O’Gorman and Jotzo, 2014). The introduction triggered the competitiveness of hydro generators

9The most pronounced volatility spillover is observed between NSW and QLD, SA and VIC, NSW and VIC,
and TAS and VIC. The spillover is less pronounced between SA and QLD, and TAS and QLD.

10The closure of the Hazelwood power station caused a decrease of around 5% in the NEM’s capacity (Burke
et al., 2019; Mountain and Percy, 2019)
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the sample period from January 1, 2020, to May 31, 2020. The positive sign indicates a forward flow
(export to), and the negative sign indicates a backward flow (import from).

and contributed an approximate 36% output rise in the NEM during 2012–13. This effect is evi-

dent in Figure 4 by the increase in exports from TAS to VIC from increased hydro generation. To

the best of our knowledge, the impact of hydro generation and interconnectors in the NEM have

not been studied previously despite being important determinants of price dynamics.

We include these variables in the analysis to ensure the estimated model does not suffer from

endogeneity issues (Forrest and MacGill, 2013; Csereklyei et al., 2019).11 Negative prices in all

four regions under study are stipulated mainly by wind generation, especially in SA (AER, 2020b).

In QLD, negative prices arise from solar generation. As wind generation in QLD is marginal, we

do not consider QLD.12 Genoese et al. (2010) showed that wind generation is the dominant factor

for negative prices during off-peak periods (driven by low system load and low wind generation

or low system load and high wind generation). Maciejowska (2020) also suggested that negative

prices in Germany are due to wind generation only (not solar); corresponds to when demand is low,

11Large-scale solar generation represents the potential for omitted variable bias. It is excluded from the analysis,
however, because data are available for only a few years (around five years for NSW, two years for VIC and SA,
and none for TAS), and much of the impact is likely to emanate from rooftop solar PV for which data are harder
to acquire. Rooftop solar generation meets around 20% of customers’ needs and supplied around 5.2% (compare to
2.5% from solar farms) of the NEM’s total electricity requirements in 2019 (AER, 2020b).

12The impact of solar generation is examined indirectly via the Terranora interconnector and the QNI. It is likely
that part of the imports from QLD to NSW come from solar generation which tends to peak during the day.
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Table 1: Summary statistics of daily data (aggregated from high-frequency data) from January 1, 2011,
to May 31, 2020.

Unit Mean Standard Dev Skewness Kurtosis Median Minimum Maximum 1st Quartile 3rd Quartile

NSW

Electricity Prices AUD/MWh 60.29 58.31 15.71 334.19 51.60 18.54 1539.50 35.77 74.30
Gas Prices AUD/GJ 5.89 2.93 0.90 5.25 4.96 0.00 29.00 3.70 8.35
Wind Generation MWh 5214.39 4964.22 1.56 5.63 3528.29 -1.54 29825.40 1524.28 7448.58
Hydro Generation MWh 6515.69 4681.00 1.08 4.06 5349.38 -0.27 29509.67 2833.44 9246.30
Electricity Consumption MWh 193819.00 18360.32 0.37 3.19 192326.00 147701.00 276893.00 181415.00 205921.00

SA

Electricity Prices AUD/MWh 69.85 99.64 17.41 460.48 54.36 -107.16 3359.82 35.30 3359.82
Gas Prices AUD/GJ 6.16 2.67 1.17 6.28 5.15 0.00 29.99 3.95 8.38
Wind Generation MWh 12259.89 7343.318 0.73 2.80 10653.94 57.68 34363.58 6530.24 16956.66
Electricity Consumption MWh 33079.00 5372.77 0.79 4.50 32617.00 19907.00 62493.00 29377.00 36107.00

VIC

Electricity Prices AUD/MWh 60.24 82.23 25.68 915.22 47.96 -6.35 3377.97 31.645 76.388
Gas Prices AUD/GJ 5.64 2.88 1.38 10.29 4.5 0.00 44.86 3.52 8.12
Wind Generation MWh 8647.77 6783.99 1.19 3.99 6597.15 30.54 35916.26 3467.95 12334.22
Hydro Generation MWh 7240.65 5338.39 0.92 3.18 5892.44 -7.96 28751.15 2913.00 10515.92
Electricity Consumption MWh 125578.00 15168.02 0.11 2.81 125616.00 85021.00 194849.00 114356.00 136511.00

TAS

Electricity Prices AUD/MWh 61.79 43.22 2.25 10.70 44.97 -94.67 461.64 34.78 82.02
Wind Generation MWh 2524.43 1764.81 0.71 2.55 2127.88 -14.85 7436.14 1116.11 3686.50
Hydro Generation MWh 25429.00 8362.80 -0.02 2.05 25565.00 5820.00 45120.00 18502.00 32332.00
Electricity Consumption MWh 26758.00 2471.89 0.35 2.79 26425.00 18558.00 35097.00 25001.00 28433.00

Interconnector Flow

Terranora (NSW-QLD) MWh -1491.50 716.83 -0.13 2.94 -1477.50 -3852.80 926.10 -1981.20 -991.50
QNI (NSW-QLD) MWh -9769.00 6920.51 0.04 2.27 -9604.00 -25216.00 8617.00 -15178 .00 -4694.00
VNI (VIC-NSW) MWh 7863.30 9079.41 -0.04 2.27 8102.40 -15983.40 30337.50 896.30 14764.40
Basslink (T-V-MNSP1) MWh 904.50 6466.18 -0.19 2.09 390.50 -11472.00 14149.3 0 -3631.50 6404.10
Heywood (VIC-SA) MWh 2772.90 4868.45 -0.30 2.58 3038.00 -11668.90 14142.20 -562.10 6474.40
Murraylink (VIC-SA) MWh -9.47 1173.49 0.57 4.31 -77.71 -3611.30 5040.13 -720.07 573.44

The summary statistics of wind generation, hydro generation, electricity consumption, and interconnector flow are
estimated by aggregating the 5-minute data series in megawatts divided by 12. The rationale behind this approach
is to convert the given data series, which relates to power, into energy in megawatt hours. The summary statistics
for the electricity prices are estimated from the daily averaged spot price or the regional reference price (RRP).
The letters T and V in the interconnector flow stand for Tasmania and Victoria, respectively. The acronym MNSP
stands for market network service provider, i.e., merchant or economically unregulated.

typically on weekends or public holidays. Furthermore, negative prices in Europe occur at night

when wind generation is occasionally high (Paraschiv et al., 2014; Deschatre and Veraart, 2017).

Thus, based on the available empirical evidence, we exclude large-scale solar from the analysis for

two main reasons. First, we exclude QLD, and second, large-scale solar penetration in other NEM

regions historically has been very low. We expect the omission of large-scale solar to have only a

modest impact on the analysis. We recognize that coal prices can also affect the level and volatility

of electricity prices because coal generators set electricity prices 50% to 60% of the time, even in

SA (AER, 2020a). The importance of coal as a price-setter in non-coal dominant regions, such as

SA, reflects the market’s inter-connectedness, and thus, the impact of coal prices in NSW or VIC

can be felt in neighboring NEM regions. However, we omitted coal prices from the analysis for the

following three reasons.
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First, coal prices are unavailable at the same time-frequency as our model (i.e., daily). Second,

there is a wide variation in coal generators’ fuel prices. This price variation is not just due to

brown versus black coal generators. There is also a significant variation in coal prices paid across

black coal plants. For example, AEMO shows a coal price range of 1.2 AUD/GJ to 3.99 AUD/GJ

across black coal plants for the financial year 2020. This price variation reflects different grades of

black coal used across the black coal fleet. Furthermore, the variation reflects differing degrees of

exposure to international export prices, due to legacy long-term black coal contracts and differing

degrees of exposure to spot versus forward export prices. For instance, NSW black coal generators

obtain their coal at a discount through a long-standing contract, most of which will expire by

2022 to 2025 (ABC, 2018). Thus, there is no single black coal price within a particular region

(AEMO, 2020b). Third, gas prices are the de facto electricity price-setter even when gas plants

are not running, due to instances of black coal generators “shadow pricing” gas in their spot market

offers (i.e., black coal plant offering their capacity at prices just below the short-run marginal cost

(SRMC) of the gas plant) (AEMO, 2018). This means that excluding coal prices is unlikely to have

a severe impact on this analysis, as electricity spot prices are based on the bids of generators, which

as the “shadow pricing” dynamic illustrates, can be, and often are, above generators’ SRMCs.

The descriptive statistics of electricity prices and exogenous variables considered in this analysis,

namely, electricity consumption, wind generation, gas prices, hydro generation, and interconnector

flows, are summarized in Table 1. We observe a considerable variation in the level and volatility

of electricity prices in all the markets. During the sample period, NSW is a net importer of

electricity. This is consistent for all three interconnectors, that is, Terranora, QNI, and VNI. VIC

is a net exporter of electricity to NSW and SA, through the VNI, and Heywood, interconnectors,

respectively. However, VIC imports only 9% of the total exports from SA and TAS via the

Murraylink and Basslink interconnector.

Figure 1 illustrates that extreme price spikes characterize the Australian electricity market. It

is common in merit order effect studies to treat these observations as outliers (Cutler et al., 2011;

Forrest and MacGill, 2013; Cludius et al., 2014b) and truncate prices series based on the marginal

costs of generation.13 We do not truncate the series and include all the observations to capture

the volatility of prices more effectively.14 Furthermore, we apply a two-stage method similar to

13The rationale behind this approach is that the truncated series represents the typical conditions of the market
rather than times when the market is operating under extreme conditions. Factors such as capacity-limited genera-
tion, low renewable output, technical limits on the interconnectors, the restriction on the import capacities, as well
as an unexpected and substantial change in demand are among the factors accounting for this market extremity
(Geman and Roncoroni, 2006; Weron, 2007; Ward et al., 2019; Yan and Trück, 2020).

14We find a slight difference between the actual price series and the one obtained by top capping prices at 500
AUD/MWh, which is the highest short-run marginal costs of generation in the NEM. Only 20, 8, and 6 observations
in SA, VIC, and NSW exceed this threshold. As a robustness check, however, we run a separate analysis and treat
price spikes as outliers (Ruiz et al., 2001; Mugele et al., 2005; Bierbrauer et al., 2007; Ketterer, 2014). The technical
details of the approach employed for this adjustment are given in section A.2 of Appendix A. We will present the
results of this approach and show how the two treatments of price spikes affect the empirical analysis.
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those of Thomas and Mitchell (2005) and Ketterer (2014) and adjust the seasonal and trend effect

using ordinary least squares (OLS) before fitting the proposed models.15 The filtered series is a

more robust explanator of the impact of the exogenous variables on electricity prices without the

noise emerging from seasonality and trends. The approach, results, and statistical tests of the time

series adjusted for the seasonal and trend effect for all the variables are presented in sections A.3

and A.4 in Appendix A.

3.2 Negative prices in the NEM

Negative prices may occur when periods of relatively low demand coincide with a high supply of

and restrictions on inter-regional power flows (Forrest and MacGill, 2013; AEMO, 2019a). Before

2012–13, negative prices occurred overnight or in the early hours of the morning, due to low demand

combined with the inflexibility of brown-coal electricity generation. Recently, negative prices have

been observed during the middle parts of the day when generators, including intermittent renewable

energy and coal-fired generators, compete to dispatch their energy. The system operator (AEMO)

ensures the expected demand for electricity is met in the most cost-efficient way using an algorithm

that dispatches generators from the cheapest to the most expensive. As the former sources have

zero marginal cost, they are prioritized in the dispatch process. This, in turn, reduces demand

for thermal generators and forces the plant back to its minimum stable generation level. The

intermittent nature of solar PV generation, for instance, means that it cannot meet peak demand

in the late afternoon and evening when solar radiation is low or not available. This calls for

the supply from base-load generators and from more flexible sources (i.e., open-cycle gas turbines

(OCGTs), combined cycle gas turbines (CCGTs), and hydro). Base-loads have low operating

costs with high start-up and shutdown costs, making frequent shutdowns uneconomical to meet

the variable demand. To guarantee dispatch and keep the plant running, coal-fired generators

typically bid their minimum stable megawatts at the floor price.

As noted above, negative prices are an important feature of the electricity market in Australia.

Over the 2011–2020 period, SA was the first state to experience negative prices when low demand

coincided with high wind generation (see Figure 1). The current minimum price (market price

floor) in the NEM is set at -1,000 AUD/MWh. During negative price periods, wind typically

drives negative prices in SA, while brown coal is typically pushed down by wind in VIC. The

5-minute negative dispatch periods increased significantly between July and November in 2019 for

SA and VIC, reaching more than 600 in October 2019 and February 2020 (Cornwall Insight, 2020).

Storage technologies, such as pumped hydro and battery storage, capitalize on low price periods.

15Our approach differs from that of Ketterer (2014) in two ways. First, the seasonal noises are removed in the
independent and dependent variables, which is more econometrically sounding. Second, we adjust for the trend
effect in all variables and on either side of the equation.
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These low or negative price periods occur more regularly and last longer, e.g., on July 21, 2019,

the spot prices in SA remained in negative territory for 4.5 hours and in VIC for 1.5 hours.16

The treatment of negative prices varies. Many researchers either truncate prices series (Cutler

et al., 2011; Forrest and MacGill, 2013; Cludius et al., 2014b) or simply remove them from the

analysis (Rintamäki et al., 2017).17 Given the increasing frequency of negative price periods and a

desire to more accurately capture NEM dynamics, we contend that it is important to include them

in any analysis.18 Similar to Kyritsis et al. (2017) and Thomas et al. (2011), we find these values

are valid observations, and ultimately, their inclusion will shed more light on the empirical analysis.

We further observe a clear link between wind generation and negative prices. In particular, SA

and TAS, with higher wind penetrations, exhibit more incidents of negative prices compared to

states with lower wind penetration, such as VIC. We observed zero negatives price cases in NSW,

the state with the lowest wind penetration. The absence of negative prices in NSW may also be

due to the relative flexibility of the region’s thermal plants and lower minimum stable generation

levels.

3.3 Modeling level and volatility of electricity prices

We model the effects of various exogenous variables, such as wind generation and consumption,

on the level and volatility of electricity prices, using an ARX-eGARCHX19 model specification:

16This event occurred at 1:15 pm on Sunday, July 21, 2019, when low demand coincided with high generation
from wind and solar and unrestricted transfer of electricity across the interconnectors.

17This approach eases the application of the log transformation, which, in turn, stabilizes the variance and
simplifies the interpretation of the estimated coefficients as elasticity (Weron, 2007; Ketterer, 2014; Rintamäki
et al., 2017).

18We initially attempted to employ an alternative transformation that allows one to retain zero-value and non-
positive observations while maintaining an approximate interpretation of the model results as elasticity and stabilizes
the variance, in particular, the approach based on the inverse hyperbolic sine transformation (Burbidge et al., 1988;
Schneider, 2011; Uniejewski et al., 2017; Ziel and Weron, 2018). However, the direct application of this approach
suppresses the upward spikes at the cost of amplifying the downward spikes (Schneider, 2011). By doing so, the
resulting transformations fail to preserve the characteristics of the original time series. Although the transformation
proposed by Schneider (2011) resolved this challenge, its application to the variables of interest complicates the
interpretation of the model output.

19Few researchers on the subject have been able to investigate the impact on price behaviors as an integrated
study. For instance, Woo et al. (2011) and Ketterer (2014) applied the AR-GARCH, Kyritsis et al. (2017) applied
the GARCH-in-mean models, and Maciejowska (2020) applied the quantile regression model. Furthermore, previous
volatility studies in the NEM found that the GARCH specification does not adequately accommodate the skewed
and fat-tailed characteristics of electricity prices. In particular, Higgs and Worthington (2005) and Thomas and
Mitchell (2005) found the skewed Student asymmetric power ARCH (APARCH) and eGARCH, respectively, to be
the appropriate choices.
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Pt = µ+
m∑
i=1

φiPt−i +
n∑

j=1

ξ′jvt−j + εt, (1)

εt = ztσt with loge(σ
2
t ) = ω +

p∑
i=1

(αizt−i + γi (|zt−i| − E|zt−i|)) +

q∑
j=1

βj loge(σ
2
t−j) +

r∑
k=1

δ′kvt−k,

(2)

where equation (1) is the autoregressive (AR) structure of the conditional expectation, and equa-

tion (2) is the eGARCH model of the conditional variance with exogenous variables.20 Pt−i,

i = 1, . . . , k, are lags of the electricity prices, vt is an m × 1 vector of variables, and ξ and δ are

the m × 1 vector of positive coefficients. σt represents a time-dependent standard deviation, ω is

the intercept, and the parameters αi and γj capture the sign and size effect of the standardized

innovations on volatility. The expected value of the absolute standardized innovation is defined as

E[zt] =
∫∞
−∞ |z|f(z, 0, 1, . . . ) dz, and volatility persistence is given by

∑q
j=1 βj (Ghalanos, 2020).

The autoregressive term is included to capture the serial correlation in prices; where applicable,

the order is chosen to minimize the Bayesian information criterion (BIC).

Compared to vanilla GARCH, the eGARCH model considers the variance of loge(σ
2
t ), which

guarantees that the conditional variance is positive regardless of the estimated coefficient values

(Zivot, 2009). With no restrictions in the model, likelihood maximization tends to yield faster

and more reliable optimizations results. Furthermore, electricity prices are characterized by some

forms of non-linear dynamics, exhibiting strong dependence on price variability on its past (Weron,

2007). Using the eGARCH model, which accounts for heteroskedasticity, provides a more accurate

tool of the heteroskedasticity in the errors and in turn, an efficient estimator of the coefficients

in the equation. The proposed eGARCH model is also used to examine the sign effect in the

electricity market.21 In contrast, autoregressive moving average (ARMA)-type models, such as that

of Rintamäki et al. (2017), are limited by the constant variance assumption, which is inconsistent

with volatility dynamics observed in electricity markets.

4 Wind generation and electricity dynamics in the NEM

We estimate separate regressions of the AR-eGARCH and ARX-eGARCHX specifications using

a single autoregressive component and the Student distribution of the standardized residuals for

each state. The technical details regarding the optimal ARMA structure and the distribution of

20The eGARCH model is the modification of the standard GARCH model proposed by Nelson (1991) which
allows for the leverage effect to better capture temporal variations in market volatility.

21Empirical studies in financial time series often find evidence that negative shocks tend to have a more substantial
impact on volatility than positive shocks of the same magnitude (Zivot, 2009).
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the standardized residuals are given in Appendix B. Tables 2 to 5 present the regression estimates

for the four states, namely, NSW, SA, VIC, and TAS, respectively.22

4.1 Effects on the level of electricity prices

All coefficients for wind generation for all four states are consistently negative and statistically

significant even after controlling for consumption, gas prices, hydro generation, and the intercon-

nectors flow (see the top panel of Tables 2–5). These results confirm the merit order effect of wind

generation. We observe a considerable reduction in SA where an increase in daily wind genera-

tion by 1 GWh per day reduces prices by approximately 1.3 AUD/MWh, followed by TAS (0.6

AUD/MWh), VIC (0.6 AUD/MWh), and NSW (0.5 AUD/MWh). The pronounced effect in SA,

the second in the world in wind generation, underscores the role wind generation plays in reducing

electricity prices (Forrest and MacGill, 2013; Cludius et al., 2014a; Bell et al., 2017). According

to AER (2018), in 2018 wind generation met about 40% of SA’s electricity requirements. The

fact that wind generation continues during periods of low electricity demand is also likely to ac-

count for the substantial reduction in the region’s electricity prices (Bell et al., 2015). Csereklyei

et al. (2019) observed a similar effect in the Australian market with the daily merit order of wind

turbines, being statistically significantly larger in SA and lower in VIC with no firm evidence in

NSW. Numerically, our estimated coefficients exceed the daily merit order from this study by 0.3

AUD/MWh for NSW and VIC, and by 0.4 AUD/MWh for SA. We account for the difference in

the magnitude and statistically significance of our results to the sample period under the analysis

and the fact that our model includes the interconnectors and hydro generation.

We reassert that electricity prices increase with consumption (Forrest and MacGill, 2013; Ket-

terer, 2014; Clò et al., 2015; Csereklyei et al., 2019). We observe a stronger impact in states with

lower consumption profiles (SA and TAS) and less impact in states with larger consumption profiles

(NSW and VIC). On this basis, we find compelling evidence that an increase in daily electricity

consumption by 1 GWh per day in Model I increases prices in NSW and VIC by approximately 0.2

AUD/MWh. SA and TAS, states with lower demand profiles, experience approximately nine- and

five-time increases, respectively. Similar to electricity consumption, gas prices have a positive and

statistically significant effect on electricity prices in the NEM. We observe from Models I and J

22Each table shows the estimated coefficients and the corresponding p values (in parentheses) for the mean and
variance equations, the estimated shape parameters of the Student distribution, Akaike information criterion (AIC),
and the BIC. We investigate the adequacy of the model fit using the weighted Ljung-Box test and the weighted
Lagrange multiplier test (ARCH-LM tests) (Fisher and Gallagher, 2012). The former is the portmanteau test with
the null of adequate ARMA fit, and the latter adequately fitted the ARCH process (Ghalanos, 2020). Overall,
the weighted Ljung-Box test and the weighted ARCH-LM test suggested that there is no evidence of remaining
autocorrelation and ARCH effects. We also inspect the autocorrelation function (ACF) and partial autocorrelation
(PACF) of the standardized residuals and the squared standardized residuals, which suggests little autocorrelation
and the absence of a particular pattern due to a non-stationary or seasonal time series. We run the empirical
analysis using the rugarch package in the R programming language (R Core Team, 2019; Ghalanos, 2020)
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that increasing the daily gas price by 1 AUD/GJ raises electricity prices in the range 6 AUD/MWh

to 7 AUD/MWh for SA. We find less evidence to support the positive effect in NSW. SA is the

state most affected by gas prices, exceeding VIC by approximately 5 AUD/MWh to 6 AUD/MWh

as SA relies more on gas-powered generation than any other region across the NEM.23 Between

2014 and 2018, Australia witnessed a threefold increase in gas prices (see Figure 3b), which had a

notable impact on electricity prices. The lower magnitude compared to the estimated coefficients

in Csereklyei et al. (2019) may be explained by several factors, in particular the significant decrease

in gas prices after 2019 onward and the displacement of gas output due to marked investment in

renewable energy generation.

