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2

One of the major challenges in using upconversion nanoparticles (UCNPs) is to improve their 

brightness. This is particularly true for in vivo studies, as the low power excitation is required to 

prevent the potential photo toxicity to live cells and tissues. Here, we report that the typical 

NaYF4:Yb0.2,Er0.02 nanoparticles can be highly doped, and the formula of NaYF4:Yb0.8,Er0.06
 can 

gain orders of magnitude more brightness, which is applicable to a range of mild 980 nm 

excitation power densities, from 0.005 W/cm2 to 0.5 W/cm2. Our results reveal that the 

concentration of Yb3+ sensitizer ions plays an essential role, while increasing the doping 

concentration of Er3+ activator ions to 6 mol% only has incremental effect. We further 

demonstrated a type of bright UCNPs 12 nm in total diameter for in vivo tumor imaging at a 

power density as low as 0.0027 W/cm2, bringing down the excitation power requirement by 42 

times. This work re-defines the doping concentrations to fight for the issue of concentration 

quenching, so that ultra-small and bright nanoparticles can be used to further improve the 

performance of upconversion nanotechnology in photodynamic therapy, light-triggered drug 

release, optogenetics, and night vision enhancement. 

Upconversion materials can absorb two or more near-infrared (NIR) photons and emit shorter 

wavelength luminescence in the visible and ultraviolet (UV) 1-3. Such a fascinating anti-Stokes 

property has led to a broad range of optoelectronics applications, including full-colour displays 4, 

security inks5, photocatalysis 6, and photovoltaics 7. By taking the advantage of NIR deep penetration 

through the tissue as well as their exceptional photo stability, long decaying lifetimes8, large anti-stoke 

shifts and sharp emission spectra, the emerging field of lanthanide doped upconversion nanoparticles 

(UCNPs) has attracted a great deal of interests in bio-imaging9-12, light-controlled nanomedicine3, 13-16 

and NIR night vision enhancement 17. 

   One of the major challenges to transform upconversion nanotechnology is to reduce the excitation 

power requirement and improve the brightness of UCNPs. Due to the constraint of concentration 

quenching, the dopant concentrations are restricted at relatively low levels, e.g. 20 mol% Yb3+ as 

sensitizers and 2 mol% Er3+ or 0.5 mol% Tm3+ as activators 18, 19, to minimize luminescence quenching 

effects. In 2013, we reported that highly Tm3+-doped UCNPs can display exceptionally high brightness, 
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where high excitation power (up to ~ 106 W/cm2) was necessary to mitigate concentration quenching 

20. Significant efforts have been made to improve the brightness of UCNPs by increasing the doping 

concentrations of sensitizers and activators21-23. Remarkably, Steven Chu’s group recently reported 

that highly Yb3+ and Er3+ doped nanocrystals exhibit a 150-fold enhancement at 8 W/cm2 using an inert 

shell strategy22, and in parallel, the team led by Cohen, Chan, and Schuck at Berkeley reported that 

alloyed UCNPs can realize a deep-tissue imaging under the excitation power of 0.1 W/cm2 21. 

    Low-power excitation is required for the safe in vivo applications, e.g. the power densities in the 

range of 0.001 to 0.5 W/cm2 are needed for bioimaging10, NIR-triggered drug release3, photodynamic 

therapy14, 24, and night vision enhancement17. This gap between the high brightness and low power 

excitation becomes more evident when the size of UCNPs is within 15 nm, where the number of 

dopants per nanoparticles proportionally drops and surface quenching inevitably arises 25, 26. 

Here, we find that the concentrations of both Yb3+ sensitizers and Er3+activators can be further 

fine-tuned and gain the significant enhancement in the brightness of UCNPs for in vivo applications 

when only mild to ultra-low irradiance are required. We adopt here a series of controlled synthesis of 

core@shell@shell UCNPs (NaYF4@NaYF4:Ybx,Ery@NaYF4) to exclude the size effect, so that the 

influences of sensitizers’ and activators’ concentrations on the brightness of multi-colour upconversion 

emission can be systematically compared and quantified at a range of laser irradiance. For example, 

under an irradiance of 0.082 W/cm2, compared with the widely-used NaYF4:Yb0.2,Er0.02
 ones, the new 

formula of NaYF4:Yb0.8,Er0.06, yields the luminescence enhancements of 75.3, 40.8, 10.0, and 37.0 

folds in ultraviolet, violet, green, and red emissions, respectively. This has further guided us to achieve 

a new type of 12 nm highly-doped core-shell UCNPs with much enhanced red emissions for in vivo 

imaging using an excitation irradiance as low as 0.0027 W/cm2. 

