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The electrocatalytic hydrogen evolution reaction (HER) for the preparation of hydrogen

fuel is a very promising technology to solve the shortage of hydrogen storage.

However, in practical applications, HER catalysts with excellent performance and

moderate price are very rare. Molybdenum carbide (MoxC) has attracted extensive

attention due to its electronic structure and natural abundance. Here, a comprehensive

review of the preparation and performance control of hierarchical porous molybdenum

carbide (HP-MoxC) based catalysts is summarized. The methods for preparing

hierarchical porous materials and the regulation of their HER performance are mainly

described. Briefly, the HP-MoxC based catalysts were prepared by template method,

morphology-conserved transformations method, and secondary conversion method

of an organic-inorganic hybrid material. The intrinsic HER kinetics are enhanced by

the introduction of a carbon-based support, heteroatom doping, and the construction

of a heterostructure. Finally, the future development of HP-MoxC based catalysts is

prospected in this review.

Keywords: hierarchical structure, electrocatalytic reaction, hydrogen production, porous structure, molybdenum

carbide

INTRODUCTION

Hydrogen is a green energy with high energy density and excellent combustion performance
(Martinez et al., 2019; Yang et al., 2019). HER is a key reaction for the renewable production of
hydrogen. However, the actual reaction process is inefficient. In order to increase the conversion
efficiency of the reaction process and reduce the reaction overpotential, a certain amount of catalyst
is usually used (Chen et al., 2018; Huo et al., 2019; Ling et al., 2019). The ideal electrocatalyst for
the HER is platinum (Pt) or other precious metals, but its application is severely limited by low
richness and high cost (Khaselev and Turner, 1998; Nong et al., 2018).

MoxC has a wide range of applications in the fields of energy storage and conversion,
for example, hydrodesulf ‘urization, denitrification (Wang et al., 2007; Ma et al., 2018),
methanol reforming, electrolyte, etc. (Gao et al., 2010; Lin et al., 2017b; Yang et al., 2020).
Density functional theory (DFT) calculations of carbides show that the hybridization of
metal d orbitals with carbon s and p orbitals causes wider d-band structure, showing
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a d-band structure similar to Pt (Zhao et al., 2019b). This

makes MoxC a promising alternative to precious metal catalysts.

Conventional MoxC based catalysts generally have no voids
or low porosity, resulting in low active surface area and poor

wettability. Designing hierarchical porous micro/nanostructures
can solve these problems. The hierarchical porous material

has multi-stage pore structure, which is micropores (<2 nm),
mesopores (2–50 nm) and macropores (>50 nm) (Li et al.,
2019b). The properties and functions of a material depend on the

characteristics of its structure, such as pore size, shape, porosity,
etc. (Ryoo, 2019). In general, the presence of micropores provides
a large surface area, mesoporous, andmacroporous structures are
effective in improving electrolyte penetration and promoting ion
diffusion. The structure of hierarchical porousmaterials is usually
assembled from nanoscale units by van der Waals forces, ionic
bonds, covalent bonds and hydrogen bonds. The preparation
of HP-MoxC based catalysts prevents the agglomeration of the
nanoparticles, greatly increasing the specific surface area of the
material and exposing more active sites (Kim et al., 2020).
Compared with other non-precious metal catalysts, HP-MoxC
has a hierarchical porous structure on the macro scale and a

TABLE 1 | Summary of HER performance of Pt/C and various catalysts appearing in the article.

Method Catalyst ηonset (mv) η10 (mv) Electrolyte Tafel slope (mv

dec−1)