The impact of hydro generation on electricity prices is consistently positive and statistically

significant. This impact is substantial in NSW and VIC, where an increase in hydro generation

of 1 GWh per day drives up the prices by approximately 0.4 AUD/MWh to 0.7 AUD/MWh. We

account for this effect by the reduced availability of lower-priced hydro generation due to persistent

drought periods (Csereklyei et al., 2019). The operation of hydropower is primarily limited by the

availability of water, which tends to raise the effective price of the service (HT, 2019).

The cross-border interconnectors flow exhibits a differential effect on the level of electricity

prices across the NEM. Our analysis in Models I and J assumes that the two models have limited

omitted variable bias. We find statistical evidence that the Terranora, QNI, and VNI reduced the

price of electricity in NSW. Interestingly, the Terranora interconnector exhibits a substantial price

reduction despite its lower nominal capacity. This may be because NSW traditionally is a net

importer of electricity across the NEM due to the relatively high cost of fuel. VIC exports to NSW

have been higher and frequent compared to NSW exports to VIC, even after the closure of the

Hazelwood power station (Mountain and Percy, 2019). Moreover, QNI and VNI have higher nom-

inal capacities compared to other interconnectors in the NEM. The fact that two interconnectors

link NSW to QLD is an added advantage. QLD has been a net electricity exporter in the NEM

due to the state’s surplus capacity and traditionally low fuel prices (AER, 2018). The exports

from QLD to NSW doubled in the year after the Hazelwood power plant closed.

The Heywood and Murraylink interconnectors in SA significantly impact the level of electricity

prices, with Murraylink having a positive effect and the Heywood interconnector having a negative

impact. The Heywood interconnector has a relatively sizeable nominal capacity, which allows more

cheap brown coal exports from VIC than Murraylink. SA has traditionally been an importer of

electricity because the state lacks a low-cost local supply. The recent influx of wind generation,

23Gas generation is preferred in SA as it is a flexible source of energy and thus, is often employed as a supplement
to the intermittent wind generation. According to AER (2018), about 56% of SA local generation in 2017–18 was
powered by gas. It is considered a transition fuel toward a lower carbon economy and accounted for more generation
during the carbon pricing period from July 2012 to June 2014. However, this pace slowed following the abolition
of carbon pricing in 2014, along with other factors, such as the lack of new gas supplies (AER, 2017).
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however, has made SA more self-sufficient. Generally, the effective trade between VIC and SA is

limited by the low thermal capabilities of the Heywood and Murraylink interconnectors (Bell et al.,

2015). We also observe that VIC, the most interconnected state in the region, experiences price

reduction from the Heywood and VNI interconnectors. VIC traditionally has been a net exporter of

electricity due to its low-cost brown coal generation. Nevertheless, the recent challenges associated

with the closure of significant coal plants, such as the Hazelwood power station in March 2017,

impacted VIC’s position. Furthermore, the effect of the Basslink interconnector is positive and

statistically significant for VIC and TAS. This reflects the changing position of both states during

the sample period. The position of TAS tends to vary over time, depending on market conditions.

During the carbon pricing period, the region was a net exporter of electricity. This position changed

in late 2015 following the abolition of carbon pricing and the persistence of drought conditions.

Favorable conditions such as the resumption of the Basslink interconnector to VIC and favorable

conditions for hydroelectricity generation made the state a net exporter of electricity.

In summary, we find that beyond the customary factors of consumption and gas prices, hydro

and interconnectors play an essential role in determining the merit order effect associated with

wind generation in the NEM. We now analyze the impact of these factors on the volatility of

electricity prices.

4.2 Volatility dynamics

The bottom panels of Tables 2–5 present the impact on the estimated variance equation. The

first four rows capture the characteristics of NEM volatility dynamics.

The coefficients of the own-innovation or ARCH spillovers (γ) and the lagged volatility or

GARCH spillovers (β) are large, relatively stable across the models, and statistically significant.

The estimated innovation spillovers for NSW, SA, VIC, and TAS are 0.5875, 0.5079, 0.4225, and

1.4055, respectively (see Model I). Therefore, the memory of previous surprises or innovation has

a substantial impact on future volatility for TAS, NSW, and SA, and is slightly lower in VIC.

Similarly, the last period’s volatility shocks exhibit a considerable effect on its future electricity

price volatility in TAS (0.8284). The impact is almost half this in other regions, i.e., VIC (0.4708),

SA (0.4440), and NSW (0.3697).24 Considering Models I and J, we find the estimated innovation

spillovers exceed the volatility spillovers in NSW only. The opposite effect is observed in VIC

and TAS; the results for SA are inconclusive. The estimated innovation spillovers exceed those

observed in the German market (Ketterer, 2014; Kyritsis et al., 2017). Kyritsis et al. (2017), for

24These results are generally in keeping with the previous study by Higgs and Worthington (2005), who found
the ARCH and GARCH effects 0.4376 and 0.3677 for NSW, 0.2530 and 0.5422 for SA, and 0.5761 and 0.3057 for
VIC, respectively. We attribute the difference between the estimated coefficients from this study to the difference
in the sample period and the fact they applied the high-frequency data in the empirical analysis.
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instance reported innovation spillovers of 0.226, while the estimated volatility spillover is closer

to VIC and SA and is 0.447. The sign effect parameter α is positive and statistically significant

for NSW. This means positive shocks tend to exert more impact on electricity price volatility

than negative shocks of the same magnitude. This provides evidence for the reverse leverage

effect in the NEM. Knittel and Roberts (2005) noted that a positive shock to prices signifies an

unexpected positive demand shock, which, given the convexity of the marginal cost, tends to exert

more upward pressure on prices than the negative shocks. The present results corroborate the

results of Higgs and Worthington (2005) and Thomas and Mitchell (2005). In addition to the

Australian market, Knittel and Roberts (2005) found similar behavior for California electricity

prices in the US. Contrary to these studies, however, we find the estimated coefficients for the

other states are not statistically significant (at the 5% level). Positive and negative shocks have

marginal differential effects on price volatility in all of the Australian states except NSW.

4.3 Effects on volatility of electricity prices

In the second panel in Tables 2–5 (the fifth row), the impact of wind generation on electricity

price volatility is presented. The estimated coefficients (Model I) are positive and statistically

significant at the 1% and 10% levels for SA and VIC, respectively. The effect is more pronounced

in SA, where a 1 GWh increase in daily wind generation amplifies daily price volatility by 2%. The

increase in VIC differs moderately and is 1% lower. In contrast, we find strong evidence for the

opposite effect in TAS, with a 5% decrease for each 1 GWh increase. NSW experiences a marginal

and not statistically significant decrease in price volatility. SA is well-known for its relatively higher

and more volatile electricity prices compared to other markets in the NEM. The price volatility

stems from the intermittent and uncertain nature of wind generation, which varies during the day

and seasons of the year. VRE generation is typically negatively correlated with demand (Hirth,

2013; Rai and Nunn, 2020). Consequently, adding VRE to the generation mix makes it harder to

equilibrate supply with demand and in turn, increases price volatility. Focusing on the European

market, Rintamäki et al. (2017) found that wind power decreases daily electricity price volatility

in Denmark but increases daily volatility in Germany (Ketterer, 2014; Kyritsis et al., 2017).

We find strong statistical evidence that electricity consumption increases price volatility in NSW,

SA, and VIC. SA experiences a far higher impact, where a 1 GWh increase in daily electricity

consumption increases the daily price volatility by 6%. This increase is approximately three and

six times the effect experienced in VIC and NSW, respectively. The impact of consumption in the

smallest NEM market, TAS, is marginal and not statistically significant. The importance of gas

in the SA generation mix is reflected in price volatility. We find strong statistical evidence that

a 1 AUD/GJ increase in the daily gas price increases the daily price volatility by 11% in SA and

marginally in NSW and VIC, i.e., around 6%. The higher magnitude of volatility in SA follows
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its relatively higher reliance on gas-powered generation in the NEM. Contrasting with Denmark

and Germany, gas prices seem to play a crucial role in influencing the volatility of electricity

prices in Australia. Rintamäki et al. (2017) found no statistically significant effect of daily gas

prices on the volatility of prices in Denmark and Germany. Our results demonstrate further that

price volatility increases with hydro generation. A more substantial effect is apparent in regions

where hydro generation accounts for a smaller proportion of the generation mix, namely, NSW

and VIC. Although more than 80% of the electricity generation in TAS comes from hydro, we find

no evidence of a positive impact on price volatility.

Similar to the mean equation, the interconnector’s influence on the volatility of electricity prices

is significant across the states. In NSW, we find strong evidence that the VNI interconnector

contributes to increasing daily price volatility. In contrast, we find no evidence for a negative

effect of the Terranora interconnector and the QNI. The Heywood and Murraylink interconnectors

in SA appear to positively influence price volatility. Nevertheless, we find less evidence for the

Murraylink interconnector. These results also suggest the impact on VIC moves in the opposite

direction by reducing price volatility. We observe the same effect for the VNI interconnector,

particularly in Model J. However, we find some evidence that the Heywood interconnector increases

price volatility. Although the influence of the Basslink interconnector in VIC is not statistically

significant, it appears to have a negative impact on price volatility in TAS. The effect observed

for the VNI in NSW and the Heywood interconnector in SA may be linked to VIC having the

highest net volatility spillover in the NEM (Han et al., 2020). The interconnectors joining VIC to

other regions likely were greatly impacted by the closure of the Hazelwood power station in VIC.

According to Cornwall Insight (2020), the closure of base-load coal generation has the potential

to increase volatility to the same extent as renewable generation. Similarly, QLD and TAS have

the lowest net volatility spillovers, which explain the lack of significance of the Terranora and QNI

interconnectors in NSW and the Basslink interconnector in VIC.

We find evidence that the variability in consumption, fuel prices, interconnector flow, and wind

generation output introduce volatility in NEM electricity prices.25 Higher volatility is associated

with the high frequency of prices between 100 AUD/MWh to 500 AUD/MWh, rather than with

more frequent extreme prices (Rai and Nunn, 2020). This range is above the market cap on

prices typically excluded in studies after treatment for outliers. In Appendix C, we consider the

3 ×MAD adjustment for outliers excluding prices above around 150 AUD/MWh. We find no

significant impact on the effect of wind generation on volatility in SA. This finding highlights the

importance of considering the whole range of electricity prices, and it provides empirical evidence

that the increased volatility is caused by the higher number of instances where prices fall within

the 100 AUD/MWh to 500 AUD/MWh range.

25Other reasons include strategic bidding practices and plant ramping, which are beyond the scope of this study
(Ward et al., 2019)
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4.4 The role of wind penetration

Different wind penetration levels have very different distributional properties, with reductions

in mean prices and standard deviations expected as wind penetration increases (Jonsson et al.,

2010). We undertake a similar preliminary analysis for all states by dividing the data into intervals

based on wind penetration. The properties of the empirical price distributions are given in Table 8.

It is apparent that prices decrease with wind penetration for NSW, VIC, and TAS. SA exhibits the

same pattern for higher penetration levels. Nevertheless, we see no clear pattern in the standard

deviation. Its magnitude, however, is relatively lower with higher levels of wind penetration.

The results summarized in Tables 2 to 5 concur with this analysis and suggest a consistent

effect of wind penetration on the level of electricity prices across states. In particular, increasing

wind penetration by 1% in Model J leads to a statistically significant reduction in the level of

electricity prices by 0.9 AUD/MWh and 0.7 AUD/MWh in NSW and VIC, respectively. The

magnitude of this reduction is relatively lower in SA and TAS, where the same increase in wind

penetration reduces prices by 0.5 AUD/MWh and 0.3 AUD/MWh, respectively. The impact of

wind penetration on price volatility is not uniform across the states. In TAS, price volatility

decreases by 1% for the same percentage increase in wind penetration. We observe a similar effect

in SA (Model E). However, the coefficient becomes non-statistically significant after controlling for

other explanatory variables in Model J. Based on this model, we find less evidence that increasing

wind penetration by 1% in VIC increases price volatility by the same magnitude. The estimated

effect in NSW is not statistically significant in either model.

We compare these results with the impact of wind generation in Model B, where SA experiences

the largest price reduction and volatility, while the other states experience moderate reductions.

However, after accounting for the effects of consumption (via the wind penetration measure), the

increase in the proportion of consumption served by wind generation is associated with a higher

statistically significant impact on electricity prices in NSW and VIC, and much lower in SA and

TAS. An explanation is that NSW and VIC have 15% or lower wind penetration, while SA sits at

around 50%. This also explains why there is a positive impact on price volatility in VIC, whereas

a higher level of wind penetration in TAS shows the opposite effect.

In the last decade, the NEM experienced substantial investment in renewable energy. In the

next section, we investigate how the impact of wind penetration developed during this period.
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4.5 The evolution of the impact of wind penetration

To study the evolution of the impact of wind penetration, we construct a rolling regression with

a three-year window.26 The results for the evolution of the impact of wind penetration in the mean

and variance of the daily electricity prices are given in Figure 5. Note that the coefficients are

re-estimated in windows moved forward one observation in time.

The negative impact of wind penetration is observed for all four states and trended higher over

the years. The evolution is relatively stable for states with higher wind penetration and relatively

unstable for states with lower penetration levels. According to Marshman et al. (2020), the size

of the wind penetration coefficient depends on which generators are marginal at the times of wind

output. For instance, if it is relatively high SRMC CCGTs, then the wind penetration coefficient

will be high; if it is coal (especially brown coal), then the coefficient is lower. NSW and VIC

experienced the highest electricity price reduction for a given increase in wind penetration over

time. This impact is likely triggered by the large increase in wind installations enhanced by LRTE

(Stocks et al., 2019) along with higher gas prices, which peaked in 2016, and the higher cost of

hydro generation due to the persistent drought periods. The decrease in the magnitude, especially

for NSW from late 2015 to late 2017, likely reflects a changing displacement effect, with CCGTs

first displaced, moving the bid to black coal once gas generators have been fully displaced. The

impact of moving the Hazelwood offline is evident in VIC by the reduction and swings in the MOE

in early 2017 (Burke et al., 2019; Mountain and Percy, 2019).27 Similar reasons may account for

the reduced MOE in SA from late 2015 to the end of 2017, specifically, the unexpected and sudden

closure of Playford B (240 MWh) and Northern (546 MW) (Rai and Nunn, 2020). TAS is less

affected by either factor due to the large proportion of renewables in the generation mix.

We observe a variation in price volatility over the years for NSW and VIC, with the lowest

penetration levels.28 From mid–2017 onward, the increase in wind penetration is associated with

a reduction in price volatility. This period coincided with the marked increase in investment in

large-scale renewable energy between 2016 and 2019 (de Atholia et al., 2020). The same argument

as in subsection 4.4 could explain this phenomenon; namely, price volatility tends to be lower

for higher penetration levels. The pattern in SA, however, suggests that this is not always the

case. In particular, the increase in wind penetration lowers price volatility to a specific level (in

this case, around annual wind penetration of 50%) and then regresses to the previous phenomena.

One explanation is that incumbent thermal plants remain online up to a certain penetration rate

26We also estimated the coefficients using the four-year rolling window and obtained a similar impact of wind
penetration over the years.

27According to AER (2018) during 2017–18, VIC recorded the highest average prices that were about 43% higher
than the year earlier and 30% higher than in any year since the NEM began.

28The p values from Figure 14 in Appendix C indicate, however, the estimated coefficients for all states are
generally not statistically significant, especially between 2016 and 2019, with the slight exception of SA.
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Figure 5: Evolution of the impact of wind penetration from 2014 to May 2020 for NSW, SA, VIC, and
TAS. The coefficients are estimated using the rolling regression with three-year windows while controlling
for gas prices, hydro generation, and the interconnectors. The graph on the left shows the effect on the
price level, and the graph on the right shows the effect on the price volatility.

(50% to 60%), thus smoothing out the price volatility from the higher wind output (Marshman

et al., 2020). After thermal plants are offline, the price firming they provide ceases, and prices

become more volatile, leading to an increase in the wind penetration coefficient. Kyritsis et al.

(2017) observed a similar pattern in the daily variance in electricity prices in Germany, where

wind penetration reduces the variance to around the 20% level but then reverts to the increasing

pattern.

These results provide important insights into the expected changes in price behaviors as a

result of government programs that target supporting renewable electricity growth. We find that

increasing wind penetration in states with an annual wind share of less than 15%, i.e., NSW and

VIC, tends to result in price swings, which are currently biased below zero. States with high wind

penetration, i.e., SA and TAS, tend to exhibit a marginal reduction in price volatility.

5 Regulatory implications

The NEM has experienced two significant shocks since 2010 which had a material impact on

electricity dynamics, the CPM and the COVID-19 lockdown restrictions. The CPM was a federal

government regulation based on emission control policies, whereas the lockdown restrictions con-

sisted of state government measures to control the spread of COVID-19. We analyze the impact

of these two regulatory shocks on the NEM and then discuss their implications.
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5.1 Carbon Pricing Mechanism (CPM)

The CPM was introduced by the Australian government in July 2012, pricing carbon at 23

AUD/tonne of the equivalent emitted carbon dioxide. The scheme was repealed in June 2014.

The CPM was the central component of the Clean Energy Future Plan aimed at reducing the

emission of carbon and other greenhouse gases to at least 5% below 2000 levels by 2020 (AER,

2013). The pricing also aimed at shifting the reliance from coal-fired generation toward sustainable

and renewable energy (Maryniak et al., 2019). At the time the scheme was terminated, the output

from coal-fired generators had decreased by around 25% (16% from brown and 9% from black

coal-fired generators), and the market share of coal generation had dropped markedly, reaching a

historical proportion of 73.6% of NEM output in 2013–14 (AER, 2015). These changes, combined

with the reduction in demand, reduced carbon emissions from electricity sector by 10.3% during

the two years the CPM was implemented.

Table 6 provides a state-by-state breakdown of the regressions incorporating the dummy variable

Dca to examine the effect of the CPM on prices where Dca = 1 during the CPM period, extending

from the introduction of the CPM scheme on July 1, 2012, until it was repealed on July 1, 2014,

and zero otherwise. We seek statistically significant differences between the times when the scheme

was in operation (Dca = 1) and when it was not (Dca = 0), corresponding to the times before its

introduction and after the repeal.

We find strong evidence that during the CPM period, electricity prices increased statistically

significantly across all markets in the NEM. The price intensification was much higher in NSW and

VIC and relatively lower in SA and TAS. The generation mix in the former states is dominated

by coal-fired generators statistically significantly impacted by the introduction of carbon pricing.

Most of the older and higher-cost plants were forced to periodically shut down and then return, for

example, during high demand periods in summer. The increased reliance on flexible and expensive

sources of generation, such as gas, triggered price increases. The reduced competitiveness of coal-

fired generators and the imposition of the RET accelerated the increase in wind generation. We find

statistically significant evidence that during the CPM period, wind generation caused a decrease

in electricity prices across all states in the NEM. The largest reduction occurred in SA and TAS,

and despite a greater increase in prices following the implementation of the CPM, we observe a

significant reduction in VIC and NSW, which had relatively lower levels of wind generation.29 The

results show that increasing wind generation by 1 GWh during the CPM period reduced prices by

0.9 AUD/MWh and 0.5 AUD/MWh in SA and TAS and approximately 0.1 AUD/MWh and 0.2

AUD/MWh in NSW and VIC, respectively. Likewise, wind penetration had a dampening effect

on the level of electricity prices with a greater reduction observed in VIC and moderate reduction

in SA and TAS. We find no statistical evidence for this effect in NSW, likely reflecting the smallest

29In SA, wind penetration increased from 28% to 33% during this period but was below 5% in VIC and NSW.
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share of demand served by wind generation. During the CPM period, wind generation accounted

for 0.94% and 1.15% of consumption in NSW and 3.09% and 5.36% in VIC for the years 2012 and

2013, respectively.

The results further suggest a positive relationship between prices and consumption, and we found

that this effect was stronger when the CPM was not implemented compared to the CPM period.

This likely reflects the weakened commercial and residential demand due to higher electricity

costs, lower demand from the manufacturing sector, and increased uptake of rooftop solar PV

generation. The CPM pushed electricity demand down by 3.8% across the NEM (O’Gorman and

Jotzo, 2014). Changes in weather conditions might also have contributed to reducing electricity

demand. Further, we find statistically significant evidence that gas contributed to increasing

electricity prices during the CPM period in VIC.30 Last, it is evident that in virtually all states in

the NEM the competitiveness of hydro was enhanced. We find statistically significant evidence that

increasing hydro generation by 1 GWh during the CPM period reduced prices by 0.2 AUD/MWh

in TAS and evidence of a more moderate reduction in NSW (0.1 AUD/MWh). The effect in VIC

was not statistically significant, particularly after controlling for other variables (see Model Q).