  To quantify the roles of the concentrations of sensitizer ions and activator ions in enhancing the 

brightness of UCNPs, it requires the size of single UCNPs should be identical. Due to the difference 

in crystalline unit cells, the changes of Yb3+ concentrations, particularly at high levels, can significantly 

affect the overall size of nanoparticles when they are synthesized by the conventional coprecipitation 

method 23. Therefore, we use an inert NaYF4 core as the template and design a heterogeneous sandwich 

structure of inert-core@active-shell@inert-shell nanoparticles (Fig. 1a-c), so that the Yb3+ and Er3+ 
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concentrations can be arbitrarily tuned within the same volume of the active shell in the middle. The 

role of the inert NaYF4 shell is to minimize non-radiative energy loss by preventing the exciton energy 

transfer to the surface defects and surrounding solvents via Yb3+ ions. 

As shown in Fig. 1b-c, transmission electronic microscopy (TEM) images show the typical 

batches of highly uniform nanocrystals of NaYF4, NaYF4@NaYF4:Yb0.2,Er0.02, and 

NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4, synthesized by the layer-by-layer hot injection method 27. The 

sizes of core, core@shell, and core@shell@shell nanoparticles are 18 nm, 28 nm and 34 nm, 

respectively, indicating 5 nm active shell and 3 nm inert shell (Fig. S1). With the increase doping 

concentration of bother Yb3+ (80%) and Er3+ (6%) in the active shell, we get the highly doped 

core@shell@shell nanoparticles with the similar size (Fig. 1b-c). The actual concentrations of Y3+, 

Yb3+ and Er3+ of core@shell@shell nanoparticles are further characterized by using inductively 

coupled plasma mass spectrometry. The molar ratios of Y/Yb/Er in active shell of 

NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 and NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 have been calculated 

to be 0.79:0.19:0.018 and 0.15:0.78:0.063, respectively, which confirms that rare earth compositions 

of UCNP consistent to their feeding ratio. Also, all the synthesized nanoparticles are uniform with 

narrow size distributions (Fig. S1), which supports the following quantitative comparisons of the 

upconversion luminescence intensities. As shown in Fig. 1d, the luminescence spectra of as-

synthesized UCNPs have four characteristic peaks at 379 nm (ultraviolet), 407 nm (violet), 540 nm 

(green) and 650 nm (red), assigned to 4G11/2 → 4I15/2, 2H9/2 → 4I15/2, 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 

4I15/2 transitions of Er3+, respectively. Quantitatively, highly doped 

NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 nanoparticles result in 39, 24, 6.4, and 21 fold brightness 

enhancements in ultraviolet, violet, green, and red, compared with the 

NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 nanocrystals under the excitation power of 0.25 W/cm2. 

Page 4 of 15

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://pubs-acs-org.ezproxy.lib.uts.edu.au/doi/10.1021/acs.nanolett.6b05331#fig1


5

 
Figure 1. TEM images of NaYF4 core (a), NaYF4@NaYF4:Yb0.2,Er0.02

 (b, left), NaYF4@NaYF4:Yb0.8,Er0.06
 

(b, right), NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 (c, left), and NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 (c, right), 
the scale bar is 50 nm. (d) Luminescence spectra of NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 and 
NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 under the excitation power of 0.25 W/cm2, (e) Integrated 
luminescence intensity enhancement of NaYF4@NaYF4:Ybx,Ery@NaYF4 samples compared with 
NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 under the excitation power of 0.25 W/cm2. 

   We then systematically synthesize a series of 20 batches of UCNPs doped with different dopant 

combinations of sensitizer (x) and activator (y) and study their optical properties. We orthogonally 

apply four different Yb3+ concentrations (x = 20%, 40%, 65% and 80%) and five different Er3+ dopant 

concentrations (y = 2%, 4%, 6%, 8% and 10%). All the nanoparticles have the same structure and size 

as confirmed by the TEM results (Fig. S2-5). As shown in Fig. 1e, the brightness of UCNPs increases 

with an increase of Yb3+ from 20% to 80% when fixing the doping concentration of Er3+, which is due 

to both the elevated photon harvest efficiency of the sensitizers and the reduced distance between 

donor and acceptor, as energy transfer rate is proportional to d–6 in dipole–dipole interaction (d refers 

to the average donor–acceptor distance) 28. The luminescence intensity first enhances with ascended 
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Er3+ concentration from 2% to 6% and then declines with the Er3+ concentration above 6%, showing a 

sign of the cross-relaxation induced energy loss. By fixing the Er3+ concentration at 6%, we further 

increase the Yb3+ concentration to 94% (Fig. S6), and find that the luminescence intensity of 