References

Preparation Template method uf-Mo2C/CF 49 184 Acidic 71 Kou et al., 2018

Mo2C/MCS 73 134 Alkaline 51 Yuan et al., 2019

Morphology-conserved

transformations

Nano MoC@GS 84 132 Acidic 46 Shi et al., 2016

Porous MoCx

nano-octahedrons

25 142 Acidic 5 Wu et al., 2015

80 151 Alkaline 59

MoC-Mo2C/PNCDS 121 \ Alkaline 60 Lu et al., 2019

Secondary conversion

of organic-inorganic

hybrid materials

np-Mo2C NW 70 \ Acidic \ Liao et al., 2014

P-Mo2C NWs 42 89 Acidic 42 Shi et al., 2017

Regulation Introducing other

conductive carriers

Mo2C-RGO 70 130 Acidic 54 Pan et al., 2014

Mo2C/G \ 175 Acidic 88 Huang et al., 2019c

\ 200 Alkaline 82

Mo2C@NC nanomesh \ 37.5 Acidic 33.7 Cheng et al., 2018

Doping Mo2C-N-CNFS 105 192 Acidic 70 Wu et al., 2016

Ni/Mo2C-NCNFS 29 143 Alkaline 57.8 Li et al., 2019b

NP-MO2C \ 210 Acidic 64 Wang et al., 2018a

Hierarchical porous

molybdenum

carbide-based

heterostructure

Mo-Mo2C 67 150 Acidic 55 Dong et al., 2018

Mo2C/VC@C \ 122 Acidic 43.8 Huang et al., 2019a

Pt/C 0 28 Acidic 33

0 43 Alkaline 113

η10, overpotentials to drive the current densities of 10 mA cm−2.

ηonset, oneset overpotential.

d-band structure similar to Pt on the micro scale, which makes
it exhibiting unique advantages.

This review focuses on the preparation and performance of
HP-MoxC based catalysts, including soft-hard template method,
morphology-conserved transformations, secondary conversion
of organic-inorganic hybrid materials to construct catalysts
with specific morphology. By introducing other conductive
carriers, heterogeneous doping and construct heterostructured
hybrids to optimize the HER performance of HP-MoxC based
catalysts. Table 1 shows the performance parameters of each
catalyst mentioned in this article. Finally, an overview of
the future development of HP-MoxC based electrocatalysts
is outlined.

CONSTRUCTION OF HP-MoXC WITH
SPECIAL MORPHOLOGY

HP-MoxC based catalysts with a special morphology have many
excellent properties such as rapid mass transfer, ultra-high
surface area, controlled pore size and nano-effects (Niu et al.,
2019; Wang et al., 2019b). Therefore, it is becoming more and
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more important to construct various forms of nano-catalytic
materials. The use of nanotechnology makes it possible to expose
as many active sites as possible during electrocatalysis, thereby
improving HER performance (Hou et al., 2019). However, how to
control the structural size and shape of materials still poses great
challenges in the current research process.

Template Method to Construct HP-MoxC
Based Catalysts
The template method is one of the effective methods for
preparing hierarchical porous materials, and can effectively
control the morphology, particle size, and structure during the
preparation process (Huang et al., 2019b; Zhao et al., 2019a). It
is mainly divided into hard template method and soft template
method. The hard template has rigid structure and specific

morphology, and its morphology is copied into the target
material by nano-replication technology. The obtained product
has good dispersibility, controllable pore size and has been widely
used (Chen et al., 2019; Feng et al., 2019).

Due to the stability of the hard template structure, the
precursors are often used as “microreactor” in the synthesis
process (Liu et al., 2019). The colloidal crystal (Thompson
et al., 2019) contains a large amount of monodisperse colloidal
particles, which are uniformly arranged in three dimensions.
Using colloidal crystals as sacrificial hard templates, ordered and
monodisperse pores can be introduced into the material. Kou
et al. (2018) prepared hierarchical porous molybdenum carbide
nanocrystals (uf-Mo2C/CF) with efficient HER performance by
using uniformly-sized SiO2 microspheres as confined template
(Figure 1A). Average size of nanocrystals is <2 nm. This

FIGURE 1 | Schematic illustration of synthesis and structures of various HP-MoxC based catalysts: (A) Schematic synthesis route and TEM image of the uf-Mo2C/C.

Reprinted with permission from Kou et al. (2018) with permission from WILEY-VCH. (B) Schematic synthesis route and SEM/TEM images of the MoC-Mo2C/PNCDs.