We find a statistically significant decrease in price volatility during the CPM period (see Model

K). The coefficients, however, are not statistically significant after controlling for other variables

(see Model Q). This suggests the possibility of omitted variable bias, namely, the effect attributed to

volatility in the regression may have been due to the effects of the omitted variables. The influence

of wind generation on price volatility during the CPM period is marginal and evident in only SA,

which had relatively higher levels of wind uptake. In particular, increasing wind generation during

the CPM period by 1 GWh reduced the volatility of electricity prices by 0.2%. The imposition

of carbon pricing stimulated investment in wind generation and supplied about 28%, 30%, and

33% of the output in SA in the years 2012, 2013, and 2014, respectively. Furthermore, we find

statistically significant evidence that volatility increased during the CPM period, specifically 1%

for each 1 GWh increase in hydro generation for NSW. Although there is less statistical evidence

for the coefficient of the interaction term in TAS and not statistically significant during the non-

CPM period, higher prices in other regions during the CPM period increased the competitiveness

of hydro generation making TAS a net exporter of electricity in 2012–13. The impact of gas prices

and electricity consumption is not statistically significant for all states in the NEM.

These findings have implications for the debate regarding the appropriate policy responses

required to combat climate change and the security of the NEM. During the CPM period, the

costs of generation from fossil fuel and electricity prices increased substantially across all markets

in the NEM. However, the carbon pricing mechanism allowed an efficient market determination for

the amount of wind generation in the electricity mix. Without this policy and the LRET in place,

30The impact in NSW and SA is not statistically significant.
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the market risks running into a trauma (Wood and Blowers, 2016; Simshauser and Gilmore, 2020).

The LRET is a typical government intervention aimed at reducing greenhouse gas emissions by

subsidizing large-scale renewable generation (Cludius et al., 2014a). The goal of the LRET is to

produce 33,000 GWh of electricity by 2020 regardless the need for additional supply. When demand

has trended lower, this additional supply, which also varies over time due to the intermittent nature

of wind and solar, adds challenges to system reliability and security, as well as electricity prices.

The frequent occurrence of negative prices, resulting from increasing supply from renewable energy,

is likely to affect investment and divestment in the energy sector.31 In addition, the LRET is not

technology-neutral and does not allow for abatement to occur from existing plants (i.e., only

new renewable energy can drive abatement under the LRET). Thus, it is more costly and has

more side effects compared to an emissions intensity scheme (EIS) or a carbon price. Technically,

policies offering greater flexibility for generators to adjust their emissions, such as an EIS, are

likely to perform best under uncertainty compared to mechanisms that are not technology-neutral

(ACC, 2017). Future climate change policies, therefore, must operate in a broader spectrum of

considerations for energy policies to maintain safe and reliable energy systems.

5.2 COVID-19 and the NEM

A significant discussion of immediate interest is centered on the novel coronavirus (COVID-19)

and its socioeconomic impacts. In Australia, the first person tested positive in VIC on January 25,

2020. The number of cases increased sharply, forcing government responses in increased pandemic

restrictions and lockdowns from late March 2020. To evaluate the impact of these restrictions on

the energy sector, and specifically, on the dynamics of electricity prices, we introduce the dummy

variable Dco, taking value one (Dco = 1) during the lockdown period from March 23, 2020, to May

31, 2020, after which the tightest restrictions were lifted in all states, and zero otherwise. The

results obtained are summarized in Table 7.

The results provide evidence of a statistically significant difference in the average levels of

prices between the lockdown and non-lockdown period. Looking at Model W, which includes

all the variables, we find strong evidence that prices decreased substantially in NSW during the

lockdown periods. The price reduction may have been driven by several factors, including lower

gas and coal prices, the decline in demand, lower-priced offers, and increased renewable output

(AEMO, 2020e,f). Focusing on the latter factor, we find statistically significant evidence that wind

generation reduced electricity prices in SA and VIC during the lockdown period. Wind penetration

31The increase in renewable energy has also been associated with more frequent instances of VRE curtailment
in the NEM. Typically, this intervention occurs during low daytime demand, transmission outages, and extended
periods of negative spot prices (AER, 2020b). Nevertheless, curtailment is not a problem but reflects market
economics, and the fact that remote generators challenge the system strength means that it cannot be completely
avoided (Simshauser and Gilmore, 2020).
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has the same sign effect, although the interaction term is statistically significant only in SA. From

the beginning of 2020 until the end of the sample period, SA and VIC lead in terms of wind

penetration with around 50.29% and 13.24%, respectively.

During the pandemic, demand decreased noticeably in NSW by 5% in April after the gov-

ernment imposed tighter pandemic restrictions. Easing of restrictions in conjunction with cooler

weather conditions which increased residential demand brought the reduction level to about 1%

during May and June (AEMO, 2020f). Despite the observed reductions, we find strong evidence

that consumption increased electricity prices during the lockdown period in NSW. The impact of

consumption in other regions was not statistically significant. Overall, VIC experienced a moder-

ate operational demand reduction,32 whereas SA experienced a considerable increase in demand.

This was due to the greater proportion of residential demand, which exceeds the commercial load.

No concrete evidence of demand change was established in TAS. A visual inspection of Figure 3a

suggests further that the trend of consumption reduction after the imposition of a strict nationwide

lockdown on March 23, 2020, to May 31, 2020, did not diverge substantially from the pre-lockdown

period. The impact of gas during the lockdown period is not evident in any state, including SA

and VIC, both of which have a large proportion of gas in their generation mix. Since the start

of 2020, gas prices have been offered in the markets at increasingly lower prices and reached the

historically lowest levels in all markets across the NEM (AEMO, 2020f). The lower gas prices have

been associated with falling gas prices in the international market and increased gas production

in QLD. Although high rainfall allowed increased output from hydro, we find some evidence that

the marginal increase is associated with higher electricity prices in NSW. We find no statistical

evidence to back up the positive and negative impacts in VIC and TAS, respectively.

These results suggest further that price volatility during the lockdown period was higher in SA.33

As pointed out previously, SA is characterized by extreme and volatile prices compared with other

markets in the NEM. The effect of wind generation and penetration during the lockdown period

was not evident across the markets. Similarly, we find no evidence for the impact of electricity

consumption. The marginal increase in hydro generation in VIC reduced volatility (see Model W);

nonetheless, the interaction term is not statistically significant after controlling for other electricity

price determinants. Moreover, we find modest evidence for the effect of gas prices in NSW and

SA. In both states, the results reveal that the marginal increase in gas prices during the lockdown

period was associated with higher price volatility. These dynamics may be the aftermath of the

COVID-19 pandemic, which caused price volatility in international gas prices, especially the Japan

Korea Marker (JKM) LNG prices.

Overall, we find that the COVID-19 pandemic and the associated restrictions had a moderate

32The imposition of the second statewide restrictions due to the second wave of infections in VIC in early July
is expected to have an additional impact on the demand.

33The effects in other markets are not statistically significant.
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impact on the NEM with a direct impact reflected in the reduction in demand and electricity prices.

Furthermore, no major changes were associated with the merit order effect of wind generation dur-

ing the lockdown period. The effect on volatility was unremarkable across all regional markets.

Nonetheless, sustained lower demand and prices are likely to hurt new investment projects, includ-

ing renewable energy and coal-fired generators. Therefore, the system architecture, regulation,

and governance should be designed so that they are flexible enough to accommodate a range of

potential future challenges. With the pandemic’s disruption of the economy, and with the threat of

future disruptions due to climate change and other unforeseen events, accelerating market reforms

aimed at improving market operations and resiliency in the NEM should be the focus.

6 Conclusion and policy implications

The Australian electricity market (NEM) is experiencing one of the fastest-growing VRE gener-

ations in the world, raising new challenges to system security and reliability. This transformation

has manifested in an extended period of negative prices and increased uncertainty and variability

of electricity prices. Despite increased generation from solar generation recently, wind generation

still leads this evolution and accounts for most of these variations. This necessitates a re-evaluation

of the market dynamics and their determinants. We conditioned on a set of factors not previously

considered, such as hydro generation and interconnectors, to model and evaluate the impact of

wind generation on the dynamics of electricity prices and simultaneously capture the MOE and

volatility dynamics. The results suggest that wind generation contributes to a statistically signif-

icant reduction in electricity prices in the NEM. Electricity consumption, gas prices, and hydro

generation are positively related not only to electricity prices but also to their price volatility. The

impact of wind generation on volatility dynamics is more pronounced in states with high wind

penetration, such as South Australia, Tasmania, and Victoria.34 Thus, we conclude that states

with high wind penetration are more susceptible to variation in electricity prices. The six cross-

border interconnectors have a measurable impact on price levels and volatility, an impact that

depends on a state’s position as an importer or exporter of electricity and the thermal capacity

of the respective interconnector. The impact also depends on the extent to which the increase in

VRE and the closure of coal-fired generators affects the respective connected markets.

We investigated the impact of two federal policies imposed on the dynamics of electricity prices;

the pricing mechanism and the nationwide lockdown restrictions in Australia due to COVID-19.

We find that during the carbon pricing period, wind generation led to a marked merit order effect

in the NEM with a negative impact on electricity price volatility. During the COVID-19 lockdown,

34Specifically, volatility increases with high wind generation in South Australia and Victoria and decreases in
Tasmania. The effect of wind penetration moves in the same direction and is statistically significant in states with
moderate penetration levels, which are Victoria and Tasmania.
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we report a reduction in electricity prices, mostly due to the decline in electricity demand, yet only

a marginal impact on volatility.

These findings provide insights into the complexity associated with the recent transformation in

the NEM due to the fast-evolving generation mix. Based on our empirical analysis, this transfor-

mation accounts for a substantial increase in the variability and therefore, uncertainty in electricity

prices. Negative prices have become a common feature in the NEM, and the magnitude of these

instances has become more persistent and more pronounced. Price volatility potentially signals

the need for new investment; such volatility characterized by infrequent, very high, or low prices

for very short periods poses a considerable risk to investors and consumers (Han et al., 2020). The

retirement of coal-fired generators (sometimes earlier than expected) poses further challenges in

the market and has the potential to amplify price shocks in the future.35 The level and volatility

of wholesale electricity prices impact end-consumer prices and electricity bills. Evidence suggests

that the costs the RET accounted for a substantial portion of the increase in residential prices,

among other factors. These costs are passed on to consumers in the form of retail electricity price

premiums, offsetting the MOE (Cludius et al., 2014a). Despite the expected drop in residential

prices in the next two years driven mostly by high VRE generation (AEMC, 2019), the increasing

price volatility has potential to counteract the anticipated trend by exerting upward pressure on

the wholesale price contract. One of the major key challenges to the system operator going for-

ward is managing the variability and uncertainty of prices, as the high penetration of wind and

solar generation potentially endangers the system security and reliability (Simshauser and Gilmore,

2020).

As wind penetration continues to increase across the NEM, more investment in fast-start, firm,

and flexible (dispatchable) capacity will be needed in coal-generation dominant regions, i.e., NSW

and VIC, to meet the lost output from wind generation.36 In contrast, SA and TAS have a large

proportion of gas and hydro generation, respectively, which serve to keep the system stable and

secure. Eventually, the increase in wind generation in the NEM has the potential to displace

intermediate as well as peaking generators (i.e., OCGTs have been less impacted than CCGTs by

the entry of wind generation) (Forrest and MacGill, 2013; Marshman et al., 2020). This brings the

market to a delicate balance. Furthermore, the demand patterns of electricity have been changing

considerably in the NEM due to the changes behind the metered resources, especially rooftop

solar PV generation. Thus, the new plant design and the demand side offer potential for system

flexibility beyond the traditional fuel-type-based flexibility. The importance of having a flexible

35Many coal-fired powers plants are expected to wind up withdrawing around 63% (15 GW) of capacity from
the NEM by 2040. More than 30 GW of large-scale renewable energy will be required by then to replace the lost
output (AEMO, 2020a).

36AGL Energy is planning to replace the Liddell power station in NSW beyond its announced retirement in
2022 with these sorts of technologies (a mix of renewable generation, high-efficiency gas peaking capacity, battery
storage, and an upgrade of its Bayswater power station (AER, 2020b).
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system can be further supplemented by effective market connectedness and storage technologies.

Effective market trade in the NEM has been restricted by the thermal, voltage, and transient

stability limitations of the cross-border interconnectors leading to different inter-state, volatile, and

unnecessarily high electricity prices (Ignatieva and Trück, 2016; Bell et al., 2017). Furthermore,

the NEM is not as heavily connected as other renewable-rich countries such as Denmark,37 nor

is the NEM connected to its own northern and western territories. Therefore, the NEM is solely

dependent on local supply. As the market transitions to renewables, heavy investment in intercon-

nectors is very important to keep the system stable and secure (Denny et al., 2010). Ultimately,

this will reduce pressure on prices and enhance the efficient use of renewable energy generators.

In the same vein, the changing energy landscape in the NEM is associated with the reversal of

the flow direction in the existing interconnectors. For instance, VIC, which was a net exporter,

has been increasingly reliant on NSW, SA, and TAS to supplement VIC’s supply during peak

periods.38 To ensure maximum benefits from these interconnectors, future investments must align

and account for the long-term ability of the states to deliver renewable energy generation and for

future market conditions.

Investment in pumped hydro and battery storage has been slow compared to the speed at

which the market is transitioning to renewable energy. Nonetheless, future developments and

proposed storage projects are expected to shape the energy landscape and perhaps reduce the

price swings currently observed in the NEM. SA, for instance, installed the world’s largest lithium-

ion battery at the Hornsdale windfarm (170 MW), which has played a substantial role in lowering

the cost of frequency control services in the region (AER, 2020b). It is projected that battery

storage installations will increase from nearly zero in 2020 to about 5.6 GW by 2036–37. Major

proposed pumped hydro energy projects include the expansion of the Snowy Hydro Scheme, which

will increase capacity by 50% (up to 2000 MW) and the Tasmanian hydroelectric system (2500

MW). Renewable hydrogen is also expected to provide vital support for increasing surplus from

VRE generation and the potential for energy exports in Australia (COAG, 2019). Thus, the

infrastructure and the expansion of the electricity grid and an effective mix of technology will be

central to the transition from fossil fuel to clean energy generation.

Finally, the increase in price volatility from the increasing reliance on weather-based renew-

able energy sources underscores the importance of appropriate methods for data treatment and

modeling. Misspecification may potentially underestimate price volatility leading to inaccurate

derivative pricing and hedging strategies. Policies informed by any such misspecifications risk may

fail to address the current challenges associated with higher penetration of VRE production in the

37Denmark, which leads with the highest penetration of wind generation, is strongly interconnected with central
European and Scandinavian power systems, which offers strong support for balancing the system (AEMO, 2020d)

38Its exports to SA, for instance, have decreased substantially from an average of between 220 MW and 270 MW
to 41 MW (Cornwall Insight, 2020)
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NEM.

34

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3723117



Table 2: The effect of wind generation, electricity consumption, gas prices, hydro generation, and inter-
connectors flow on New South Wales’ electricity price behavior. The effect on price levels is given by the
mean equation and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model G Model H Model I Model J
Mean Equation

µ 54.3343 57.1014 -8.2404 -2.9146 56.6694 50.5466 49.4523 50.3224 2.2736 47.1826
(0.0000) (0.0000) (0.1214) (0.0992) (0.0000) (0.0000) (0.0000) (0.0000) (0.5702) (0.0000)

φ1 0.8385 0.8445 0.8488 0.8556 0.8456 0.8349 0.8414 0.8535 0.8607 0.8539
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -5.8979 -5.5736 -4.5167
(0.0000) (0.0000) (0.0000)

consumption 3.2269 3.0795 2.4622
(0.0000) (0.0000) (0.0000)

windpen -100.0000 -92.4660
(0.0000) (0.0000)

gas 0.63661 0.2021 0.3489
(0.0000) (0.1513) (0.0164)

hydro 7.6019 4.0481 6.6880
(0.0000) (0.0000) (0.0000)

eximterra -11.7043 -11.0483 -11.4251
(0.0178) (0.0143) (0.0107)

eximQNI -3.4987 -1.6940 -2.1430
(0.0000) (0.0143) (0.0146)

eximV NI -1.2123 -0.7607 -0.8209
(0.0000) (0.0007) (0.0014)

Variance Equation

ω 2.5631 2.6162 -1.1792 -1.3694 2.6427 2.2504 2.18344 2.3460 -0.8407 1.7301
(0.0000) (0.0000) (0.0210) (0.0091) (0.0000) (0.0000) (0.0000) (0.0000) (0.1252) (0.0000)

α 0.1470 0.1404 0.1585 0.1479 0.1402 0.1356 0.14700 0.1537 0.1364 0.1233
(0.0001) (0.0003) (0.0000) (0.0001) (0.00037) (0.0005) (0.0000) (0.0000) (0.0001) (0.0006)

β 0.4819 0.4707 0.4235 0.4113 0.4696 0.4685 0.45716 0.4575 0.3697 0.3961
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.5553 0.5791 0.5801 0.5944 0.5812 0.5623 0.6012 0.5073 0.5875 0.5926
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.0143 0.0004 -0.0238
(0.8583) (0.9960) (0.7892)

consumption 0.2028 0.2147 0.1388
(0.0000) (0.0000) (0.0000)

windpen -1.2349 -1.3381
(0.4163) (0.4252)

gas 0.0620 0.0639 0.0676
(0.0003) (0.0010) (0.0004)

hydro 0.6120 0.4857 0.5909
(0.0000) (0.0000) (0.0000)

eximterra -0.83015 -1.0180 -0.9218
(0.2384) (0.1931) (0.2248)

eximQNI -0.0759 -0.0892 -0.1038
(0.2813) (0.2607) (0.1763)

eximV NI 0.1082 0.1378 0.1039
(0.0027) (0.0008) (0.0086)

Shape 2.7368 2.6903 2.8627 2.8229 2.6902 2.7712 2.9984 2.8153 3.1373 3.0807
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Log Likelihood -12615.46 -12522.92 -12423.65 -12330.16 -12507.30 -12600.20 -12493.69 -12519.98 -12231.91 -12323.42
AIC 7.3408 7.2881 7.2304 7.1772 7.2790 7.3331 7.2711 7.2887 7.1259 7.1779
BIC 7.3533 7.3042 7.2465 7.1968 7.2951 7.3491 7.2872 7.3120 7.1634 7.2119
Q(20) 1.35009 1.4802 4.4455 4.5792 1.4659 1.2747 1.2306 1.2688 3.8520 1.4159

(0.8815) (0.8515) (0.1630) (0.1474) (0.8549) (0.8977) (0.9066) (0.8989) (0.2500) (0.8667)
Q2(36) 0.0051 0.0052 0.0131 0.0134 0.0052 0.0051 0.0034 0.0046 0.0057 0.0035

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
ARCH-LM Test 0.0027 0.0028 0.0066 0.0075 0.0028 0.0025 0.0021 0.0025 0.0035 0.0022

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 3: The effect of wind generation, electricity consumption, gas prices, and interconnectors flow on
South Australia’s electricity price behavior. The effect on price levels is given by the mean equation and
on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model H Model I Model J
Mean Equation

µ 61.2996 80.0152 -36.9771 14.2491 79.6139 10.955 59.8263 -15.2729 38.9298
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1289) (0.0000)

φ1 0.5842 0.6290 0.6023 0.6400 0.6311 0.47087 0.6105 0.5474 0.5114
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -15.1445 -12.5028 -12.7961
(0.0000) (0.0000) (0.0000)

consumption 30.1136 19.0979 17.8255
(0.0000) (0.0000) (0.0000)

windpen -47.5034 -45.6440
(0.0000) (0.0000)

gas 8.3650 6.1472 7.0736
(0.0000) (0.0000) (0.0000)

eximheyw 6.3609 -11.1388 -10.0847
(0.0000) (0.0000) (0.0000)

eximmurry 83.4109 44.4606 46.0293
(0.0000) (0.0000) (0.0000)

Variance Equation

ω 3.2552 3.7145 1.1663 1.1381 4.6687 1.99188 3.4616 0.6852 2.6630
(0.0000) (0.0000) (0.0001) (0.0002) (0.0000) (0.0000) (0.0000) (0.0234) (0.0000)

α -0.0792 -0.0117 -0.0371 0.0166 0.0609 -0.1642 -0.0306 -0.0353 -0.1067
(0.0768) (0.8154) (0.3172) (0.6854) (0.0000) (0.0000) (0.5237) (0.3722) (0.0185)

β 0.5587 0.4903 0.4515 0.4455 0.3610 0.63140 0.5145 0.4440 0.4883
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.5016 0.4881 0.5864 0.5568 0.5597 0.45263 0.5099 0.5079 0.4737
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.0134 0.1025 0.1893
(0.7470) (0.0222) (0.0013)

consumption 0.7805 0.7555 0.6329
(0.0000) (0.0000) (0.0000)

windpen -0.2684 0.1095
(0.0277) (0.5157)

gas 0.10863 0.1061 0.1333
(0.0000) (0.0000) (0.0000)

eximheyw 0.1301 0.0990 0.1245
(0.1386) (0.2998) (0.1721)

eximmurry 0.8512 0.6424 0.6636
(0.0162) (0.1009) (0.0741)

Shape 2.3979 2.3159 2.7174 2.5587 2.3492 2.4694 2.3487 2.6372 2.4139
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -16092.81 -15629.53 -15746.19 -15438.66 -15574.91 -15966.86 -15648.23 -15297.49 -15394.90
AIC 9.3631 9.0948 9.1627 8.9850 9.0630 9.2910 9.1069 8.9064 8.9618
BIC 9.3756 9.1109 9.1787 9.0046 9.0791 9.3071 9.1265 8.9367 8.9886
Q(20) 0.0366 0.4685 6.5090 5.7500 0.4493 0.6080 0.6111 5.8930 0.8018

(0.9978) (0.9949) (0.0299) (0.0576) (0.9955) (0.9881) (0.9879) (0.0510) (0.9720)
Q2(36) 0.0367 0.0347 0.0668 0.0743 0.0315 0.0389 0.03403 0.1023 0.03706