NaYF4@NaYbF4:Er0.06@NaYF4 is lower than that of NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 (Fig. S7), 

which is consistent to the previous report.29 To further study the effect of Yb3+ concentration on the 

energy transfer process, we examine the time-resolved green emission of the samples with different 

Yb3+ concentrations. As shown in Fig. S8, the luminescence lifetime decreases from 252 to 99 μs as 

the Yb3+ concentration increases from 20% to 94%, which indicates the back-energy-transfer process 

from Er3+ to Yb3+ in the highly doped samples. Therefore, the optimal Yb3+ concentration at 80% is to 

balance the effects of increasing absorption and reducing back-energy-transfer. 

The luminescence enhancement of UCNPs can be strongly power-dependent. As shown in Fig. 

2a, when the excitation power density increases from 0.25 W/cm2 to 0.5 W/cm2, the enhancement 

factors slightly decrease from 39, 24, 6.4, and 21 folds to 23, 13, 3.7, and 19 folds, at the ultraviolet, 

violet, green, and red emission bands, respectively. When the excitation power density decreases to 

0.005 W/cm2, the enhancement by the highly doped UCNPs is more obvious, e.g. 16 folds at the green 

band (Fig. 2b). To further understand the brightness enhancement of highly doped UCNPs, we 

systemically conduct power dependent luminescence measurements in the range of 0.005 to 0.5 W/cm2, 

integrate the emissions from different bandwidth (Fig. S9) and further calculated the enhancement 

factors, as shown in Fig. 2c. The emission intensity ratio at 407 nm increases from 13.0 to 49.0 when 

the irradiance decreases from 0.5 to 0.062 W/cm2. Similarly, luminescence enhancement at 379 nm 

increases around 3 times and achieves 75.3 at the irradiance of 0.081 W/cm2. Also, the brightness 

enhancement factors of green and red luminescence (540 nm and 650 nm) increase from 3.7 and 19.0 

to 15.2 and 38.0, respectively, when the irradiance reduces from 0.5 to 0.016 W/cm2. This trend is 

consistent with the increased probability of highly efficient energy absorption of the highly Yb3+-doped 

UCNPs at relatively low irradiance. 
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Figure 2. Luminescence spectra of NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 and 
NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 under the irradiance of 0.5 W/cm2 (a) and 0.005 W/cm2 (b). (c) 
Comparison of power-dependent luminescence intensity enhancements between 
NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 and NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 at UV (379 nm), violet (407 
nm), green (540 nm), and red (650 nm) bands, respectively. 

We determine that the sensitizers’ concentration dominates the power-dependent properties, as 

shown in Fig. 3. For the highly Yb3+-doped NaYF4@NaYF4:Yb0.8,Er0.02@NaYF4 nanoparticles, the 

brightness enhancement factors across all the emission bands significantly increase with the decrease 

of irradiance (Fig. 3a). For example, the enhancement factors of the UV emissions increase 

significantly from 17.1 to 52.5. In contrast, the irradiance has negligible effect in the brightness 

enhancement factors for the highly Er3+-doped NaYF4@NaYF4:Yb0.2,Er0.06@NaYF4 nanoparticles 

(Fig. 3b). Similarly, with the optimal Yb3+ concentration of 80%, the increase of Er3+ doping 

concentration from 2% to 6% only slightly increases the luminescence with the enhancement factor 

around 1.8 (Fig. 3c). Also, the enhancement factors do not change with the excitation power density. 

These results suggest the increased NIR photon sensitization becomes critical to increase the brightness 

of highly doped UCNPs under the mild and low irradiance conditions. 
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Figure 3. The power-dependent upconversion enhancement factors for 
NaYF4@NaYF4:Yb0.8,Er0.02@NaYF4 compared with NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 (a), 
NaYF4@NaYF4:Yb0.2,Er0.06@NaYF4 compared with NaYF4@NaYF4:Yb0.2,Er0.02@NaYF4 (b), and 
NaYF4@NaYF4:Yb0.8,Er0.06@NaYF4 compared with NaYF4@NaYF4:Yb0.8,Er0.02@NaYF4 (c) at different 
emission bands.  