Reprinted with permission from Lu et al. (2019) with permission from WILEY-VCH. (C) Schematic synthesis route and SEM image of the P-Mo2C@C NWs. Reprinted

with permission from Shi et al. (2017) with permission from Royal Society of Chemistry. (D) Schematic synthesis route and HR-TEM image of the Mo2C/G. Reprinted

with permission from Huang et al. (2019c) with permission from WILEY-VCH. (E) Schematic synthesis route and TEM image of the Ni/Mo2C-NCNFs. Reprinted with

permission from Li et al. (2019b) with permission from WILEY-VCH. (F) Schematic synthesis route and TEM image of the Mo-Mo2C. Reprinted with permission from

Dong et al. (2018) with permission from Royal Society of Chemistry.
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3D hierarchical porous structure enables a large number of
mass transfer channels, high density of active sites, and high
electrical conductivity, thereby providing a highly efficient and
stable catalytic performance. Soft template method has no
fixed structure and morphology. Soft templating agent mainly
forms an organic phase with a certain morphology through
intermolecular or intramolecular interaction forces (Xue et al.,
2019; Zhang et al., 2019). In the process of synthesis, soft
templating agent interacts with the inorganic phase to form
an organic-inorganic phase with a certain morphology, thereby
achieving the purpose of directional synthesis of nanomaterials.
Yuan et al. (2019) used the precursor spheres formed by F127
and resoled phenolic resin to limit the growth of molybdenum
carbide, and obtained ultra-small Mo2C particles encapsulated
in situ in mesoporous carbon spheres (Mo2C@MCS). The ultra-
small particle size exposes more active sites, and the presence
of a carbon substrate greatly reduces the resistance of the
catalyst, thereby exhibiting excellent electrocatalytic performance
in an alkaline medium (Liu et al., 2018; Huang et al., 2019d).
This study provides an effective strategy for the synthesis of a
MoxC@C catalyst.

Morphology-Conserved Transformations
Although the template method can effectively control the
morphology and pore size of the catalyst, the synthesis and
the removal process of the template cause a lot of waste of
resources and increase in cost, which hinders its application.
The morphology-conserved transformations method has been
developed as a simple and effective synthesis route (Tan et al.,
2012). This method usually consists of two steps: first, a
hierarchical porous metal intermediate compound is constructed
and then converted into a carbon material by specific method.
Metal organic frame materials (MOF) have become one of
the most promising candidate precursors for the preparation
of hierarchical porous materials due to their advantages such
as uniform and controllable pore structure and large specific
surface area (Dhakshinamoorthy et al., 2019; Garzón-Tovar
et al., 2019). Shi et al. (2016) synthesized a highly active
and stable MoC encapsulated by graphitized carbon shell
(nanoMoC@GS) electrocatalyst by in-situ carburization of Mo-
based MOF, achieving “atomic-level contact” between Mo and
organic species. The rich organic matter in the MOF generates
a porous conductive carbon shell layer, which improves the
ion transmission to the medium. Wu et al. (2015) adopted the
“MOFs-assisted synthesis strategy” synthesized Cu-based MOFs
(NENU-5) with MoCx nano-octahedral hydrogen evolution
electrocatalysts with excellent HER activity. Recently, they used
an ion exchange method to convert MO2−

4 groups by employing
an exchange reaction between a zinc-based imidazole MOF (ZIF-
8) and a metal salt (Na2MO4, M=Mo orW) in an organic solvent
(Lu et al., 2019) (Figure 1B). The MO2−

4 group replaces the Zn

(imidazolate)2−4 group in ZIF-8, thereby effectively dispersing
and fixing the metal source uniformly in the ZIF-8 framework
(MoxC/PNCDs). Due to the structural advantages of ZIF-8, the
low boiling point of Zn and the controlled exchange of MO2−

4 ,
ultrafine carbide nanocrystals with a porous nitrogen-doped
carbon dodecahedron were successfully obtained. And achieve

effective control of the carbide phase and composition, which not
only provides a more stable active site, but also promotes electron
transport during the HER process.