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
ARCH-LM Test 0.0307 0.0282 0.0417 0.0476 0.0232 0.0326 0.0273 0.0694 0.0288

(1.0000) (1.0000) (0.9999) (0.9999) (1.0000) (1.0000) (1.0000) (0.9997) (1.0000)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 4: The effect of wind generation, electricity consumption, gas prices, hydro generation, and inter-
connectors flow on Victoria’s electricity price behavior. The effect on price levels is given by the mean
equation and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model G Model H Model I Model J
Mean Equation

µ 55.5357 62.4618 -26.2933 1.2561 61.2108 44.3530 46.5494 59.0653 31.0060 50.3037
(0.0000) (0.0000) (0.0000) (0.7517) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.7670 0.7952 0.7903 0.81200 0.7980 0.7596 0.7989 0.7967 0.8059 0.8046
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -9.3468 -7.9024 -5.6644
(0.0000) (0.0000) (0.0000)

consumption 6.4743 4.7584 1.6063
(0.0000) (0.0000) (0.0000)

windpen -100.0000 -69.5166
(0.0000) (0.0000)

gas 1.9743 1.3077 1.3776
(0.0000) (0.0000) (0.0000)

hydro 11.7813 5.1931 6.2821
(0.0000) (0.0000) (0.0000)

eximbass 8.4499 5.2680 5.8647
(0.0000) (0.0000) (0.0000)

eximheyw 0.1553 -2.3095 -2.4988
(0.8318) (0.0008) (0.0038)

eximV NI -7.2068 -3.7079 -4.2282
(0.0000) (0.0000) (0.0000)

eximmurr 5.1647 0.2273 -0.7486
(0.0338) (0.9231) (0.7894)

Variance Equation

ω 1.42613 2.4699 -0.4104 -0.3431 2.3883 1.6114 1.9076 2.4215 0.0529 2.1460
(0.0000) (0.0000) (0.2793) (0.4155) (0.0000) (0.0000) (0.0000) (0.0000) (0.9126) (0.0000)

α -0.1506 -0.1363 -0.1202 -0.0619 -0.1505 -0.1697 -0.1133 -0.1359 -0.0430 -0.0574
(0.0000) (0.0004) (0.0005) (0.0909) (0.0001) (0.0000) (0.0012) (0.0003) (0.2383) (0.1242)

β 0.7571 0.5701 0.5409 0.4709 0.5929 0.6763 0.6079 0.5747 0.4708 0.4821
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.40652 0.4543 0.4949 0.4558 0.4628 0.4574 0.4631 0.4482 0.4225 0.4143
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.0097 0.0734 0.1225
(0.8340) (0.1570) (0.0455)

consumption 0.2354 0.2511 0.1745
(0.0000) (0.0000) (0.0000)

windpen -0.6921 1.43069
(0.2043) (0.0579)

gas 0.0496 0.05745 0.0566
(0.0015) (0.0014) (0.0015)

hydro 0.4186 0.2199 0.3849
(0.0000) (0.0055) (0.0000)

eximbass 0.0845 -0.0151 0.0418
(0.0469) (0.7659) (0.3841)

eximheyw 0.1891 0.1666 0.1572
(0.0148) (0.0606) (0.0718)

eximV NI -0.0757 -0.0472 -0.0969
(0.0163) (0.2421) (0.0115)

eximmurr -0.8094 -0.7001 -0.7616
(0.0125) (0.0519) (0.0325)

Shape 2.5984 2.5377 2.8571 2.7783 2.51015 2.6134 2.7310 2.5434 2.7651 2.6808
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -13925.35 -13564.78 -13662.80 -13398.21 -13539.68 -13887.69 -13699.24 -13521.06 -13278.52 -13296.37
AIC 8.1026 7.8940 7.9510 7.7983 7.8794 8.0818 7.9722 7.8721 7.7357 7.7449
BIC 8.1151 7.9101 7.9671 7.8180 7.8955 8.0979 7.9883 7.8989 7.7768 7.7824
Q(20) 1.5874 1.6186 7.1600 7.1560 1.8130 1.7525 5.1500 2.364 0 8.1030 5.1800

(0.8248) (0.8168) (0.0167) (0.0167) (0.7645) (0.7811) (0.0943) (0.6053) (0.0069) (0.0921)
Q2(36) 0.0331 0.0211 0.0203 0.0128 0.02433 0.0366 0.0277 0.0241 0.0137 0.0138

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
ARCH-LM Test 0.0326 0.0195 0.01995 0.0125 0.0228 0.0354 0.0243 0.0222 0.0132 0.0127

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (0.9999) (1.0000) (1.0000) (1.0000) (1.0000)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.

37

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3723117



Table 5: The effect of wind generation, electricity consumption, hydro generation, and interconnectors
flow on Tasmania’s electricity price behavior. The effect on price levels is given by the mean equation
and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model G Model H Model I Model J
Mean Equation

µ 59.7511 62.1004 20.9592 33.1653 62.0528 58.5080 59.4424 33.0415 61.3706
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.9569 0.9634 0.9631 0.9642 0.9639 0.9576 0.9572 0.9643 0.9648
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -10.5035 -5.7509 -5.8390
(0.0000) (0.0000) (0.0000)

consumption 14.6485 10.4509 10.1070
(0.0000) (0.0000) (0.0000)

windpen -27.6488 -28.3447
(0.0000) (0.0000)

gas

hydro 1.4388 1.1169
(0.0042) (0.0028)

eximbass 1.8034 2.3559
(0.0000) (0.0000)

Variance Equation

ω 0.9585 1.19689 0.5208 1.0607 1.1939 0.9182 1.0341 1.0414 1.2614
(0.0000) (0.0000) (0.1670) (0.0116) (0.0000) (0.0000) (0.0000) (0.0123) (0.0000)

α 0.0443 0.0102 0.0245 0.0072 0.0090 0.0388 0.0370 0.0053 -0.0012
(0.3139) (0.8328) (0.6562) (0.8927) (0.8553) (0.3743) (0.4130) (0.9210) (0.9824)

β 0.8393 0.8212 0.8296 0.8247 0.8214 0.8431 0.8293 0.8284 0.8129
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 1.1081 1.2804 1.4478 1.4148 1.2978 1.1035 1.1548 1.4055 1.3963
(0.0000) (0.0000) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000) (0.0002) (0.0000)

wind -0.4278 -0.4689 -0.4580
(0.0022) (0.0014) (0.002)

consumption 0.2109 0.0592 0.0502
(0.1059) (0.6703) (0.7175)

windpen -1.0598 -0.9282
(0.0031) (0.0114)

hydro 0.0267 0.0252
(0.5531) (0.5995)

eximbass -0.0799 -0.0642
(0.0130) (0.0569)

Shape 2.2463 2.1931 2.1387 2.1502 2.18611 2.2457 2.2280 2.1512 2.1590
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -12907.05 -12777.51 -12756.38 -12724.31 -12768.23 -12900.76 -12893.77 -12719.80 -12748.20
AIC 7.5104 7.4362 7.4239 7.4064 7.4308 7.5079 7.5038 7.4049 7.4203
BIC 7.5229 7.4523 7.4400 7.4261 7.4469 7.5239 7.5199 7.4282 7.4399
Q(20) 58.2400 57.6400 56.7400 58.8500 57.4000 58.9100 55.8200 59.0600 54.1700

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Q2(36) 2.4107 3.0359 3.1623 3.4111 3.0462 2.3314 2.5383 3.3242 3.3007

(0.8507) (0.7530) (0.7319) (0.6896) (0.7513) (0.8620) (0.8320) (0.7045) (0.7084)
ARCH-LM Test 1.6395 1.9827 2.0895 2.2262 1.9853 1.5842 1.7353 2.1572 2.1791

(0.7930) (0.7210) (0.6984) (0.6695) (0.7204) (0.8043) (0.7731) (0.6840) (0.6794)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 8: Price distribution properties for different wind penetration levels.

Wind Penetration < 5% 5%− 15% < 5% 5%− 10% 10%− 15% 15%− 30% < 5% 5%− 10% 10%− 15% 15%− 20% 20%− 35%

NSW VIC TAS

Mean 61.39 50.48 66.68 63.06 49.27 34.40 70.20 62.74 59.45 54.21 48.85
Standard Deviation 56.73 15.88 36.15 113.38 20.35 20.54 37.73 28.43 27.44 34.08 32.74
Skewness 18.11 0.89 8.32 21.82 0.10 -0.19 2.56 1.73 1.45 1.42 1.47
Kurtosis 389.69 3.98 120.21 554.18 5.58 0.18 16.56 7.42 6.78 5.15 5.66

Observations 3092 347 1259 1405 535 240 890 1081 776 421 271

Wind Penetration < 5% 5%− 10% 10%− 15% 15%− 20% 20%− 25% 25%− 30% 30%− 35% 35%− 40% 40%− 45% 45%− 50% > 50%

SA

Mean 112.38 89.81 99.92 82.12 69.49 85.58 67.98 64.78 61.83 58.90 44.91
Standard Deviation 124.29 63.16 104.86 53.41 149.58 197.77 49.95 27.96 38.32 27.77 29.78
Skewness 6.41 6.32 6.09 6.87 11.75 12.92 9.08 2.76 3.10 0.24 1.78
Kurtosis 47.53 51.49 46.52 73.27 162.08 192.26 117.24 19.19 24.02 6.18 21.91

Observations 131 161 201 305 332 368 296 242 224 201 978
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Ruiz, E., Peña, D., Carnero, M.Á., et al., 2001. Outliers and conditional autoregressive het-

eroscedasticity in time series. Technical Report. Universidad Carlos III de Madrid. Departamento

de Estad́ıstica.

48

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3723117

http://products.iesys.com/NEO/NEOpoint
http://products.iesys.com/NEO/NEOpoint
https://www.R-project.org/


Schneider, S., 2011. Power spot price models with negative prices. Journal of Energy Markets 4,

77–102.

Pereira da Silva, P., Horta, P., 2019. The effect of variable renewable energy sources on electricity

price volatility: The case of the Iberian market. International Journal of Sustainable Energy 38,

794–813.

Simshauser, P., Gilmore, J., 2020. Is the NEM broken? Policy discontinuity and the 2017-2020

investment megacycle. Technical Report. Faculty of Economics, University of Cambridge.

Stocks, M., Baldwin, K., Blakers, A., 2019. Powering ahead: Australia lead-

ing the world in renewable energy build rates. https://energy.anu.edu.au/files/

renewable-energy-target-report-september-2019.pdf, Accessed January 2020.

Tang, J., Sriboonditta, S., Yuan, X., Wu, B., 2014. Dynamic copula-based GARCH model analysis

China outbound tourism demand, in: Innovative Management in Information and Production.

Springer, pp. 123–139.

Taylor, J.W., Buizza, R., 2004. A comparison of temperature density forecasts from GARCH and

atmospheric models. Journal of Forecasting 23, 337–355.

Thomas, S., Mitchell, H., 2005. GARCH modeling of high-frequency volatility in Australia’s

National Electricity Market. Discussion Paper. Melbourne Centre for Financial Studies.

Thomas, S., Ramiah, V., Mitchell, H., Heaney, R., 2011. Seasonal factors and outlier effects in rate

of return on electricity spot prices in Australia’s National Electricity Market. Applied Economics

43, 355–369.

Trueck, S., Weron, R., Wolff, R., 2007. Outlier treatment and robust approaches for modeling

electricity spot prices. Hugo Steinhaus Center, Wroclaw University of Technology.
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Appendices

A Data

A.1 Preliminary analysis

Table 9: Interconnectors capabilities in the NEM. Source AEMO (2017)

Interconnector From To Nominal Capacity (MW)

Terranora (N–Q–MNSP1)
NSW QLD 107
QLD NSW 210

NSW1–QLD1 (QNI)
NSW QLD 300–600
QLD NSW 1078

VIC1–NSW1 (VNI)
VIC NSW 700–1600
NSW VIC 400–1350

Basslink (T–V–MNSP1)
TAS VIC 594
VIC TAS 478

Heywood (V–SA)
VIC SA 600
SA VIC 500

Murraylink (V–S–MNSP1)
VIC SA 220
SA VIC 200
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Figure 6: The daily hydro generation for NSW, SA, VIC, and TAS from January 1, 2020, to May 31,
2020.

A.2 Adjustment of price spikes

We filter outliers using median absolute deviation (MAD) as the dispersion measure and follow

Mugele et al. (2005), Bierbrauer et al. (2007), and Ketterer (2014). In particular, we create a

time series of the original price series for each weekday to take into account cyclic nature of prices

within a week. We then construct the threshold for filtering outliers as F = med±3 ·MAD, where

med is the median of the weekday prices, and the MAD39 is defined as

MADi = b ·medi(|xi −medj(xj)|),

where xj is the weekday electricity price series, medi is the median of the series, b = 1.4826 is

a constant defined in the presence of outliers to make the distribution normal (Rousseeuw and

Croux, 1993). Any observation surpassing the filter F is classified as an outlier. The number of

outlying values identified for each regional market are presented in Table 10. The total number

of outliers in the NEM during the sample period is 599. TAS accounts for more than half of the

39Leys et al. (2013) noted that median is more robust to outliers compared to arithmetic mean (see also Weron
(2007) and Mehrang et al. (2015)). Therefore, MAD and not standard deviation should be used as the measure of
dispersion. Furthermore, we set the thresholds to three (described by Leys et al. (2013) as very conservative) in
order to include many observations, and it is a typical threshold which is widely applied in the previous literature
(Mugele et al., 2005; Bierbrauer et al., 2007; Ketterer, 2014; Bublitz et al., 2017).
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Table 10: Occurrences of extreme spikes in prices by region and Weekday.

Weekday NSW SA VIC TAS TOTAL

Monday 9 19 11 43 82
Tuesday 13 17 13 41 84
Wednesday 10 24 20 49 103
Thursday 17 23 22 48 110
Friday 12 23 15 49 99
Saturday 4 13 9 3 8 64
Sunday 2 10 7 38 57

TOTAL 67 129 97 306 599
11.19% 21.54% 16.19% 51.09% 100%

total spikes, and NSW has the lowest number of instances where prices exceeded the limit (11.19%

of the total sample spikes). Furthermore, price spikes are more pronounced during business days

than at the weekends. All values in Table 10 are then replaced by the median of the respective

weekday (Ketterer, 2014; Kyritsis et al., 2017).

A.3 Deseasonalizing and detrending the data

We assume that the time series pt can be decomposed as a sum of the stochastic component yt

and the seasonal component st, that is, pt = yt + st, t > 0 (Bierbrauer et al., 2007; Trueck et al.,

2007; Ketterer, 2014; Pereira and Rodrigues, 2015).40 We then apply the ordinary least squares

(OLS) approach by creating dummy variables for the days (dayi, i = 1, 2, . . . , 7) corresponding to

Monday to Sunday, months (monthj, j = 1, 2, . . . , 12) corresponding to January to December and

years (yeark, k = 1, 2, . . . , 10) corresponding to 2011 to 2020, and specify the OLS as

pt = ĉ+

p∑
i=2

φ̂ · dayi +

q∑
j=2

ζ̂ ·monthj +
r∑

k=2

η̂ · yeark + εt,

where pt is the variable of interest and where applicable adjusted for the outlier effect. p, q and

r are the total number of days in a week, months, and years, ĉ is the estimate of the intercept,

and φ̂, ζ̂, and η̂ are the parameter estimates of the weekly, monthly and yearly regressors. The

deseasonalized time series of electricity prices and other explanatory variables is captured by the

40In literature, researchers dealt with seasonal effect in different ways. This includes adding seasonal dummies
(model seasonality) in the mean equation (Black, 2006; Hickey et al., 2012; Tang et al., 2014; Pereira da Silva
and Horta, 2019). In this respect, the seasonal component is explained by dummies, and the GARCH part is
free to model deseasonalized volatility. Also, there are those who add dummy variables (or model seasonality) in
the variance (Higgs and Worthington (2005)) or both the mean and variance equation (Taylor and Buizza, 2004;
Byström, 2005; Castagneto Gissey, 2014; Auer, 2014).
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regression residuals εt. Similar to Ketterer (2014) we then align the mean of actual and the

adjusted series. We apply the OLS approach separately for all the variables prior to fitting the

ARX-eGARCHX models. The reason for the two-stage approach is because inclusion of seasonal

dummies together with other explanatory variables in the same ARX-eGARCHX specification

creates a complex model. Also, the rugarch package which is employed for our analysis supports

only ARFIMA-GARCH based models (R Core Team, 2019; Ghalanos, 2020). The results for the

deseasonalized and detrended time series are presented in Tables 11 to 18.

We specify Monday, January, and the year 2011 in Table 11 as our reference variables for

weekdays, months, and years, respectively. Prices are relatively higher for all regions during

workdays, although not statistically significantly different from that of Monday. For SA and VIC,

we find some evidence that prices peak on Thursday. On Saturday and Sunday, prices are negative

and statistically significant for almost all states indicating relatively lower price levels at the end

of the week. We also observe variation in electricity prices across months of the year. The results

for NSW, SA, and VIC suggest that prices in summer are relatively higher than that of winter

and other months. TAS exhibits a slightly different behavior where prices in autumn, especially

March and April, exceed summer month prices.

After accounting for price spikes in Table 12, the coefficients of monthly seasonality and year

dummies become relatively more statistically significant. From this, we conclude that when the

market is operating under typical conditions, electricity prices tend to be relatively higher during

winter months. Further, we see from the year dummies that prices for all states dropped markedly

in the year 2014 and 2015 though not statistically significant for all states.41 This is mostly

accounted for by the repeal of the carbon pricing mechanism on July, 1 2014.

41The year 2020 dummy does not cover the whole year but the sample period from January 1, 2020, to May 31,
2020.
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Table 11: Seasonal and trend adjustment of daily electricity electricity prices not adjusted for price spikes.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW SA

Intercept (c) 46.8946 4.7001 9.977 < 2e− 16 *** 66.508 8.262 8.050 1.14e− 15 ***
Tuesday 2.4696 3.4676 0.712 0.476387 -5.175 6.096 -0.849 0.395953
Wednesday 2.7243 3.4677 0.786 0.432143 -1.253 6.096 -0.205 0.837210
Thursday 1.9126 3.4677 0.552 0.581297 12.925 6.096 2.120 0.034051 *
Friday 5.3469 3.4678 1.542 0.123195 -1.710 6.096 -0.280 0.779144
Saturday -3.6419 3.4659 -1.051 0.293433 -18.318 6.093 -3.007 0.002661 **
Sunday -9.0805 3.4658 -2.620 0.008831 ** -20.991 6.092 -3.445 0.000577 ***

February 4.7119 4.4668 1.055 0.291557 -20.690 7.852 -2.635 0.008453 **
March -16.4177 4.3640 -3.762 0.000171 *** -30.679 7.671 -3.999 6.49e− 05 ***
April -12.1218 4.4001 -2.755 0.005903 ** -31.091 7.735 -4.020 5.96e− 05 ***
May -13.2085 4.3639 -3.027 0.002490 ** -26.694 7.671 -3.480 0.000508 ***
June -3.3494 4.5465 -0.737 0.461355 -15.482 7.992 -1.937 0.052817 .
July -7.9612 4.5076 -1.766 0.077453 . -2.384 7.924 -0.301 0.763551
August -7.7437 4.5075 -1.718 0.085899 . -28.954 7.924 -3.654 0.000262 ***
September -6.3475 4.5465 -1.396 0.162771 -33.491 7.992 -4.190 2.86e− 05 ***
October -8.6893 4.5075 -1.928 0.053971 . -37.566 7.924 -4.741 2.21e− 06 ***
November -7.6952 4.5465 -1.693 0.090633 . -35.970 7.992 -4.501 7.00e− 06 ***
December -15.1619 4.5076 -3.364 0.000778 *** -26.869 7.924 -3.391 0.000705 ***

2012 4.1253 4.0189 1.026 0.304749 6.789 7.065 0.961 0.336650
2013 14.9803 4.0217 3.725 0.000199 *** 34.240 7.070 4.843 1.33e− 06 ***
2014 3.8526 4.0217 0.958 0.338150 10.673 7.070 1.510 0.131227
2015 0.2348 4.0217 0.058 0.953449 12.083 7.070 1.709 0.087516 .
2016 20.0209 4.0189 4.982 6.62e− 07 *** 43.163 7.065 6.110 1.11e− 09 ***
2017 56.5887 4.0217 14.071 < 2e− 16 *** 67.926 7.070 9.608 < 2e− 16 ***
2018 43.4131 4.0217 10.795 < 2e− 16 *** 62.431 7.070 8.831 < 2e− 16 ***
2019 45.9243 4.0217 11.419 < 2e− 16 *** 61.485 7.070 8.697 < 2e− 16 ***
2020 28.6670 5.3646 5.344 9.70e− 08 *** 13.241 9.430 1.404 0.160402

Multiple R-squared 0.1383 0.0882
Adjusted R-squared 0.1317 0.0812

VIC TAS

Intercept (c) 53.908 6.673 8.078 9.02e− 16 *** 41.3443 2.8247 14.637 < 2e− 16 ***
Tuesday 1.357 4.923 0.276 0.782818 0.1746 2.0839 0.084 0.9332
Wednesday 2.683 4.923 0.545 0.585863 -0.3671 2.0840 -0.176 0.8602
Thursday 11.764 4.923 2.389 0.016935 * -0.9230 2.0840 -0.443 0.6579
Friday 7.754 4.924 1.575 0.115362 -2.8644 2.0841 -1.374 0.1694
Saturday -8.234 4.921 -1.673 0.094360 . -5.1073 2.0829 -2.452 0.0143 *
Sunday -11.068 4.921 -2.249 0.024563 * -4.6960 2.0829 -2.255 0.0242 *

February -27.834 6.342 -4.389 1.17e− 05 *** 2.8378 2.6845 1.057 0.2905
March -29.312 6.196 -4.731 2.33e− 06 *** 11.2428 2.6227 4.287 1.86e− 05 ***
April -31.058 6.247 -4.971 6.98e− 07 *** 6.8530 2.6444 2.591 0.0096 **
May -28.790 6.196 -4.647 3.50e− 06 *** -15.6316 2.6226 -5.960 2.77e− 09 ***
June -19.045 6.455 -2.950 0.003196 ** -13.4544 2.7324 -4.924 8.88e− 07 ***
July -21.558 6.400 -3.368 0.000764 *** -15.7293 2.7090 -5.806 6.97e− 09 ***
August -25.537 6.400 -3.990 6.74e− 05 *** -25.8588 2.7090 -9.546 < 2e− 16 ***
September -26.472 6.455 -4.101 4.21e− 05 *** -25.1761 2.7324 -9.214 < 2e− 16 ***
October -30.492 6.400 -4.765 1.97e− 06 *** -15.9627 2.7089 -5.893 4.17e− 09 ***
November -28.551 6.455 -4.423 1.00e− 05 *** -13.2618 2.7324 -4.854 1.27e− 06 ***
December -33.241 6.400 -5.194 2.18e− 07 *** -16.5307 2.7090 -6.102 1.16e− 09 ***

2012 15.044 5.706 2.636 0.008416 ** 12.6772 2.4153 5.249 1.63e− 07 ***
2013 23.463 5.710 4.109 4.06e− 05 *** 17.0519 2.4170 7.055 2.08e− 12 ***
2014 12.219 5.710 2.140 0.032433 * 9.7926 2.4170 4.052 5.20e− 05 ***
2015 4.438 5.710 0.777 0.437094 18.3135 2.4170 7.577 4.52e− 14 ***
2016 18.048 5.706 3.163 0.001575 ** 66.6363 2.4153 27.589 < 2e− 16 ***
2017 62.858 5.710 11.008 < 2e− 16 *** 68.9337 2.4170 28.521 < 2e− 16 ***
2018 61.067 5.710 10.695 < 2e− 16 *** 44.4992 2.4170 18.411 < 2e− 16 ***
2019 79.968 5.710 14.005 < 2e− 16 *** 64.8003 2.4170 26.811 < 2e− 16 ***
2020 30.663 7.617 4.026 5.80e− 05 *** -1.9709 3.2240 -0.611 0.5410

Multiple R-squared 0.1267 0.4335
Adjusted R-squared 0.1200 0.4292

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 12: Seasonal and trend adjustment of daily electricity prices adjusted for the outliers effect. The
threshold is set at 3×MAD.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW SA

Intercept (c) 27.44988 1.17291 23.403 < 2e− 16 *** 29.30708 2.02722 14.457 < 2e− 16 ***
Tuesday 0.46801 0.86533 0.541 0.58864 0.53909 1.49561 0.360 0.718533
Wednesday 1.16181 0.86535 1.343 0.17950 -0.83688 1.49565 -0.560 0.575830
Thursday 0.48761 0.86537 0.563 0.57315 -0.35234 1.49568 -0.236 0.813780
Friday 0.02506 0.86538 0.029 0.97690 -1.86234 1.49570 -1.245 0.213170
Saturday -3.54185 0.86491 -4.095 4.32e− 05 *** -9.05673 1.49488 -6.058 1.52e− 09 ***
Sunday -6.07831 0.86489 -7.028 2.52e− 12 *** -10.81304 1.49486 -7.233 5.78e− 13 ***

February 1.22860 1.11470 1.102 0.27046 3.03549 1.92661 1.576 0.115219
March -0.83418 1.08902 -0.766 0.44374 -1.02483 1.88224 -0.544 0.586150
April 3.53910 1.09805 3.223 0.00128 ** 3.68740 1.89785 1.943 0.052106 .
May 2.73904 1.08901 2.515 0.01194 * 6.12862 1.88221 3.256 0.001141 **
June 6.97931 1.13459 6.151 8.57e− 10 *** 14.25939 1.96099 7.272 4.39e− 13 ***
July 5.79924 1.12486 5.156 2.67e− 07 *** 11.42628 1.94417 5.877 4.57e− 09 ***
August 6.05115 1.12486 5.379 7.97e− 08 *** 7.17426 1.94417 3.690 0.000228 ***
September 5.38983 1.13459 4.750 2.11e− 06 *** 3.94292 1.96099 2.011 0.044438 *
October 4.82532 1.12485 4.290 1.84e− 05 *** -1.10023 1.94415 -0.566 0.571486
November 3.59369 1.13458 3.167 0.00155 ** 0.82835 1.96097 0.422 0.672748
December -1.34481 1.12488 -1.196 0.23197 0.04488 1.94420 0.023 0.981585

2012 13.52476 1.00293 13.485 < 2e− 16 *** 13.70430 1.73343 7.906 3.56e− 15 ***
2013 23.66874 1.00361 23.584 < 2e− 16 *** 32.94324 1.73461 18.992 < 2e− 16 ***
2014 13.22754 1.00361 13.180 < 2e− 16 *** 15.43573 1.73461 8.899 < 2e− 16 ***
2015 7.91299 1.00361 7.885 4.21e− 15 *** 16.66478 1.73461 9.607 < 2e− 16 ***
2016 25.46557 1.00292 25.391 < 2e− 16 *** 28.36201 1.73343 16.362 < 2e− 16 ***
2017 56.91209 1.00361 56.707 < 2e− 16 *** 60.52080 1.73461 34.890 < 2e− 16 ***
2018 50.18483 1.00361 50.004 < 2e− 16 *** 56.46360 1.73461 32.551 < 2e− 16 ***
2019 49.67861 1.00361 49.500 < 2e− 16 *** 49.25717 1.73461 28.397 < 2e− 16 ***
2020 19.49527 1.33874 14.562 < 2e− 16 *** 13.47634 2.31384 5.824 6.27e− 09 ***

Multiple R-squared 0.6759 0.4435
Adjusted R-squared 0.6734 0.4392

VIC TAS

Intercept (c) 23.263909 1.457538 15.961 < 2e− 16 *** 35.6563 1.6176 22.043 < 2e− 16 ***
Tuesday 1.294187 1.075319 1.204 0.228852 0.7119 1.1934 0.597 0.550877
Wednesday 0.115687 1.075352 0.108 0.914335 -0.8263 1.1934 -0.692 0.488759
Thursday -0.001834 1.075370 -0.002 0.998640 -1.1672 1.1935 -0.978 0.328147
Friday -0.142540 1.075383 -0.133 0.894558 -2.8070 1.1935 -2.352 0.018734 *
Saturday -6.603647 1.074799 -6.144 8.97e− 10 *** -3.6022 1.1928 -3.020 0.002548 **
Sunday -9.149048 1.074779 -8.512 < 2e− 16 *** -3.2630 1.1928 -2.736 0.006260 **

February 4.299361 1.385202 3.104 0.001926 ** -2.5420 1.5373 -1.653 0.098322 .
March 3.494963 1.353301 2.583 0.009849 ** -5.0036 1.5019 -3.331 0.000873 ***
April 5.918268 1.364523 4.337 1.48e− 05 *** -8.7109 1.5144 -5.752 9.59e− 09 ***
May 7.635450 1.353279 5.642 1.82e− 08 *** -5.7597 1.5019 -3.835 0.000128 ***
June 14.152060 1.409925 10.037 < 2e− 16 *** -0.8454 1.5648 -0.540 0.589032
July 11.731422 1.397831 8.393 < 2e− 16 *** -5.2629 1.5513 -3.392 0.000701 ***
August 8.907235 1.397831 6.372 2.11e− 10 *** -10.4975 1.5513 -6.767 1.54e− 11 ***
September 7.148357 1.409923 5.070 4.19e-07 *** -11.3172 1.5648 -7.233 5.82e− 13 ***
October 4.968516 1.397817 3.554 0.000384 *** -3.1881 1.5513 -2.055 0.039949 *
November 5.649593 1.409910 4.007 6.28e− 05 *** 1.0644 1.5647 0.680 0.496391
December 0.779054 1.397852 0.557 0.577344 -1.6799 1.5514 -1.083 0.278945

2012 14.261363 1.246310 11.443 < 2e− 16 *** 11.8581 1.3832 8.573 < 2e− 16 ***
2013 24.163109 1.247158 19.375 < 2e− 16 *** 15.6919 1.3841 11.337 < 2e− 16 ***
2014 12.231857 1.247158 9.808 < 2e− 16 *** 9.4193 1.3841 6.805 1.19e− 11 ***
2015 6.137143 1.247158 4.921 9.02e− 07 *** 17.3408 1.3841 12.528 < 2e− 16 ***
2016 17.041951 1.246307 13.674 < 2e− 16 *** 19.2404 1.3832 13.910 < 2e− 16 ***
2017 59.124508 1.247158 47.407 < 2e− 16 *** 49.0737 1.3841 35.455 < 2e− 16 ***
2018 55.354707 1.247158 44.385 < 2e− 16 *** 39.3860 1.3841 28.456 < 2e− 16 ***
2019 55.798515 1.247158 44.741 < 2e− 16 *** 38.6620 1.3841 27.933 < 2e− 16 ***
2020 17.740404 1.663615 10.664 < 2e− 16 *** 9.2253 1.8463 4.997 6.13e− 07 ***

Multiple R-squared 0.6364 0.4189
Adjusted R-squared 0.6337 0.4144

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 13: Seasonal and trend adjustment of daily gas prices.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW SA

Intercept (c) 2.682386 0.137194 19.552 < 2e− 16 *** 3.314618 0.122276 27.108 < 2e− 16 ***
Tuesday 0.066038 0.101217 0.652 0.514163 0.090871 0.090211 1.007 0.313849
Wednesday 0.066213 0.101220 0.654 0.513057 0.162038 0.090213 1.796 0.072557 .
Thursday 0.105067 0.101222 1.038 0.299348 0.097351 0.090215 1.079 0.280617
Friday 0.001449 0.101223 0.014 0.988576 0.063885 0.090216 0.708 0.478913
Saturday -0.338332 0.101168 -3.344 0.000834 *** -0.140990 0.090167 -1.564 0.117991
Sunday -0.375369 0.101166 -3.710 0.000210 *** -0.198720 0.090165 -2.204 0.027594 *

February 0.311066 0.130385 2.386 0.017099 * 0.302527 0.116207 2.603 0.009272 **
March 0.118234 0.127383 0.928 0.353380 0.031653 0.113531 0.279 0.780411
April -0.120826 0.128439 -0.941 0.346910 -0.118950 0.114472 -1.039 0.298823
May 0.224483 0.127380 1.762 0.078108 . 0.158881 0.113529 1.399 0.161761
June 1.433802 0.132712 10.804 < 2e− 16 *** 0.991946 0.118281 8.386 < 2e− 16 ***
July 1.260491 0.131574 9.580 < 2e− 16 *** 1.728652 0.117267 14.741 < 2e− 16 ***
August 0.741515 0.131574 5.636 1.88e− 08 *** 0.617861 0.117267 5.269 1.46e− 07 ***
September 0.180591 0.132712 1.361 0.173676 -0.006927 0.118281 -0.059 0.953304
October -0.217470 0.131573 -1.653 0.098454 . -0.287699 0.117265 -2.453 0.014201 *
November -0.290538 0.132711 -2.189 0.028646 * -0.115781 0.118280 -0.979 0.327712
December -0.333300 0.131576 -2.533 0.011349 * 0.427164 0.117268 3.643 0.000274 ***

2012 1.883377 0.117312 16.054 < 2e− 16 *** 0.878632 0.104555 8.404 < 2e− 16 ***
2013 1.579485 0.117392 13.455 < 2e− 16 *** 1.090517 0.104626 10.423 < 2e− 16 ***
2014 0.559875 0.117392 4.769 1.93e− 06 *** 0.130494 0.104626 1.247 0.212395
2015 1.211213 0.117392 10.318 < 2e− 16 *** 0.949109 0.104626 9.071 < 2e− 16 ***
2016 3.228080 0.117311 27.517 < 2e− 16 *** 3.700175 0.104555 35.390 < 2e− 16 ***
2017 6.168645 0.117392 52.548 < 2e− 16 *** 4.796865 0.104626 45.848 < 2e− 16 ***
2018 6.573598 0.117392 55.997 < 2e− 16 *** 5.451738 0.104626 52.107 < 2e− 16 ***
2019 6.119757 0.117392 52.131 < 2e− 16 *** 5.814598 0.104626 55.575 < 2e− 16 ***
2020 2.453538 0.156592 15.668 < 2e− 16 *** 2.406839 0.139564 17.245 < 2e− 16 ***

Multiple R-squared 0.7093 0.7209
Adjusted R-squared 0.7071 0.7188

VIC

Intercept (c) 2.602386 0.125845 20.679 < 2e− 16 ***
Tuesday 0.050901 0.092844 0.548 0.583562
Wednesday 0.081623 0.092847 0.879 0.379405
Thursday 0.111339 0.092849 1.199 0.230557
Friday -0.092926 0.092850 -1.001 0.316982
Saturday -0.147995 0.092799 -1.595 0.110854
Sunday -0.161113 0.092798 -1.736 0.082623 .

February 0.312189 0.119600 2.610 0.009086 **
March 0.016374 0.116845 0.140 0.888563
April 0.003677 0.117814 0.031 0.975103
May 0.446090 0.116844 3.818 0.000137 ***
June 1.166584 0.121734 9.583 < 2e− 16 ***
July 1.439296 0.120690 11.926 < 2e− 16 ***
August 0.533250 0.120690 4.418 1.03e− 05 ***
September 0.050989 0.121734 0.419 0.675350
October -0.050287 0.120689 -0.417 0.676950
November -0.189792 0.121733 -1.559 0.119070
December -0.049226 0.120692 -0.408 0.683398

2012 1.067093 0.107608 9.917 < 2e− 16 ***
2013 1.154799 0.107681 10.724 < 2e− 16 ***
2014 0.579988 0.107681 5.386 7.68e− 08 ***
2015 0.958527 0.107681 8.902 < 2e− 16 ***
2016 3.574431 0.107607 33.217 < 2e− 16 ***
2017 5.677707 0.107681 52.727 < 2e− 16 ***
2018 6.066366 0.107681 56.336 < 2e− 16 ***
2019 5.869392 0.107681 54.507 < 2e− 16 ***
2020 2.505682 0.143638 17.444 < 2e− 16 ***

Multiple R-squared 0.7291
Adjusted R-squared 0.7270

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 14: Seasonal and trend adjustment of daily electricity consumption.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW SA

Intercept (c) 220035.5 970.3 226.768 < 2e− 16 *** 38962.0 358.6 108.657 < 2e− 16 ***
Tuesday 2986.5 715.9 4.172 3.10e− 05 *** 698.1 264.5 2.639 0.008359 **
Wednesday 2061.0 715.9 2.879 0.004015 ** 848.7 264.6 3.208 0.001349 **
Thursday 2692.8 715.9 3.761 0.000172 *** 973.5 264.6 3.680 0.000237 ***
Friday 1476.8 715.9 2.063 0.039196 * 307.7 264.6 1.163 0.244952
Saturday -12850.0 715.5 -17.959 < 2e− 16 *** -3172.5 264.4 -11.998 < 2e− 16 ***
Sunday -17955.6 715.5 -25.095 < 2e− 16 *** -4106.7 264.4 -15.531 < 2e− 16 ***

February -727.1 922.2 -0.789 0.430448 101.7 340.8 0.298 0.765353
March -10456.3 900.9 -11.606 < 2e− 16 *** -2674.2 332.9 -8.032 1.31e− 15 ***
April -20063.5 908.4 -22.087 < 2e− 16 *** -4419.3 335.7 -13.165 < 2e− 16 ***
May -6742.5 900.9 -7.484 9.11e− 14 *** -2423.9 332.9 -7.280 4.11e− 13 ***
June 8419.6 938.6 8.970 < 2e− 16 *** 317.0 346.9 0.914 0.360838
July 10210.9 930.6 10.973 < 2e− 16 *** 167.1 343.9 0.486 0.626985
August 1328.6 930.6 1.428 0.153456 -1078.2 343.9 -3.135 0.001731 **
September -16116.4 938.6 -17.170 < 2e− 16 *** -4756.7 346.9 -13.714 < 2e− 16 ***
October -22610.6 930.6 -24.298 < 2e− 16 *** -6244. 1 343.9 -18.157 < 2e− 16 ***
November -17654.1 938.6 -18.809 < 2e− 16 *** -4870.6 346.9 -14.042 < 2e− 16 ***
December -14804.0 930.6 -15.908 < 2e− 16 *** -3373.2 343.9 -9.809 < 2e− 16 ***

2012 -11411.4 829.7 -13.754 < 2e− 16 *** -420.1 306.6 -1.370 0.170737
2013 -17963.5 830.3 -21.636 < 2e− 16 *** -1644.5 306.8 -5.360 8.89e− 08 ***
2014 -19491.4 830.3 -23.476 < 2e− 16 *** -2203.3 306.8 -7.181 8.45e− 13 ***
2015 -18006.2 830.3 -21.688 < 2e− 16 *** -2318.7 306.8 -7.557 5.26e− 14 ***
2016 -18037.0 829.7 -21.740 < 2e− 16 *** -3660.7 306.6 -11.939 < 2e− 16 ***
2017 -16171.4 830.3 -19.478 < 2e− 16 *** -4141.2 306.8 -13.497 < 2e− 16 ***
2018 -17515.0 830.3 -21.096 < 2e− 16 *** -4757.9 306.8 -15.507 < 2e− 16 ***
2019 -18372.4 830.3 -22.129 < 2e− 16 *** -4562.0 306.8 -14.869 < 2e− 16 ***
2020 -25563.5 1107.5 -23.082 < 2e− 16 *** -6932.5 409.3 -16.938 < 2e− 16 ***

Multiple R-squared 0.6296 0.6268
Adjusted R-squared 0.4093 0.4048

VIC TAS

Intercept (c) 140518.2 777.1 180.819 < 2e− 16 *** 26306.24 123.60 212.839 < 2e− 16 ***
Tuesday 2524.0 573.3 4.402 1.10e− 05 *** -57.27 91.19 -0.628 0.529989
Wednesday 2927.0 573.3 5.105 3.49e− 07 *** -238.45 91.19 -2.615 0.008963 **
Thursday 3541.2 573.4 6.176 7.34e− 10 *** -161.52 91.19 -1.771 0.076600 .
Friday 1667.9 573.4 2.909 0.00365 ** -302.66 91.19 -3.319 0.000913 ***
Saturday -11926.6 573.1 -20.812 < 2e− 16 *** -1203.57 91.14 -13.206 < 2e− 16 ***
Sunday -15954.2 573.0 -27.841 < 2e− 16 *** -1231.13 91.14 -13.508 < 2e− 16 ***

February 2099.8 738.6 2.843 0.00449 ** -87.95 117.46 -0.749 0.454047
March -2903.0 721.5 -4.023 5.86e− 05 *** -499.80 114.76 -4.355 1.37e− 05 ***
April -7065.6 727.5 -9.712 < 2e− 16 *** 749.23 115.71 6.475 1.08e− 10 ***
May 1847.6 721.5 2.561 0.01049 * 2683.41 114.76 23.384 < 2e− 16 ***
June 9709.8 751.7 12.917 < 2e− 16 *** 4559.91 119.56 38.139 < 2e− 16 ***
July 9485.4 745.3 12.727 < 2e− 16 *** 4709.67 118.53 39.733 < 2e− 16 ***
August 6060.3 745.3 8.131 5.87e− 16 *** 3990.67 118.53 33.667 < 2e− 16 ***
September -3059.6 751.7 -4.070 4.81e− 05 *** 2151.91 119.56 17.999 < 2e− 16 ***
October -7923.3 745.3 -10.631 < 2e− 16 *** 720.72 118.53 6.080 1.33e− 09 ***
November -7616.8 751.7 -10.132 < 2e− 16 *** 605.78 119.56 5.067 4.26e− 07 ***
December -8427.8 745.3 -11.308 < 2e− 16 *** -469.86 118.54 -3.964 7.53e− 05 ***

2012 -1603.8 664.5 -2.414 0.01585 * -1071.92 105.69 -10.143 < 2e− 16 ***
2013 -5132.1 664.9 -7.718 1.54e− 14 *** -350.52 105.76 -3.314 0.000928 ***
2014 -9629.9 664.9 -14.482 < 2e− 16 *** -818.70 105.76 -7.741 1.29e− 14 ***
2015 -12747.8 664.9 -19.171 < 2e− 16 *** -136.16 105.76 -1.287 0.198026
2016 -15405.7 664.5 -23.184 < 2e− 16 *** -1880.05 105.68 -17.789 < 2e− 16 ***
2017 -18410.8 664.9 -27.688 < 2e− 16 *** -421.94 105.76 -3.990 6.75e− 05 ***
2018 -18597.1 664.9 -27.968 < 2e− 16 *** 38.72 105.76 0.366 0.714318
2019 -19475.1 664.9 -29.288 < 2e− 16 *** -1096.73 105.76 -10.370 < 2e− 16 ***
2020 -24182.4 887.0 -27.263 < 2e− 16 *** -849.28 141.07 -6.020 1.93e− 09 ***

Multiple R-squared 0.6519 0.6685
Adjusted R-squared 0.6493 0.6659

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 15: Seasonal and trend adjustment of daily wind generation.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW SA