Secondary Conversion of
Organic-Inorganic Hybrid Materials
(SC-OI-M)
Currently, there are few simple and diverse synthesis methods
for new MOF materials, which greatly limits their development
and application. In addition, conventional MOFs only have
micropores and lack transmission channels such as mesopores
and macropores, which will greatly reduce their transmission
efficiency in the catalytic process. SC-OI-M refers to the
integration of two counterparts into a single structure at the
nanoscale (Wang et al., 2018b; Li et al., 2019a). This nano-scale
single structure provides a periodic organic-inorganic structure,
which has a “barrier effect” between the Mo sources during the
high-temperature carbonization process, which can effectively
prevent and promote the formation of nanostructures during
high-temperature sintering. The hybrid materials generate a
large amount of reducing gases such as CHx, CO, and H2

under high temperature decomposition to achieve the in-situ
conversion of molybdenum carbide. The structure, morphology
and composition of the synthesized molybdenum carbide
have excellent controllability. Liao et al. (2014) synthesized
nanoporous Mo2C Nanowires (np-Mo2C NWs) by pyrolyzing
MoOx/amine hybrid precursors with sub-nanometer periodic
structure. This became the beginning of the “SC-OI-M” for the
development of highly active hydrogen evolution catalysts. β-
Mo2C has outstanding HER performance, but it often exhibits
excessive hydrogen absorption capacity, which restricts the
desorption step of hydrogen atoms inHER (i.e., Heyrovsky/Tafel)
(Wan et al., 2014). Shi et al. (2017) used electrostatic assembly
to prepare a three-component hybrid precursor of MoOx-
phytic acid-polyaniline. P-doped β-Mo2C composite nanowire
electrocatalyst (P-Mo2C@C NWs) was obtained after high
temperature carbonization (Figure 1C). On the nanometer scale,
the uniform ultra-small β-Mo2C particles provide abundant
exposed catalytically active sites, and the structure of the
one-dimensional nanowire facilitates the radial conduction of
electrons. The resulting graphitized carbon greatly improves
the overall conductivity and stability of the catalyst. At the
atomic scale, the introduction of P atoms effectively increases
the electron cloud density of the β-Mo2C Fermi level, and
introduces steric hindrance effects, effectively weakens the Mo-
H bond, reduces the 1GH∗ of β-Mo2C. Experimental and
theoretical calculations show that suitable P doping (2.9%) can
effectively balance the Volmer and Heyrovsky/Tafel processes
in the HER and optimize the intrinsic activity of β-Mo2C for
hydrogen evolution. Based on the controllability of this method,
the researcher also proposed a series of electronic and spatial
structure control methods. The formation of heterostructures
such as by Co atom doping (Lin et al., 2016a), MoC-Mo2C (Lin
et al., 2016b), and Fe3C-Mo2C (Lin et al., 2017a), the fine control
of the surface and structure of β-Mo2C was realized, and the
electrocatalytic performance was optimized.
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REGULATE THE CATALYTIC
PERFORMANCE OF HP-MoXC BASED
CATALYSTS

The key to construct a high-activity catalyst is using the
advantages of HP-MoxC catalyst with high electronic
conductivity and large specific surface area, combined with
the regulation of active sites. There are two basic principles
in the regulation of catalyst performance namely increasing
the active site and enhancing the intrinsic activity of the
material. For the former, it can be achieved by porous structure;
for the latter, it can be achieved by heteroatom doping and
constructing heterostructure.

Introducing Other Conductive Carriers
Enriched active sites of sufficient unsaturated Mo and C
atoms promote intimate contact between the electrolyte and
the electrode material, thereby enhancing catalytic performance
(Wang et al., 2019a; Cui et al., 2020). The introduction of a
suitable matrix to form a strong coupling toward the catalyst can
improve the intrinsic catalytic activity of MoxC, and also increase
the conductivity of the catalyst due to the synergistic effect
in the hybrid nanostructure, and hance, finally harvest desired
electrochemical performance (Amrute1 et al., 2019; Xiong et al.,
2019; Zhao et al., 2019c).