Intercept (c) 518.945 297.807 1.743 0.08150 . 8910.947 596.586 14.937 < 2e− 16 ***
Tuesday 103.379 219.711 0.471 0.63801 3.067 440.139 0.007 0.994441
Wednesday -5.124 219.718 -0.023 0.98139 223.418 440.153 0.508 0.611773
Thursday -61.861 219.722 -0.282 0.77831 26.107 440.160 0.059 0.952707
Friday 213.505 219.724 0.972 0.33127 -51.750 440.166 -0.118 0.906417
Saturday 189.357 219.605 0.862 0.38860 -297.917 439.926 -0.677 0.498326
Sunday -53.193 219.601 -0.242 0.80862 -141.553 439.918 -0.322 0.747646

February 414.918 283.027 1.466 0.14274 -961.439 566.978 -1.696 0.090029 .
March 138.663 276.509 0.501 0.61607 -1043.075 553.920 -1.883 0.059775 .
April -133.539 278.802 -0.479 0.63199 -1897.138 558.513 -3.397 0.000690 ***
May 1081.833 276.504 3.913 9.31e− 05 *** 355.412 553.911 0.642 0.521149
June 758.929 288.078 2.634 0.00847 ** -446.529 577.097 -0.774 0.439132
July 2415.231 285.607 8.456 < 2e− 16 *** 3118.416 572.147 5.450 5.38e− 08 ***
August 2405.825 285.607 8.424 < 2e− 16 *** 2211.721 572.147 3.866 0.000113 ***
September 1992.295 288.078 6.916 5.53e− 12 *** 1523.121 577.096 2.639 0.008346 **
October 1439.187 285.605 5.039 4.92e− 07 *** 805.808 572.141 1.408 0.159102
November 1627.597 288.075 5.650 1.74e− 08 *** -197.576 577.091 -0.342 0.732096
December 1522.535 285.612 5.331 1.04e− 07 *** 163.039 572.155 0.285 0.775695

2012 160.412 254.648 0.630 0.52878 820.376 510.128 1.608 0.107889
2013 474.258 254.822 1.861 0.06281 . 1140.676 510.475 2.235 0.025512 *
2014 864.492 254.822 3.393 0.00070 *** 1974.621 510.475 3.868 0.000112 ***
2015 2912.945 254.822 11.431 < 2e− 16 *** 2355.695 510.475 4.615 4.08e− 06 ***
2016 3826.350 254.648 15.026 < 2e− 16 *** 3270.596 510.126 6.411 1.64e− 10 ***
2017 3501.339 254.822 13.740 < 2e− 16 *** 4180.024 510.475 8.189 3.70e− 16 ***
2018 6688.913 254.822 26.249 < 2e− 16 *** 6396.801 510.475 12.531 < 2e− 16 ***
2019 10192.236 254.822 39.998 < 2e− 16 *** 6379.013 510.475 12.496 < 2e− 16 ***
2020 11170.534 339.913 32.863 < 2e− 16 *** 6652.503 680.935 9.770 < 2e− 16 ***

Multiple R-squared 0.5228 0.1248
Adjusted R-squared 0.5191 0.1181

VIC TAS

Intercept (c) 2013.71 494.57 4.072 4.77e− 05 *** 1022.953 138.393 7.392 1.81e− 13 ***
Tuesday -88.23 364.88 -0.242 0.8089 64.277 102.102 0.630 0.529039
Wednesday -161.97 364.89 -0.444 0.6571 6.491 102.105 0.064 0.949317
Thursday 149.58 364.89 0.410 0.6819 90.801 102.106 0.889 0.373917
Friday 11.53 364.90 0.032 0.9748 114.602 102.108 1.122 0.261784
Saturday 31.67 364.70 0.087 0.9308 198.086 102.052 1.941 0.052337 .
Sunday -102.66 364.69 -0.281 0.7783 102.278 102.050 1.002 0.316302

February -135.84 470.02 -0.289 0.7726 14.029 131.525 0.107 0.915060
March 215.16 459.20 0.469 0.6394 -233.330 128.496 -1.816 0.069480 .
April -674.56 463.01 -1.457 0.1452 -327.817 129.561 -2.530 0.011444 *
May 1920.45 459.19 4.182 2.96e− 05 *** 140.178 128.494 1.091 0.275381
June 721.59 478.41 1.508 0.1316 31.343 133.872 0.234 0.814903
July 4163.88 474.31 8.779 < 2e− 16 *** 589.327 132.724 4.440 9.27e− 06 ***
August 3071.29 474.31 6.475 1.08e− 10 *** 380.244 132.724 2.865 0.004197 **
September 2295.18 478.41 4.797 1.68e− 06 *** 435.289 133.872 3.252 0.001159 **
October 1961.82 474.31 4.136 3.62e− 05 *** 436.832 132.723 3.291 0.001007 **
November 1207.66 478.41 2.524 0.0116 * 444.150 133.871 3.318 0.000917 ***
December 1093.98 474.32 2.306 0.0211 * 403.187 132.726 3.038 0.002402 **

2012 866.20 422.90 2.048 0.0406 * -21.521 118.337 -0.182 0.855701
2013 3760.67 423.18 8.887 < 2e− 16 *** 981.055 118.418 8.285 < 2e− 16 ***
2014 3628.63 423.18 8.575 < 2e− 16 *** 1296.474 118.418 10.948 < 2e− 16 ***
2015 5279.46 423.18 12.476 < 2e− 16 *** 1422.898 118.418 12.016 < 2e− 16 ***
2016 6170.19 422.90 14.590 < 2e− 16 *** 1764.059 118.337 14.907 < 2e− 16 ***
2017 6347.32 423.18 14.999 < 2e− 16 *** 1565.316 118.418 13.219 < 2e− 16 ***
2018 8583.49 423.18 20.283 < 2e− 16 *** 1692.083 118.418 14.289 < 2e− 16 ***
2019 10651.35 423.18 25.170 < 2e− 16 *** 2000.780 118.418 16.896 < 2e− 16 ***
2020 12653.26 564.50 22.415 < 2e− 16 *** 2269.684 157.960 14.369 < 2e− 16 ***

Multiple R-squared 0.2952 0.1845
Adjusted R-squared 0.2899 0.1783

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 16: Seasonal and trend adjustment of aggregated hydro generation.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
NSW VIC

Intercept (c) 4701.827 335.049 14.033 < 2e− 16 *** 6622.82 364.86 18.152 < 2e− 16 ***
Tuesday 146.680 247.187 0.593 0.552957 636.08 269.18 2.363 0.0182 *
Wednesday -9.126 247.195 -0.037 0.970554 473.25 269.19 1.758 0.0788 .
Thursday 180.082 247.199 0.728 0.466364 493.23 269.19 1.832 0.0670 .
Friday -90.137 247.202 -0.365 0.715411 -169.65 269.19 -0.630 0.5286
Saturday -2495.496 247.068 -10.100 < 2e− 16 *** -4701.08 269.05 -17.473 < 2e− 16 ***
Sunday -2830.194 247.063 -11.455 < 2e− 16 *** -5156.63 269.04 -19.167 < 2e− 16 ***

February -116.574 318.421 -0.366 0.714313 684.98 346.75 1.975 0.0483 *
March -899.776 311.088 -2.892 0.003848 ** -398.27 338.76 -1.176 0.2398
April -1782.617 313.667 -5.683 1.43e− 08 *** -784.58 341.57 -2.297 0.0217 *
May -1078.081 311.083 -3.466 0.000536 *** 2317.75 338.76 6.842 9.22e− 12 ***
June 2040.351 324.104 6.295 3.46e− 10 *** 4028.52 352.94 11.414 < 2e− 16 ***
July 992.672 321.324 3.089 0.002022 ** 3383.18 349.91 9.669 < 2e− 16 ***
August 596.084 321.324 1.855 0.063670 . 2687.87 349.91 7.682 2.04e− 14 ***
September 320.571 324.104 0.989 0.322685 1633.72 352.94 4.629 3.81e− 06 ***
October 1587.021 321.321 4.939 8.23e− 07 *** 476.79 349.91 1.363 0.1731
November 1325.619 324.101 4.090 4.41e− 05 *** -659.51 352.93 -1.869 0.0618 .
December 1462.310 321.329 4.551 5.53e− 06 *** -849.12 349.91 -2.427 0.0153 *

2012 4771.066 286.494 16.653 < 2e− 16 *** 420.49 311.98 1.348 0.1778
2013 3725.389 286.688 12.995 < 2e− 16 *** 2484.37 312.19 7.958 2.36e− 15 ***
2014 -497.410 286.688 -1.735 0.082828 . -1292.24 312.19 -4.139 3.57e− 05 ***
2015 782.154 286.688 2.728 0.006400 ** 658.96 312.19 2.111 0.0349 *
2016 5616.309 286.493 19.604 < 2e− 16 *** 4400.54 311.98 14.105 < 2e− 16 ***
2017 1070.645 286.688 3.735 0.000191 *** 86.49 312.19 0.277 0.7818
2018 3582.641 286.688 12.497 < 2e− 16 *** 1220.15 312.19 3.908 9.47e− 05 ***
2019 852.048 286.688 2.972 0.002979 ** -609.17 312.19 -1.951 0.0511 .
2020 2388.153 382.421 6.245 4.77e− 10 *** 541.02 416.44 1.299 0.1940

Multiple R-squared 0.3206 0.3806
Adjusted R-squared 0.3155 0.3759

TAS

Intercept (c) 18021.4 469.3 38.403 < 2e− 16 ***
Tuesday 144.6 346.2 0.418 0.676194
Wednesday 115.0 346.2 0.332 0.739686
Thursday 471.5 346.2 1.362 0.173299
Friday 257.4 346.2 0.743 0.457260
Saturday -2428.8 346.0 -7.019 2.69e− 12 ***
Sunday -3206.4 346.0 -9.266 < 2e− 16 ***

February -462.2 446.0 -1.036 0.300115
March -1326.0 435.7 -3.043 0.002358 **
April 3141.7 439.3 7.151 1.05e− 12 ***
May 7786.2 435.7 17.871 < 2e− 16 ***
June 12189.9 453.9 26.854 < 2e− 16 ***
July 14393.7 450.0 31.983 < 2e− 16 ***
August 14450.4 450.0 32.109 < 2e− 16 ***
September 10300.8 453.9 22.692 < 2e− 16 ***
October 5668.7 450.0 12.596 < 2e− 16 ***
November 2947.5 453.9 6.493 9.62e− 11 ***
December 1045.8 450.0 2.324 0.020201 *

2012 2705.6 401.3 6.743 1.82e− 11 ***
2013 8657.6 401.5 21.561 < 2e− 16 ***
2014 3564.6 401.5 8.878 < 2e− 16 ***
2015 -235.6 401.5 -0.587 0.557412
2016 1213.8 401.3 3.025 0.002505 **
2017 -1484.2 401.5 -3.696 0.000222 ***
2018 4782.3 401.5 11.910 < 2e− 16 ***
2019 540.7 401.5 1.347 0.178180
2020 6244.2 535.6 11.658 < 2e− 16 ***

Multiple R-squared 0.5825
Adjusted R-squared 0.5793

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 17: Seasonal and trend adjustment of daily cross-boarder interconnectors flows.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
Basslink Heywood

Intercept (c) -3929.4 430.7 -9.124 < 2e− 16 *** 3698.181 355.443 10.404 < 2e− 16 ***
Tuesday 283.0 317.7 0.891 0.373190 -75.339 262.233 -0.287 0.773903
Wednesday 370.5 317.7 1.166 0.243697 -248.992 262.241 -0.949 0.342445
Thursday 688.5 317.7 2.167 0.030304 * -89.794 262.246 -0.342 0.732068
Friday 583.6 317.7 1.837 0.066330 . -209.086 262.249 -0.797 0.425343
Saturday -1170.0 317.6 -3.684 0.000233 *** -233.379 262.106 -0.890 0.373314
Sunday -1987.1 317.6 -6.258 4.40e− 10 *** -277.434 262.102 -1.058 0.289903

February 297.4 409.3 0.727 0.467474 -8.867 337.803 -0.026 0.979060
March -553.5 399.9 -1.384 0.166353 -48.543 330.024 -0.147 0.883069
April 2245.8 403.2 5.570 2.74e− 08 *** 720.962 332.760 2.167 0.030333 *
May 3781.3 399.8 9.457 < 2e− 16 *** 123.700 330.018 0.375 0.707811
June 5457.4 416.6 13.100 < 2e− 16 *** 823.502 343.832 2.395 0.016671 *
July 7171.1 413.0 17.363 < 2e− 16 *** -1092.988 340.883 -3.206 0.001357 **
August 7371.6 413.0 17.848 < 2e− 16 *** -239.662 340.883 -0.703 0.482065
September 5416.3 416.6 13.002 < 2e− 16 *** -1142.807 343.832 -3.324 0.000898 ***
October 2341.0 413.0 5.668 1.56e− 08 *** -2112.728 340.879 -6.198 6.41e− 10 ***
November 597.9 416.6 1.435 0.151286 -1801.794 343.828 -5.240 1.70e− 07 ***
December 183.4 413.0 0.444 0.657097 -489.178 340.888 -1.435 0.151375

2012 3731.9 368.2 10.135 < 2e− 16 *** -786.363 303.932 -2.587 0.009714 **
2013 8246.4 368.5 22.379 < 2e− 16 *** 2004.670 304.139 6.591 5.03e− 11 ***
2014 3601.9 368.5 9.775 < 2e− 16 *** 1145.025 304.139 3.765 0.000169 ***
2015 -2943.6 368.5 -7.988 1.85e− 15 *** 2049.797 304.139 6.740 1.86e− 11 ***
2016 2661.7 368.2 7.228 6.01e− 13 *** 3001.316 303.931 9.875 < 2e− 16 ***
2017 -275.6 368.5 -0.748 0.454642 -1580.376 304.139 -5.196 2.15e− 07 ***
2018 3582.2 368.5 9.721 < 2e− 16 *** -2209.189 304.139 -7.264 4.64e− 13 ***
2019 558.7 368.5 1.516 0.129568 -5353.895 304.139 -17.603 < 2e− 16 ***
2020 4032.3 491.5 8.203 3.28e− 16 *** -3701.436 405.698 -9.124 < 2e− 16 ***

Multiple R-squared 0.4118 0.2932
Adjusted R-squared 0.4073 0.2878

VNI Murrylink

Intercept (c) 9545.7 653.7 14.602 < 2e− 16 *** -548.215 95.328 -5.751 9.66e− 09 ***
Tuesday -513.1 482.3 -1.064 0.287430 -13.329 70.330 -0.190 0.849699
Wednesday -778.1 482.3 -1.613 0.106762 23.507 70.332 0.334 0.738228
Thursday -779.6 482.3 -1.616 0.106079 8.775 70.333 0.125 0.900718
Friday -439.5 482.3 -0.911 0.362236 36.838 70.334 0.524 0.600479
Saturday 1505.9 482.1 3.124 0.001799 ** -136.081 70.296 -1.936 0.052971 .
Sunday 2691.2 482.0 5.583 2.55e− 08 *** -175.316 70.294 -2.494 0.012677 *

February -1058.2 621.3 -1.703 0.088604 . -20.276 90.597 -0.224 0.822923
March -1330.4 607.0 -2.192 0.028449 * 98.930 88.511 1.118 0.263767
April -402.4 612.0 -0.657 0.510907 181.915 89.245 2.038 0.041588 *
May -4256.8 607.0 -7.013 2.79e− 12 *** 84.900 88.509 0.959 0.337514
June -6002.1 632.4 -9.492 < 2e− 16 *** 449.118 92.214 4.870 1.16e− 06 ***
July -4457.4 626.9 -7.110 1.41e− 12 *** 616.111 91.423 6.739 1.86e− 11 ***
August -2805.5 626.9 -4.475 7.89e− 06 *** 453.830 91.423 4.964 7.24e− 07 ***
September -1743.7 632.4 -2.757 0.005857 ** 350.948 92.214 3.806 0.000144 ***
October 258.9 626.9 0.413 0.679630 160.891 91.422 1.760 0.078520 .
November -2220.0 632.3 -3.511 0.000453 *** 73.989 92.213 0.802 0.422397
December -799.0 626.9 -1.274 0.202614 215.268 91.425 2.355 0.018599 *

2012 -391.1 559.0 -0.700 0.484212 -53.895 81.513 -0.661 0.508542
2013 2186.1 559.4 3.908 9.48e− 05 *** 689.708 81.569 8.456 < 2e− 16 ***
2014 4851.4 559.4 8.673 < 2e− 16 *** 8.423 81.569 0.103 0.917757
2015 3513.4 559.4 6.281 3.79e− 10 *** 457.485 81.569 5.609 2.20e− 08 ***
2016 7753.5 559.0 13.871 < 2e− 16 *** 936.150 81.513 11.485 < 2e− 16 ***
2017 -3339.8 559.4 -5.971 2.60e− 09 *** 96.588 81.569 1.184 0.236445
2018 -5194.5 559.4 -9.287 < 2e− 16 *** 405.154 81.569 4.967 7.13e− 07 ***
2019 -7465.1 559.4 -13.346 < 2e− 16 *** 284.582 81.569 3.489 0.000491 ***
2020 -1999.3 746.1 -2.679 0.007409 ** 1326.159 108.806 12.188 < 2e− 16 ***

Multiple R-squared 0.3126 0.1249
Adjusted R-squared 0.3073 0.1182

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1
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Table 18: Seasonal and trend adjustment of daily cross-boarder interconnectors flows.

Estimate Std. Error t value Pr(> |t|) Estimate Std. Error t value Pr(> |t|)
QNI Terranora

Intercept (c) -7521.34 504.02 -14.923 < 2e− 16 *** -1516.928 52.251 -29.032 < 2e− 16 ***
Tuesday -286.86 371.84 -0.771 0.44049 -26.593 38.549 -0.690 0.490332
Wednesday -62.32 371.86 -0.168 0.86692 -15.449 38.550 -0.401 0.688634
Thursday -244.22 371.86 -0.657 0.51139 -38.010 38.550 -0.986 0.324211
Friday -334.79 371.87 -0.900 0.36803 -38.445 38.551 -0.997 0.318708
Saturday -907.17 371.66 -2.441 0.01470 * -131.548 38.530 -3.414 0.000647 ***
Sunday -1028.23 371.66 -2.767 0.00569 ** -97.883 38.529 -2.540 0.011114 *

February -1088.72 479.00 -2.273 0.02309 * -8.238 49.657 -0.166 0.868252
March -1531.16 467.97 -3.272 0.00108 ** -184.474 48.514 -3.803 0.000146 ***
April -4783.79 471.85 -10.138 < 2e− 16 *** -535.918 48.916 -10.956 < 2e− 16 ***
May -3206.04 467.96 -6.851 8.66e− 12 *** -461.333 48.513 -9.509 < 2e− 16 ***
June -5588.93 487.55 -11.463 < 2e− 16 *** -451.847 50.544 -8.940 < 2e− 16 ***
July -5396.01 483.37 -11.163 < 2e− 16 *** -293.507 50.110 -5.857 5.15e− 09 ***
August -5804.77 483.37 -12.009 < 2e− 16 *** -404.124 50.110 -8.065 1.01e− 15 ***
September -4270.08 487.55 -8.758 < 2e− 16 *** -289.311 50.544 -5.724 1.13e− 08 ***
October -2843.94 483.36 -5.884 4.40e− 09 *** -292.928 50.110 -5.846 5.52e− 09 ***
November -2583.59 487.55 -5.299 1.24e− 07 *** -275.456 50.543 -5.450 5.40e− 08 ***
December -638.40 483.38 -1.321 0.18669 -65.280 50.111 -1.303 0.192761

2012 -2018.13 430.97 -4.683 2.94e− 06 *** -177.215 44.678 -3.966 7.44e− 05 ***
2013 8541.96 431.27 19.807 < 2e− 16 *** -177.215 44.678 -3.966 7.44e− 05 ***
2014 -507.35 431.27 -1.176 0.23951 55.202 44.709 1.235 0.217026
2015 1149.83 431.27 2.666 0.00771 ** 402.844 44.709 9.010 < 2e− 16 ***
2016 5684.77 430.97 13.191 < 2e− 16 *** 819.372 44.678 18.339 < 2e− 16 ***
2017 -859.47 431.27 -1.993 0.04635 * 139.706 44.709 3.125 0.001794 **
2018 -223.89 431.27 -0.519 0.60369 341.283 44.709 7.633 2.95e− 14 ***
2019 -202.69 431.27 -0.470 0.63839 500.302 44.709 11.190 < 2e− 16 ***
2020 793.98 575.28 1.380 0.16762 925.931 59.638 15.526 < 2e− 16 ***

Multiple R-squared 0.2991 0.2954
Adjusted R-squared 0.2913 0.2901

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p < 1

A.4 Summary statistics and time-series tests of the data series

The summary statistics and time-series tests of the deseasonalized and detrended electricity

prices are given in Table 19. In Table 20, we apply the augmented Dickey-Fuller (ADF) unit

root test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to determine if the time series is

stationary (Dickey and Fuller, 1979; Kwiatkowski et al., 1992). For the former test, we reject the

null hypothesis of the presence of unit root at 1% for all the variables. On the other hand, we

fail to reject the null hypothesis of stationarity for all the variables at 5% using the KPSS test,

therefore confirming the stationarity of the data series. This eliminates the possibility of spurious

regression results. In either case, we assume a constant (no visible trend) and choose optimal lag

lengths based on the Bayesian information criterion (BIC). The BIC is more stringent for optimal

lag selection than the Akaike information criterion (AIC).

The Jarque-Bera test for normality in Table 19 suggests that the distribution of prices is non-

normal with positive skewness and pronounced positive kurtosis. It is apparent that price spikes

in the data series influences the non-normality of electricity prices. This is evident by the decrease
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Table 19: Summary statistics of electricity prices and the corresponding JB tests for NSW, SA, VIC, and
TAS.

Mean Standard Dev Skewness Kurtosis Median Minimum Maximum 1st Quartile 3rd Quartile JB Test

NSW

30-min prices 60.29 158.96 64.51 4856.46 50.42 -147.03 14700.00 34.45 68.76 1.62×1011

Daily 60.29 58.31 15.70 331.00 51.60 18.54 1539.50 35.77 74.30 15858700
Prices adjusted for outliers 55.86 23.73 0.75 -0.09 51.58 18.54 136.30 35.77 72.02 326.7
Deseasonalized actual prices 60.29 54.12 18.79 424.60 55.73 0.14 1518.88 47.09 66.23 26066236
Deseasonalized outliers-adjusted prices 55.86 13.51 0.89 2.39 54.63 17.40 125.21 47.86 62.33 1276.70

SA

30-min prices 69.85 242.478 40.25 2006.12 50.86 -996.70 14700.00 33.94 79.81 2.7726×1010

Daily 69.85 99.64 17.40 457.21 54.36 -107.16 3359.82 35.30 84.79 30162390
Prices adjusted for outliers 59.67 31.29 0.71 0.190 53.91 -45.74 162.15 35.39 78.94 293.04
Deseasonalized actual prices 69.85 95.14 18.70 509.80 62.46 -103.27 3288.75 45.80 78.91 37484939
Deseasonalized outliers-adjusted prices 59.67 23.34 0.51 2.55 57.85 -54.92 163.24 46.19 70.39 1087.2

VIC

30-min prices 60.24 191.32 58.39 3880.15 46.61 -554.62 14700.00 30.54 72.11 1.0365×1011

Daily 60.24 82.23 25.67 911.68 47.96 -6.354 3377.971 31.65 76.39 119616255
Prices adjusted for outliers 54.02 27.84 0.86 -0.11 47.72 -6.35 142.270 31.65 71.80 421.38
Deseasonalized actual prices 60.24 76.85 29.06 1082.25 57.79 -38.19 3292.57 45.44 68.41 168512140
Deseasonalized outliers-adjusted prices 54.02 16.78 0.33 1.94 53.40 -22.16 144.76 44.98 62.48 605.55

TAS

30-min prices 61.79 73.22 20.03 765.61 44.97 -956.35 4928.30 32.53 80.03 4042758292
Daily 61.79 43.22 2.24 7.69 44.97 -94.67 461.64 34.78 82.02 11378
Prices adjusted for outliers 51.32 24.44 0.87 -0.10 43.80 -16.42 122.69 34.81 66.61 436.72
Deseasonalized actual prices 61.79 32.53 1.98 12.05 60.42 -53.80 462.77 44.26 73.58 23086
Deseasonalized outliers-adjusted prices 51.32 18.63 0.37 1.18 50.27 -17.80 132.82 41.86 132.82 280.8

JB test stands for the Jarque-Bera test of normality. Its corresponding p value is less than 2.2×10−16 for all states.
Hypothesis for JB test: H0: data are iid Normal, H1: data are Non-Normal. JB is asymptotically distributed as
chi-square with 2 degrees of freedom.

of both values once the outliers are accounted for. However, the distribution of prices remains

non-normal even after removal of outliers. This property suggests that ARCH type models may be

appropriate to capture the volatility dynamics of electricity prices. This is further supported by

clustering of price volatility as shown in Figures 7 and 8. We then apply the Ljung-Box or modified

Q-statistic and the Engle (1982) autoregressive conditional heteroscedasticity-Lagrange multiplier

(ARCH-LM) to check for the presence of autocorrelation and conditional heteroscedasticity (ARCH

effects) in the time series. The estimated statistics for these tests for different lag values are given

in Table 21. For the Ljung-Box test, we reject the null of no autocorrelation at a 1% level of

significance for all lags and states. For the ARCH-LM test, we reject the null of no conditional

heteroscedasticity at the same level of significance for NSW and TAS. The ARCH effect is, however,

less pronounced in SA and VIC, where we find evidence only at lower lags. The significance

of the estimated statistics for the series adjusted for price spikes reflects the impact of extreme

observations and outliers in the actual price series. The results overall support the appropriateness

of GARCH type models to adequately capture the conditional heteroscedasticity of the price series

we examine.
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Table 20: The ADF and KPSS tests of stationarity.

NSW SA VIC TAS Interconnector NSW SA VIC TAS Interconnector

ADF test KPSS test

Actual prices -9.7678 -45.2304 -44.7075 -6.9362 0.0418 0.0476 0.0527 0.0649
(0.0000) (0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000) (0.1000)

Outlier adjusted prices -12.5325 -16.8068 -11.1450 -10.9649 0.0568 0.0791 0.0555 0.0428
(0.0000) (0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000) (0.1000)

wind -31.6960 -37.9793 -28.8997 -32.2349 0.0351 0.0178 0.0228 0.0447
(0.0000) (0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000) (0.1000)

consumption -21.7395 -25.4845 -24.6776 -17.7464 0.0238 0.0401 0.0462 0.0421
(0.0000) (0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000) (0.1000)

gas -10.5226 -8.3073 -6.9306 0.0598 0.0531 0.0623
(0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000)

hydro -10.9311 -13.6130 -10.3220 0.0462 0.0328 0.0597
(0.0000) (0.0000) (0.0000) (0.1000) (0.1000) (0.1000)

Basslink -9.3500 0.0669
(0.0000) (0.1000)

Heywood -11.9008 0.0795
(0.0000) (0.1000)

Murrylink -14.9799 0.0508
(0.0000) (0.1000)

Terranora -15.6676 0.0328
(0.0000) (0.1000)

QNI -16.2289 0.0409
(0.0000) (0.1000)

VNI -14.5019 0.0365
(0.0000) (0.1000)

Hypothesis for ADF test: H0: unit root (non-stationary); H1: no unit root (stationary). Hypothesis for KPSS test:
H0: the data is stationary and H1: the data is non-stationary.

Table 21: Tests for the autocorrelation and the conditional heteroscedasticity (ARCH effects) in prices
series.

Actual Prices

NSW SA VIC TAS

Lag 1 7 30 1 7 30 1 7 30 1 7 30

Ljung-Box statistic 492.46 685.61 804.77 221.16 286.13 327.37 240.49 267.84 293.67 2346.7 12620 33456
p−value (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 )
ARCH-LM Test 148.12 154.85 403.97 4.4592 4.5278 4.7178 9.4109 9.4093 9.4316 1650.9 1843.8 1882.5
p−value (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (0.0347) (0.4788) (1.0000) (0.0022) (0.0938) (0.9999) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16)

Adjusted Prices

Ljung-Box statistic 1280.5 4432.1 9135.4 525.93 1081.4 2449.6 926.27 3094.1 6306.2 1257.9 5116.7 9987.4
p−value (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 )
ARCH-LM Test 1142.7 1276.8 1328.6 394.22 448.51 551.51 907.94 1071.6 1154.9 1077.5 1279.4 1320.7
p−value (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 ) (< 2.2×10−16 )

Hypothesis for Ljung-Box test: H0: the residuals are independently distributed (no autocorrelation); H1: the
residuals exhibits autocorrelation. Hypothesis for ARCH-LM test: H0: the residuals does not exhibits conditional
heteroscedasticity (ARCH effects) and H1: the residuals exhibits conditional heteroscedasticity (ARCH effects).
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Figure 7: The daily average actual spot price adjusted for both the seasonal and trend effects for NSW,
SA, VIC, and TAS from January 1, 2020, to May 31, 2020.
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Figure 8: The daily average actual spot price adjusted for price spikes, seasonal and trend effects for
NSW, SA, VIC, and TAS from January 1, 2020, to May 31, 2020.

Finally, we examined the regressors for collinearity using the correlation coefficient matrix (Fig-

ure 9 and 10) and variance inflation factors (VIF) in Table 22. Multicollinearity creates shared

variance between variables, which inter-alia complicates attribution of causality amongst the re-

gressors (Hair et al., 2019). It can also have substantial impact on the estimation of the regression

coefficients and their statistical significance tests. Fixing the cut-off threshold of VIF at 3, we iden-

tify three variables for all states that might be the source of collinearity, that is, wind generation,

electricity consumption, and wind penetration. In the same line, it is apparent that collinearity

in TAS may also be brought about by having hydro generation and the Basslink interconnector

flow in the same specification. To avoid multicollinearity issues we set up our models to study the

effects of highly correlated variables separately.
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Figure 9: Correlation coefficient matrix of the variables. Prices stands for daily averaged prices adjusted
for the seasonality and trend effects.
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Figure 10: Correlation coefficient matrix of the variables. Prices stands for daily averaged prices adjusted
for price spikes, seasonality and trend effects.

Table 22: VIF collinearity diagnostic measure.

NSW SA VIC TAS NSW SA VIC TAS

Actual Prices Adjusted Prices

wind 379.5179 67.6639 229.6587 297.7076 379.5179 67.6639 229.6587 297.7076
wind pen 387.9440 77.8989 243.1950 321.5999 387.9440 77.8989 243.1950 321.5999
consumption 4.3269 4.1418 4.6484 4.1458 4.3269 4.1418 4.6484 4.1458
gas 1.0504 1.0728 1.0670 1.0504 1.0728 1.0670
hydro 1.1704 1.5242 10.6125 1.1704 1.5242 10.6125
QNI 2.7879 2.7879
VNI 1.0966 1.5193 1.0957 1.5193
Terranora 2.7589 2.7589
Heywood 2.1895 1.9058 2.1868 1.9058
Murrylink 2.1794 2.0920 2.1783 2.0920
Basslink 1.1436 9.2441 1.1436 9.2441
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B Choosing the optimal ARMA structure and distribution of the

standardized residuals

Guided by the literature, we apply eGARCH(1,1) as an adequate model of the conditional

variance of electricity prices. We then add the autoregressive terms to capture the autocorrelation

in electricity prices. This choice is supported by visual inspection of the autocorrelation (ACF) and

partial autocorrelation (PACF) functions, which suggest insignificance of the moving average terms.

Studies such as Woo et al. (2011), Ketterer (2014), and Kyritsis et al. (2017) come to the similar

conclusions. We choose the order of AR(p) and the distribution of the standardized innovation

by jointly estimating the AR-eGARCH model. We consider three common distributions, namely,

the normal distribution, Nelson (1991) generalized error distribution (GED), and the Student

distribution. We investigate the adequacy of the model fit using the weighted Ljung-Box test on

standardized squared residuals and weighted ARCH LM tests (Fisher and Gallagher, 2012). The

former is the portmanteau test with null the adequacy of the ARMA fit, and the latter adequately

fitted the ARCH process (Ghalanos, 2020). The optimal lag is then adapted for the rest of the

models, and the adequacy of the model fit assessed in the same manner.

The AR-eGARCH estimates of the actual prices adjusted for the seasonal and trend effects

suggest adequate model fit using a single AR component. Both the Ljung-Box and the ARCH-

LM test in Table 23 suggests the model is correctly specified as both the autocorrelation (with a

slight exception of TAS) and the ARCH effects are well captured. We further inspects the ACF

and PACF of the standardized residuals and square standardized residuals (see Figure 11) which

suggests little autocorrelation and absence of particular pattern due to the non-stationarity or

seasonality of time series (Kyritsis et al., 2017). However, this is not the case for prices adjusted

for outliers (see Figure 12), and the inclusion of a single AR structure fails to adequately capture

the autocorrelations and the ARCH effects. Therefore, we choose the lag order p that minimizes

the BIC, that is, p = 7 (see Figure 13, Table 24 and Table 25). Based on the BIC information

criterion, the Student distribution outperforms the Normal Distribution (see Table 24 and 26)

reflecting the non-normality characteristics of the Australian electricity market, and Nelson (1991)

generalized error distribution (GED).
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Table 23: The weighted Ljung-Box test on standardized residuals, standardized squared residuals, and the
weighted ARCH LM tests of the AR-eGARCH fitted models for NSW, SA, VIC, and TAS. The models
estimated using actual prices adjusted for the seasonality and trend effect, one autoregressive component,
and Student distribution. Corresponding p value in parenthesis.

Lag 1 Lag 4 Lag 20 Lag 1 Lag 20 Lag 36 Lag 3 Lag 5 Lag 7

Ljung-Box on ẑt Ljung-Box on ẑ2t ARCH LM Tests

NSW 0.0003 0.6612 1.35012 0.0015 0.0030 0.0051 0.0000 0.0013 0.0027
(0.9857) (0.9136) (0.8815) (0.9693) (1.0000) (1.0000) (0.9941) (1.0000) (1.0000)

SA 0.0000 0.0250 0.3655 0.0067 0.0196 0.0367 0.0052 0.0197 0.0307
(0.9959) (1.0000) (0.9978) (0.9347) (0.9999) (1.0000) (0.9427) (0.9987) (1.0000)

VIC 0.7636 1.1207 1.5872 0.0041 0.0146 0.0332 0.0056 0.0203 0.0326
(0.3822) (0.6658) (0.8249) (0.9490) (1.0000) (1.0000) (0.9403) (0.9986) (1.0000)

TAS 40.2000 50.70000 58.2400 0.2426 1.5357 2.4107 0.6028 1.0905 1.6395
(0.0000) (0.0000) (0.0000) (0.6223) (0.7311) (0.8507) (0.4375) (0.7063) (0.7930)
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Figure 11: The empirical density of standardized residuals, ACF of standardized residuals, and ACF
of standardized squared residuals of the AR-eGARCH fitted models for NSW (first row), SA (second
row), VIC (third row), and TAS (fourth row). All models estimated using actual prices adjusted for the
seasonality and trend effect, one autoregressive component, and Student distribution.
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Figure 12: The empirical density of standardized residuals, ACF of standardized residuals, and ACF of
standardized squared residuals of the AR-eGARCH models for NSW (first row), SA (second row), VIC
(third row), and TAS (fourth row). All models estimated using prices adjusted for outliers, seasonality,
and trend effect, one autoregressive component, and Student distribution.
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Table 24: Log-likelihood, BIC, and AIC estimates of the AR-eGARCH model for the outliers adjusted
prices under the Normal Distribution (Normal), the Student Distribution (Student’s-t), and Generalized
Error Distribution (GED).

Normal Student’s-t GED Normal Student’s-t GED Normal Student’s-t GED Normal Student’s-t GED

NSW SA VIC TAS
1

Log-Likelihood -11808.51 -11385.1 -11421.08 -15060.92 -14636.01 -14678.55 -12862.98 -12665.44 -12678.95 -13451.38 -12521.7 -12828.05
AIC 6.8709 6.6252 6.6462 8.7624 8.5159 8.5406 7.4841 7.3698 7.3777 7.8263 7.2862 7.4644
BIC 6.8816 6.6377 6.6587 8.7731 8.5284 8.5531 7.4949 7.3823 7.3902 7.8370 7.2987 7.4769

2

Log-Likelihood -11783.85 -11367.78 -11406.58 -15049.51 -14620.73 -14669.63 -12847.22 -12656.28 -12671.91 -13413.35 -12472.98 -12539.25
AIC 6.8571 6.6158 6.6383 8.7563 8.5075 8.5360 7.4756 7.3651 7.3742 7.8048 7.2585 7.2970
BIC 6.8696 6.6300 6.6526 8.7688 8.5218 8.5503 7.4881 7.3794 7.3885 7.8173 7.2728 7.3113

3

Log-Likelihood -11761.46 -11345.17 -11390.03 -15030.46 -14579.41 -14630.29 -12791.46 -12604.84 -12621.62 -13396.54 -12450.57 -12545.77
AIC 6.8447 6.6032 6.6293 8.7458 8.4841 8.5137 7.4437 7.3358 7.3455 7.7956 7.2460 7.3014
BIC 6.8590 6.6193 6.6453 8.7601 8.5002 8.5298 7.4580 7.3518 7.3616 7.8099 7.2621 7.3175

4

Log-Likelihood -11734.03 -11318.86 -11363.41 -15020.22 -14560.68 -14613.48 -12778.03 -12590.5 -12607.08 -13388.71 -12438.79 -12525.47
AIC 6.8293 6.5885 6.6144 8.7405 8.4738 8.5045 7.4365 7.3280 7.3376 7.7916 7.2398 7.2902
BIC 6.8454 6.6063 6.6322 8.7565 8.4917 8.5224 7.4526 7.3459 7.3555 7.8077 7.2576 7.3080

5

Log-Likelihood -11703.72 -11288.06 -11334.61 -15013.17 -14540.45 -14594.52 -12760.64 -12570.63 -12587.18 -13381.83 -12426.67 -12525.15
AIC 6.8123 6.5711 6.5982 8.7369 8.4626 8.4941 7.4270 7.3170 7.3267 7.7882 7.2333 7.2906
BIC 6.8301 6.5908 6.6179 8.7548 8.4823 8.5137 7.4448 7.3367 7.3463 7.8061 7.2530 7.3102

6

Log-Likelihood -11690.24 -11260.98 -11310.71 -15001.97 -14512.6 -14568.29 -12725.94 -12533.75 -12550.03 -13370.38 -12413.71 -12513.85
AIC 6.8050 6.5560 6.5849 8.7310 8.4470 8.4794 7.4073 7.2962 7.3056 7.7821 7.2264 7.2846
BIC 6.8247 6.5774 6.6063 8.7507 8.4684 8.5008 7.4270 7.3176 7.3271 7.8018 7.2478 7.3060

7

Log-Likelihood -11679.77 -11242.95 -11290.42 -14995.3 -14494.17 -14551.34 -12710.27 -12517.22 -12534.23 -13361.62 -12407.61 -12516.61
AIC 6.7995 6.5461 6.5737 8.7277 8.4369 8.4701 7.3988 7.2871 7.2970 7.7776 7.2234 7.2868

BIC 6.8210 6.5693 6.5969 8.7491 8.4601 8.4933 7.4203 7.3104 7.3202 7.7991 7.2466 7.3100
8

Log-Likelihood -11679.33 -11241.86 -11290.98 -14994.28 -14492.03 -14548.55 -12710.57 -12516.84 -12533.85 -13359.41 -12406.67 -12509.44
AIC 6.7998 6.5460 6.5746 8.7277 8.4362 8.4691 7.3996 7.2875 7.2974 7.7769 7.2234 7.2832
BIC 6.8231 6.5710 6.5996 8.7509 8.4612 8.4941 7.4228 7.3125 7.3224 7.8001 7.2484 7.3082

9

Log-Likelihood -11678.67 -11242.34 -11291.28 -14993.36 -14490.54 -14546.6 -12710.76 -12517.43 -12534.33 -13359.46 -12407.13 -12522.74
AIC 6.800 6.5469 6.5753 8.7277 8.4359 8.4685 7.4003 7.2884 7.2982 7.7775 7.2243 7.2915
BIC 6.825 6.5737 6.6021 8.7528 8.4627 8.4953 7.4253 7.3152 7.3250 7.8025 7.2511 7.3183

10

Log-Likelihood -11677.93 -11243.61 -11293.06 -14986.22 -14483.05 -14541.04 -12710.76 -12515.37 -12531.79 -13354.84 -12407.63 -12525.61
AIC 6.8002 6.5482 6.5769 8.7242 8.4321 9 8.4659 7.4008 7.2878 7.2973 7.7754 7.2251 7.2938
BIC 6.8270 6.5768 6.6055 8.7510 8.4607 8.4944 7.4276 7.3164 7.3259 7.8022 7.2537 7.3223

Table 25: The weighted Ljung-Box test on standardized residuals, standardized squared residuals, and
the weighted ARCH LM tests of the AR-eGARCH fitted models for NSW, SA, VIC, and TAS. All models
estimated using prices adjusted for outliers, seasonality and trend effect, seven autoregressive components,
and Student distribution. Corresponding p value in parenthesis.

Lag 1 Lag 4 Lag 20 Lag 1 Lag 20 Lag 36 Lag 3 Lag 5 Lag 7

Ljung-Box on ẑt Ljung-Box on ẑ2t ARCH LM Tests

NSW 3.9320 26.2310 44.5160 0.9366 1.3602 1.9242 0.1691 0.8870 1.0714
(0.0474) (0.0000) (0.0000) (0.3332) (0.7742) (0.9139) (0.6809) (0.7668) (0.9017)

SA 4.0650 21.8900 34.1920 0.1840 0.7826 1.3393 0.5199 0.8626 1.1593
0.0438 (0.0000) (0.0000) (0.6680) (0.9066) (0.9677) (0.4709) (0.7741) (0.8863)

VIC 4.2350 17.6790 34.8630 2.4020 3.0340 4.4230 0.3960 1.2530 1.9830
(0.0396) (0.0000) (0.0000) (0.1212) (0.4008) (0.5188) (0.5292) (0.6597) (0.7209)

TAS 11.2000 21.5000 28.1800 0.2453 0.9051 1.4111 0.3211 0.7053 0.9676
(0.0008) (0.0000) (0.0015) (0.6204) (0.8808) (0.9625) (0.5709) (0.8219) (0.9188)
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Figure 13: The empirical density of standardized residuals, ACF of standardized residuals, and ACF of
standardized squared residuals of the AR-eGARCH models for NSW (first row), SA (second row), VIC
(third row), and TAS (fourth row). All models estimated using prices adjusted for the outliers, seasonality,
and trend effects, seven autoregressive components, and Student distribution.