Up to now, a series of carbon materials such as reduced
graphene oxide and carbon nanotubes have been used for
supporting molybdenum carbide particles because of their large
surface area and excellent electronic conductivity (Huang et al.,
2019c; Li et al., 2019d; Wang et al., 2019e; Yu et al., 2019). Pan
et al. (2014) used glucose as GO stabilizer, carbon source and
reducing agent to prepareMo2C nanoparticles grown on reduced
graphene oxide (Mo2C-RGO), which showed excellent HER
electrocatalytic activity. Huang et al. (2019c) developed a new
technology for microwave-assisted ultrafast preparation of high
performance carbon supported molybdenum carbide catalysts
(Mo2C/G) (Figure 1D). They impregnated the carbon support
with ammonium molybdate solution and irradiated it with
microwave to obtain a carbon-supported molybdenum carbide
catalyst. The carbon carrier material acts as an absorbingmedium
to promote in-situ rapid heating of the material, and a carbon
source for formingMo2C. Thismethod can be applied to a variety
of large-scale production of carbon carriers, including graphene,
carbon nanotubes, commercial carbon black, and carbon fiber,
etc. The in situ formation of the carbon support ensures a tight
interfacial contact between the active material and the conductive
substrate, thereby promoting rapid charge transfer between the
substrate and the active material (Zhang et al., 2018; Han et al.,
2019; Hou et al., 2019). Finding a way to synthesize molybdenum
carbide/carbon support composites in one step is very valuable
(Hsieha et al., 2019; Wu et al., 2019). Cheng et al. (2018)
synthesized a 1 nm-sized molybdenum carbide nanoparticle
in a carbon (Mo2C@NC) nanomesh through hydrothermal
treatment, using dicyandiamide as a carbon and nitrogen source,
ammonium molybdate as a molybdenum source. During the
hydrothermal process, the intermolecular hydrogen bonding

is used to self-assemble into band structure to limit the
growth of particles. This mesoporous ribbon nanoweb structure
provides a high specific surface area and a rich active site,
greatly reduced the energy barrier. This material has excellent
HER/ORR performance compared to other materials. This work
demonstrates a simple template-free strategy for the synthesis
of highly efficient non-precious metal catalysts with large
specific surface areas. It also shows the possibility of replacing
platinum-based catalysts with molybdenum carbide materials
from theoretical to experimental evidence.

Doping
The performance of the catalyst can also be controlled by
doping. Heteroatom doping can be combined with addition
of conductive support to enhance the intrinsic activity of the
materials besides increasing the active site of the catalysts.
The doping of heteroatoms into the lattice of the catalyst can
adjust the electron and surface structure of the material, thereby
affecting the adsorption free energy of the reaction intermediate
on the surface, and improving the catalytic efficiency (Jia et al.,
2017; Guo et al., 2019; Li et al., 2019a). At present, non-metal
atoms (N, S, P, B, etc.), transition metals (Fe, Co, Ni, Zn, etc.)
are introduced to replace Mo/C atoms in MoxC. It can adjust
the intrinsic electron configuration of molybdenum carbide and
improve the conductivity (Li et al., 2019c; Wang et al., 2019c,f;
Zhong et al., 2019).

Nitrogen-doped nano-carbon support plays an important
role in improving electrocatalytic activity (Wu et al., 2018a;
Lyu et al., 2019). Wu et al. (2016) synthesized ultrafine Mo2C
nanoparticles embedded within bacterial cellulose-derived 3DN-
doped carbon nanofiber networks (Mo2C@N-CNFs). Theoretical
calculations demonstrate that excellent HER activity results from
a strong synergistic effect between Mo2C nanocatalyst and N-
CNF. Transition metal dopants (Ni, Co, Fe, etc.) can improve
catalytic performance by adjusting the electronic configuration,
creating new active sites and activating surrounding sites (Wu
et al., 2018b; Cao et al., 2019). Li et al. (2019b) synthesized
Ni/Mo2C nitrogen-doped carbon nanofibers (Ni/Mo2C-NCNFs)
by using the electrospinning method (Figure 1E). Synergistic
effect between Ni and Mo2C nanoparticles, high conductivity,
large electrochemical active surface area and effective N doping
significantly promote HER and OER due to strong hydrogen
binding energy on Mo2C and high conductivity of Ni. This work
provides a facile and effective way to produce low cost and
high performance dual functional electrocatalysts for efficient
overall water splitting. Since a single heteroatom doping has been
shown to improve the catalytic performance of carbon materials,
researchers developed binary or multi-heteroatom doped carbon
materials to adjust the d-orbitals and optimize the electronic
structure (Du et al., 2019; Ling et al., 2019; Kou et al., 2020).
Ang et al. (2016) reported the formation of layered Mo2C
by carburizing of molybdenum oxide/phenol/thioacetamide
hybrids, followed by solvent stripping of layered Mo2C to
further form N/S co-doped molybdenum carbide nanosheets.
The synthesized nanosheet has an ultrathin thickness (1 nm) and
a large specific surface area (139 m2 g−1). The incorporated N
and S effectively improve the wettability of the material. Wang
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et al. (2018a) synthesized NP-Mo2C by direct carbonization.
Theoretical calculations show that the doping of heteroatoms
into carbon promotes the transfer of electrons in the catalyst, and
the heteroatoms may also act as catalytic active sites (Gao et al.,
2019; Singh et al., 2019). Owing to the synergistic coupling, the
double doping of the N, P heteroatoms in Mo2C can remarkably
improve the intrinsic activity of each active site.