Table 26: Log-likelihood, BIC, and AIC of AR-eGARCH for the actual prices adjusted for the seasonality
and trend effects under the Normal Distribution (Normal), the Student Distribution (Student’s-t), and
Generalized Error Distribution (GED)

Lag Normal Student’s-t GED Normal Student’s-t GED Normal Student’s-t GED Normal Student’s-t GED

NSW SA VIC TAS
1

Log-Likelihood -15074.39 -12615.46 -12859.51 -18685.1 -16092.81 -16360.03 -13925.35 -15829.69 -14148.84 -13803.76 -12907.05 -12954.15
AIC 8.7702 7.3408 7.4827 10.870 9.3631 9.5185 9.2095 8.1026 8.2325 8.0313 7.5104 7.5377
BIC 8.7809 7.3533 7.4952 10.881 9.3756 9.5310 9.2202 8.1151 8.2450 8.0420 7.5229 7.5502
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C Model Results

Table 27: The effect of wind generation, electricity consumption, hydro generation, and interconnectors
flow on New South Wales’ electricity price behavior. The effect on price levels is given by the mean
equation and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model G Model H Model I Model J
Mean Equation

µ 54.4671 56.7646 16.4629 18.4053 57.0256 52.6879 51.5705 54.3879 22.8198 52.4369
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.7231 0.7077 0.6815 0.6711 0.7033 0.7156 0.6836 0.73173 0.6671 0.6703
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ2 0.0023 0.0192 0.0075 0.0185 0.0240 0.0055 0.0176 0.0104 0.0327 0.0423
(0.6661) (0.0171) (0.6356) (0.2066) (0.0774) (0.1694) (0.1167) (0.1517) (0.0000) (0.0004)

φ3 0.0132 0.0190 0.0267 0.0272 0.0186 0.0132 0.0168 0.0080 0.0228 0.0173
(0.5525) (0.2587) (0.0000) (0.0184) (0.1520) (0.1002) (0.1598) (0.6138) (0.0001) (0.1847)

φ4 0.0215 0.0246 0.0262 0.0346 0.0249 0.0215 0.0283 0.0204 0.0307 0.0321
(0.3697) (0.0591) (0.0000) (0.0387) (0.0000) (0.2349) (0.0059) (0.4410) (0.0025) (0.0019)

φ5 0.0463 0.0395 0.0558 0.0559 0.0410 0.0437 0.0448 0.0381 0.0492 0.0371
(0.0000) (0.0292) (0.0000) (0.0000) (0.0006) (0.0118) (0.0002) (0.0581) (0.0000) (0.0008)

φ6 0.0558 0.0548 0.0688 0.0567 0.0540 0.0602 0.0633 0.0570 0.0595 0.0622
(0.0000) (0.0558) (0.0000) (0.0000) (0.0040) (0.0001) (0.0000) (0.0003) (0.0024) (0.0000)

φ7 0.0912 0.0900 0.1015 0.1020 0.0908 0.0916 0.1008 0.0930 0.1032 0.0989
(0.0000) (0.0039) (0.0000) (0.0000) (0.0000) (0.0166) (0.0000) (0.0000) (0.0000) (0.0000)

wind -4.6439 -4.4180 -3.7232
(0.0000) (0.0000) (0.0000)

demand 2.0378 2.0087 1.6472
(0.0000) (0.0000) (0.0000)

windpen -98.6784 -82.9010
(0.0000) (0.0000)

gas 0.3170 0.1755 0.2473
(0.0021) (0.0507) (0.0012)

hydro 3.9882 1.6997 3.5790
(0.0000) (0.0000) (0.0000)

eximterra -1.7394 -2.0088 -1.7976
(0.0238) (0.1630) (0.3410)

eximQNI -1.2378 -0.7030 -0.8221
(0.0000) (0.0000) (0.0010)

eximV NI -1.3227 -0.9320 -0.9937
(0.0000) (0.0000) (0.0000)

Variance Equation

ω 0.1032 0.1439 -0.3264 -0.2773 0.1547 0.1153 0.1102 0.0947 -0.2880 0.1232
(0.0000) (0.0000) (0.0348) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α 0.1228 0.1314 0.1003 0.1018 0.1309 0.1212 0.0978 0.1286 0.0969 0.1067
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

β 0.9725 0.9656 0.9685 0.9598 0.9647 0.9728 0.9666 0.9705 0.9495 0.9535
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.3150 0.3323 0.3296 0.3571 0.3343 0.3174 0.3638 0.3157 0.4075 0.3942
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.0311 -0.0451 -0.0396
(0.3657) (0.2177) (0.3211)

demand 0.0229 0.0231 0.0236
(0.0040) (0.0000) (0.0031)

windpen -0.8859 -0.6894
(0.1768) (0.3651)

gas -0.0023 0.0015 0.0034
(0.5819) (0.7866) (0.4909)

hydro 0.0221 0.0155 0.031
(0.2535) (0.5162) (0.1300)

eximterra 0.0307 0.1254 0.0723
(0.8761) (0.6149) (0.7675)

eximQNI -0.0182 -0.0316 -0.0330
(0.3583) (0.2063) (0.1743)

eximV NI 0.0028 0.0070 0.0052
(0.7662) (0.5602) (0.6624)

Shape 3.4368 3.3929 3.4182 3.3359 3.3722 3.4476 3.6069 3.3588 3.3574 3.4859
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -11242.95 -11148.33 -11054.17 -10957.75 -11122.25 -11235.37 -11175.04 -11166.32 -10902.65 -11008.81
AIC 6.5461 6.4922 6.4374 6.3825 6.4770 6.5428 6.5077 6.5050 6.3563 6.4169
BIC 6.5693 6.5190 6.4642 6.4129 6.5038 6.5696 6.5345 6.5389 6.4045 6.4615
Q(40) 27.5400 27.5930 26.5570 27.4930 27.8320 25.6490 27.5780 29.2200 50.4120 30.4650

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Q2(36) 1.9236 1.5490 1.9610 1.4263 1.4587 1.7955 2.1241 1.9506 1.4449 1.5353

(0.9139) (0.9515) (0.9096) (0.9614) (0.9589) (0.9280) (0.8897) (0.9108) (0.9599) (0.9526)
ARCH-LM Test 1.0712 1.2162 1.3015 1.3158 1.2072 0.9922 1.5474 1.2131 1.5726 1.6648

(0.9017) (0.8760) (0.8602) (0.8574) (0.8777) (0.9148) (0.8118) (0.8766) (0.8067) (0.7878)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 28: The effect of wind generation, electricity consumption, hydro generation, and interconnectors
flow on Victoria’s electricity price behavior. The effect on price levels is given by the mean equation and
on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model H Model I Model J
Mean Equation

µ 55.1197 67.1999 5.3721 32.8670 66.4943 31.8707 53.7617 23.3024 50.0306
(0.0000) (0.0000) (0.0011) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.4724 0.4950 0.4626 0.4899 0.4813 0.4311 0.4984 0.4702 0.4351
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ2 0.0002 0.0487 0.0193 0.0439 0.04703 0.0001 0.0503 0.0498 0.0527
(0.9888) (0.0134) (0.0483) (0.0008) (0.0007) (0.9956) (0.0000) (0.0000) (0.0003)

φ3 0.0772 0.0743 0.0835 0.0910 0.0827 0.0747 0.0833 0.0880 0.0845
(0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ4 0.0402 0.0372 0.0475 0.0425 0.0400 0.0484 0.0313 0.0522 0.0515
(0.0000) (0.0806) (0.0004) (0.1034) (0.0041) (0.0011) (0.0060) (0.0000) (0.0000)

φ5 0.0430 0.0287 0.0506 0.0376 0.0339 0.0421 0.0348 0.0318 0.0356
(0.0000) (0.1076) (0.0001) (0.0002) (0.0089) (0.0171) (0.0007) (0.0000) (0.0000)

φ6 0.0686 0.0785 0.0882 0.0880 0.0833 0.0674 0.0706 0.0768 0.0731
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ7 0.0888 0.0920 0.0992 0.0923 0.1001 0.0794 0.0771 0.0889 0.0978
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -10.6577 -8.8833 -9.6585
(0.0000) (0.0000) (0.0000)

demand 15.4630 9.8898 9.1916
(0.0000) (0.0000) (0.0000)

windpen -32.5214 -33.4935
(0.0000) (0.0000)

gas 3.9141 2.5838 3.2324
(0.0000) (0.0000) (0.0000)

eximheyw 4.9820 -8.7858 -8.5536
(0.0000) (0.0000) (0.0000)

eximmurry 57.1023 32.3190 34.1883
(0.0000) (0.0000) (0.0000)

Variance Equation

ω 0.0653 0.2358 -0.0994 -0.0712 0.3292 0.0486 0.2561 -0.1838 0.3563
(0.0000) (0.0000) (0.2480) (0.6109) (0.0000) (0.0201) (0.0000) (0.2904) (0.0000)

α 0.0330 0.0449 0.0190 -0.0251 0.0199 0.0257 0.0560 -0.0815 -0.0337
(0.0227) (0.0568) (0.3476) (0.5053) (0.5504) (0.0832) (0.0367) (0.1354) (0.3936)

β 0.9890 0.9688 0.9665 0.9133 0.9581 0.9869 0.9578 0.8871 0.9387
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.2498 0.4955 0.4059 0.8126 0.5894 0.2568 0.4746 1.1483 0.7824
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0018) (0.0000)

wind -0.0253 -0.0144 0.0158
(0.2136) (0.6075) (0.6811)

demand 0.0904 0.1978 0.2255
(0.0004) (0.0000) (0.0000)

windpen -0.1379 -0.1537
(0.0282) (0.0648)

gas 0.0047 0.0305 0.0191
(0.1625) (0.0067) (0.0093)

eximheyw 0.0251 0.0383 0.0050
(0.4182) (0.4725) (0.8967)

eximmurry 0.0499 0.0635 -0.0093
(0.7117) (0.7893) (0.9575)

Shape 2.9253 2.2375 2.7439 2.2281 2.2195 2.9588 2.3619 2.1361 2.1644
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -14494.17 -13828.63 -14147.35 -13657.95 -13736.69 -14445.33 -13893.22 -13505.79 -13576.28
AIC 8.4369 8.0510 8.2363 7.9529 7.9975 8.4096 8.0897 7.8679 7.9077
BIC 8.4601 8.0778 8.2631 7.9832 8.0243 8.4364 8.1201 7.9089 7.9452
Q(40) 34.1820 29.6300 38.6910 30.97 30.4900 18.913 31.4100 30.1700 25.1240

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.00000) (0.00000) (0.00000) (0.00000)
Q2(36) 1.3395 2.34108 2.5699 3.7866 2.2379 1.2951 2.1677 4.8113 2.2706

(0.9676) (0.8606) (0.8273) (0.6252) (0.8748) (1.2951) (0.8841) (0.4576) (0.8704)
ARCH-LM Test 1.1601 2.1946 2.3690 2.7862 1.9588 1.1162 1.9720 3.3550 1.8090

(0.8862) (0.6761) (0.6395) (0.5548) (0.7260) (0.8939) (0.7233) (0.4491) (0.7577)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 29: The effect of wind generation, electricity consumption, hydro generation, and interconnectors
flow on South Australia’s electricity price behavior. The effect on price levels is given by the mean
equation and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model F Model G Model H Model I Model J
Mean Equation

µ 52.3733 57.6046 3.7017 20.5258 57.4160 45.2958 47.0058 55.2372 39.9271 48.8940
(0.0000) (0.0000) (0.0032) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.6389 0.6481 0.5999 0.6135 0.6368 0.6215 0.6137 0.6233 0.5736 0.5751
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ2 -0.0578 -0.0323 -0.0350 -0.0222 -0.0249 -0.0463 -0.0481 -0.0429 -0.0276 -0.0252
(0.0003) (0.8079) (0.0047) (0.4908) (0.0018) (0.0051) (0.0000) (0.0068) (0.0212) (0.1486)

φ3 0.0990 0.0857 0.1116 0.0984 0.0824 0.0966 0.1002 0.0796 0.0919 0.0858
(0.0000) (0.5303) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ4 0.0142 0.0222 0.0183 0.0262 0.0274 0.0158 0.0252 0.0093 0.0338 0.0348
(0.1661) (0.8851) (0.0494) (0.3330) (0.0002) (0.0029) (0.0142) (0.4510) (0.0000) (0.0008)

φ5 0.0226 0.0078 0.0113 -0.0019 0.0064 0.0205 0.0247 -0.0026 -0.0118 -0.0104
(0.0796) (0.8400) (0.0969) (0.9642) (0.0540) (0.1077) (0.0001) (0.6595) (0.0205) (0.1891)

φ6 0.0828 0.0901 0.0977 0.1004 0.0914 0.0842 0.0990 0.0921 0.1049 0.1048
(0.0000) (0.0887) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ7 0.0974 0.0951 0.1158 0.1106 0.0973 0.1004 0.1016 0.1398 0.1483 0.1471
(0.0000) (0.3142) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -6.7633 -5.5992 -3.9581
(0.0000) (0.0000) (0.0000)

demand 3.8937 2.8274 0.7467
(0.0000) (0.0000) (0.0000)

windpen -84.5162 -48.9434
(0.0000) (0.0000)

gas 1.2524 1.0410 1.0593
(0.0000) (0.0000) (0.0000)

hydro 7.6591 3.4482 3.8860
(0.0000) (0.0000) (0.0000)

eximbass 5.4234 3.5435 3.6762
(0.0000) (0.0000) (0.0000)

eximheyw -0.2851 -2.4048 -2.4072
(0.4763) (0.0000) (0.0000)

eximV NI -5.0591 -3.1865 -3.3607
(0.0000) (0.0000) (0.0000)

eximmurr 3.6669 1.4308 1.0712
(0.0014) (0.2597) (0.3191)

Variance Equation

ω 0.1018 0.2277 -0.4748 -0.5004 0.2443 0.1126 0.0798 0.1180 -0.4061 0.1173
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0612) (0.0492)

α 0.0562 0.0345 0.0388 0.0158 0.0254 0.0559 0.0317 0.0183 -0.0018 -0.0084
(0.0019) (0.0130) (0.0333) (0.4660) (0.2163) (0.0025) (0.1041) (0.3292) (0.9326) (0.6869)

β 0.9777 0.9634 0.9724 0.9546 0.9623 0.9773 0.9642 0.9710 0.9522 0.9537
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 0.3691 0.4537 0.4085 0.5056 0.4600 0.3705 0.4688 0.3983 0.5121 0.5068
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.0753 -0.0750 -0.0575
(0.0027) (0.0051) (0.0740)

demand 0.0477 0.0607 0.0426
(0.0000) (0.0000) (0.0230)

windpen -1.1093 -0.7805
(0.0000) (0.0443)

gas -0.0016 0.0061 0.0061
(0.7276) (0.4037) (0.4041)

hydro 0.1137 0.0937 0.1173
(0.0004) (0.0032) (0.0003)

eximbass 0.0237 0.0121 0.0250
(0.0792) (0.5083) (0.1367)

eximheyw 0.0837 0.0874 0.0815
(0.0058) (0.0270) (0.0364)

eximV NI -0.0202 -0.0058 -0.0137
(0.0973) (0.7248) (0.4034)

eximmurr -0.2703 -0.3346 -0.3545
(0.0394) (0.0505) (0.0384)

Shape 4.3361 3.5155 3.9659 3.5518 3.5114 4.2910 3.9738 3.3547 3.4325 3.4263
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -12517.22 -12108.07 -12236.63 -11935.77 -12060.8 0 -12493.68 -12263.25 -11964.87 -11692.29 -11702.40
AIC 7.2871 7.0503 7.1251 6.9513 7.0229 7.2746 7.1406 6.9706 6.8167 6.8214
BIC 7.3104 7.0771 7.1519 6.9817 7.0496 7.3014 7.1674 7.0081 6.8685 6.8696
Q(40) 17.6610 18.794 20.543 18.1550 18.0700 17.7610 22.1480 25.5500 21.4390 22.6700

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Q2(36) 4.4210 2.6504 9.1040 4.0244 2.3855 4.3300 5.6070 1.1140 3.2740 3.0125

(0.5190) (0.8150) (0.0774) (0.5847) (0.8543) (0.5338) (0.3459) (0.9810) (0.7130) (0.7569)
ARCH-LM Test 1.9836 1.7143 5.3290 3.1130 1.6288 2.1935 2.9195 0.8132 2.2460 2.0653

(0.7208) (0.7775) (0.1934) (0.4924) (0.7952) (0.6764) (0.5289) (0.9419) (0.6652) (0.7035)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Table 30: The effect of wind generation, electricity consumption, hydro generation, and interconnectors
flow on Tasmania’s electricity price behavior. The effect on price levels is given by the mean equation
and on price volatility by the variance equation.

Model A Model B Model C Model D Model E Model G Model H Model I Model J
Mean Equation

µ 47.0315 46.5598 11.3323 18.6648 46.2901 46.2105 46.9814 18.7611 45.8133
(0.0000) (0.0000) (0.0162) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ1 0.6666 0.6728 0.6782 0.6757 0.6738 0.6623 0.6708 0.6713 0.6835
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

φ2 0.0849 0.0816 0.0819 0.0797 0.0816 0.0847 0.0853 0.0800 0.0777
(0.0061) (0.0000) (0.0094) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0021)

φ3 0.0489 0.0449 0.0481 0.0487 0.0446 0.0508 0.0484 0.0498 0.0452
(0.0000) (0.0000) (0.0006) (0.0000) (0.0048) (0.0000) (0.0002) (0.0028) (0.0289)

φ4 0.0266 0.0266 0.0306 0.0280 0.0259 0.0273 0.0235 0.0297 0.0243
(0.0000) (0.0258) (0.0000) (0.0123) (0.0000) (0.0295) (0.0000) (0.0368) (0.0027)

φ5 0.0320 0.0368 0.0377 0.0400 0.0381 0.0331 0.0338 0.0416 0.0384
(0.0358) (0.0000) (0.0000) (0.0012) (0.0074) (0.0104) (0.0000) (0.0349) (0.0000)

φ6 0.0446 0.0522 0.0408 0.0447 0.0512 0.0454 0.0434 0.0423 0.0489
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0003) (0.0001) (0.0012)

φ7 0.0402 0.0425 0.0418 0.0434 0.0427 0.0409 0.0387 0.0449 0.0411
(0.0093) (0.0000) (0.0000) (0.0001) (0.0001) (0.0000) (0.0002) (0.0016) (0.0000)

wind -8.1098 -3.8676 -4.0573
(0.0000) (0.0000) (0.0000)

demand 12.2871 9.7754 9.5098
(0.0000) (0.0000) (0.0000)

windpen -21.5690 -22.1955
(0.0000) (0.0000)

hydro 0.8854 1.11433
(0.0000) (0.0020)

eximbass 1.0686 1.4303
(0.0000) (0.0000)

Variance Equation

ω 0.6014 0.7769 0.5400 0.8031 0.7841 0.5972 0.6224 0.7994 0.8150
(0.0000) (0.0000) (0.0426) (0.0056) (0.0000) (0.0000) (0.0000) (0.0060) (0.0000)

α -0.0957 -0.1312 -0.1413 -0.1437 -0.1355 -0.0974 -0.1014 -0.1502 -0.1452
(0.0398) (0.0199) (0.0076) (0.0069) (0.0104) (0.0259) (0.0214) (0.0047) (0.0061)

β 0.8973 0.8882 0.8866 0.8856 0.8875 0.8995 0.8938 0.8866 0.8825
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

γ 1.0338 1.3613 1.4363 1.4619 1.4058 1.0264 1.0247 1.4671 1.4696
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wind -0.2768 -0.3009 -0.2953
(0.0210) (0.0149) (0.0171)

demand 0.0697 0.0023 0.0013
(0.4754) (0.9824) (0.9901)

windpen -0.6763 -0.5472
(0.0283) (0.0825)

hydro -0.0151 -0.0014
(0.6787) (0.9713)

eximbass -0.0684 -0.0578
(0.0053) (0.0286)

Shape 2.1983 2.1152 2.1000 2.10000 2.1074 2.2031 2.2074 2.1000 2.1000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log likelihood -12407.61 -12321.76 -12281.24 -12262.56 -12315.69 -12402.36 -12398.72 -12256.61 -12305.23
AIC 7.2234 7.1746 7.1511 7.1414 7.1711 7.2215 7.2194 7.1391 7.1662
BIC 7.2466 7.2014 7.1778 7.1717 7.1979 7.2483 7.2462 7.1730 7.1965
Q(40) 21.5000 22.0400 23.0100 23.1000 22.3000 21.3200 21.5200 22.7100 22.3600

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.0000) (0.00000) (0.0000)
Q2(36) 1.4111 2.8414 3.1730 3.7720 3.0038 1.6117 1.4689 3.8835 3.1583

(0.9625) (0.7848) (0.7301) (0.6277) (0.7583) (0.9459) (0.9581) (0.6086) (0.7326)
ARCH-LM Test 0.9676 1.7973 2.0451 2.3442 1.8820 1.1097 0.9903 2.4419 1.9494

(0.9188) (0.7601) (0.7078) (0.6447) (0.7424) (0.8951) (0.9151) ( 0.6244) (0.7280)
Observations 3439 3439 3439 3439 3439 3439 3439 3439 3439

Wind generation, electricity consumption, hydro generation, and the cross-border interconnector flows are scaled
by 104 to clarify the presentation of the results. The corresponding coefficients should, therefore, be multiplied by
0.1 AUD/MWh and 0.1 for a 1 GWh increase in either variable for the mean equation and the variance equation,
respectively. AIC denotes the Akaike information criterion, BIC is the Bayesian information criterion and ARCH
LM is the Lagrange multiplier test for ARCH effect. The p values are in parentheses.
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Figure 14: Estimated p-values for the volution of the impact of wind penetration from 2014 - May 2020
for NSW, SA, VIC, and TAS. The coefficients estimated using the rolling regression with three years
windows while controlling for gas prices, hydro generation and the interconnectors. The effect on price
level is given by the figures on the left and on price volatility by the figures on the right panel.
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