Hierarchical Porous Molybdenum
Carbide-Based Heterostructure
Heterostructured hybrids have shown superior electrochemical
performance compared to the corresponding single components
(Liang et al., 2019; Yao et al., 2019). Through the interface
electron transfer in a heterostructure, a large number of interfaces
between multiple components can induce optimization of the
electronic configuration (Wang et al., 2019d; He et al., 2020).
Therefore, constructing heterojunction is an effective way to
optimize the free energy of hydrogen adsorption.

The engineering design of molybdenum carbide-based
heterostructures provides a new perspective for electrocatalysis.
For example, heterostructures of Mo-Mo2C (Dong et al.,
2018), Mo2C-Mo2N (Chen et al., 2013), MoP@Mo2C
(Huang et al., 2018), and (Mo2C)x-(WC)1−x-QDs (Huo
et al., 2017). The synergistic effect of the interface portion
exhibits superior HER performance over the single component
molybdenum carbide. Dong et al. (2018) obtained a newMo-rich
molybdenum carbide-based electrocatalyst (Mo-Mo2C) by
calcining Mo3O10(C6H8N)2•2H2O precursor (Figure 1F). The
overpotential of the Mo-Mo2C hydrogen evolution reaction
is only 67mV, and the Tafel slope is as low as 55 mV/dec. Its
excellent HER performance can be attributed to the improvement
of the internal charge transfer ability of the catalyst.

Recently, Huang et al. (2019a) constructed a Mo2C/VC
heterostructure. The CO2 decomposed from Mg and NaHCO3

reacts at high temperature to generate a three-dimensional
carbon network. At the same time, the micro-scale precursor
V2MoO8 is broken into two-phase materials Mo2C and VC
that are not completely separated and embedded in the three-
dimensional carbon network. The three-dimensional conductive
carbon network and the cross-linked structure fully provide
electron transportability and structural stability.Mo2Chas strong

hydrogen adsorption capacity, while VC has strong hydrogen
desorption capacity, so single component Mo2C@C and VC@C
exhibit poor hydrogen evolution reactivity, while Mo2C/VC@C
shows rapid adsorption capacity and rapid desorption kinetics.
Based on the combination of experiment and theory, this
experiment proposes that the method of preparing a rich
interface structure by phase separation is a way to efficiently
prepare high performance catalyst. This approach can be
extended to other highly efficient heterogeneous catalysts and
different energy sources in the future.

DISCUSSION

In summary, molybdenum carbide-based materials are an
ideal HER material. In this review, recent developments
in the structural design and electronic regulation of
molybdenum-based catalysts are illustrated. Template method,
morphology-conserved transformations method, and secondary
conversion of organic-inorganic hybrid materials method
are effective strategies for synthesizing various molybdenum
carbide-based materials. By compounding with a conductive
carrier, element doping and designing a heterojunction can
achieve electronic optimization of HER kinetics, greatly
improving catalyst activity and stability. In practical applications,
material combinations and properties, flexible selection of
synthesis methods and performance control methods can
synergistically achieve highly efficient catalysts. However, the
large-scale application of electrolyzed water for hydrogen
evolution still has a long way to go. In combination with the
rapid development of molybdenum carbide in electrocatalytic
hydrogen evolution in recent years. Future research on
molybdenum carbide catalysts may focus on the development
of efficient new synthetic methods, the development of
molybdenum carbide hydrogen evolution devices, mechanism
research, standardized test and the mining and understanding of
structure-activity relationships.
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