We then survey the broad range of demonstrated in vivo applications using the conventional 

NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs, as summarized in Table 1. We anticipate that the new formula 

of highly doped UCNPs will immediately offer at least one order of magnitude brightness enhancement 

or to achieve the same performance with a much reduced irradiance. For bioimaging, the red 

upconversion emissions are the preferable due to the less extinction through the tissues 10, 30, therefore 

the enhancement factor of 37 in red band using the NaYF4:Yb0.8,Er0.06@NaYF4 will significantly 

improve the imaging sensitivity. Similarly, the improved photodynamic therapy treatment will be 

achieved by using the NaYF4:Yb0.8,Er0.06@NaYF4, as the red emission from Er3+-doped UCNPs is 

commonly used to active photosensitizer (Zinc phthalocyanine)14, 24. For NIR light-triggered drug 

release, the green emission of NaYF4:Yb0.2,Er0.02@NaYF4 could be used to photolysis Roussin's black 

salt to generate NO under the excitation power of 5-30 W/cm2 3, 31. Also, relatively high excitation 

power (0.5-400 W/cm2) is needed for NaYF4:Yb0.2,Er0.02@NaYF4 to generate the strong green light 

for optogenetics applications13, 32. With the usage of NaYF4:Yb0.8,Er0.06@NaYF4, the excitation power 

could be significantly reduced for safety in vivo drug delivery and optogenetics applications. Recently, 

Ma et al. developed ocular injectable photoreceptor-binding UCNPs to extend the mammalian visual 

spectrum into the NIR range under the excitation power of 0.0016 W/cm2 17. We anticipate the new 

doping formula will improve the green emission for around 15 times and significantly improve the 
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sensitivity to the NIR light.

 

Table 1. A summary of the anticipated improvements for the highly doped UCNPs in bio applications

Recommended 

applications

Upconversion 

nanoparticles

Desirable 

emission band

Irradiance 

range 

Ref. Anticipated improvement if using the new 

doping formula

In vivo bio-

imaging

NaYF4:Yb0.2,Er0.02 Red (600 ~ 700 

nm)

0.12 W/cm2  30 38 times luminescence enhancement 

Photodynamic 

therapy

NaYF4:Yb0.2,Er0.02 Red (~650 nm) 0.39-0.415 

W/cm2 

 
14, 24 

26 times luminescence enhancement or reduce 

the irradiance to < 0.1 W/cm2

Drug release 

and delivery

NaYF4:Yb0.25,Er0.02 Green (510 ~ 

560 nm)

0.5-400 

W/cm2

31 ~ 15 times luminescence enhancement or 

reduce the irradiance to < 0.5 W/cm2

Optogenetics NaYF4:Yb0.2,Er0.02

@NaYF4 

Green (510 ~ 

560 nm)

0.44-140 

W/cm2

13, 32 ~ 10 times luminescence enhancement or 

reduce the irradiance to < 0.8 W/cm2

Night vision 

enhancement

NaYF4:Yb0.2,Er0.02

@NaYF4 

Green (~550 

nm) 

0.0016 

W/cm2

17 ~ 15 times luminescence enhancement 

We further validate the advantage of the highly doped UCNPs for in vivo tumor imaging. In this 

experiment, as ideal nanoparticles with the smaller size are preferred due to higher efficiency in cargos 

delivery, and their improved body clearance and biocompatibility33, we simplify our design into 

NaYF4:Yb0.8,Er0.06@NaYF4 so that smaller sized highly doped UCNPs can be synthesized. The 

NaYF4:Yb0.8,Er0.06 active cores display a narrow size distribution with an average diameter of 8.6 nm, 

and the final size of NaYF4:Yb0.8,Er0.06@NaYF4 is measured to be 11.9 nm (Fig. S10a-b), smaller than 

the size of dye-labelled IgG antibody34. It should be noted that the formula of 

NaYF4:Yb0.8,Er0.06@NaYF4 UCNPs displays the enhanced emission compared with that with low 

doping concentrations (Fig. S10c), suggesting that the optimal concentrations of Yb3+ and Er3+ ions 

are independent on the size of the nanoparticles.

 To demonstrate the improved brightness and tissue penetration ability of the 12 nm highly doped 

UCNPs, we first test them underneath the pork tissue (Fig. S11). As shown in Fig. 4a-b, using an 

irradiance of 0.5 W/cm2, the strong 660 nm band upconversion image of NaYF4:Yb0.8,Er0.06@NaYF4 

can be detected at a tissue depth of 4.0 mm, while the signal of conventional 
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NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs can only penetrate 1.0 mm. Quantitatively, the signal to noise 

ratio (SNR) of NaYF4:Yb0.8,Er0.06@NaYF4 covered by 1 mm pork tissue is around 20, which is 5 times 

higher than the SNR of NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs (Fig. 4c). The penetration ability of green 

luminescent signals from both NaYF4:Yb0.8,Er0.06@NaYF4 and NaYF4:Yb0.2,Er0.02@NaYF4 is relative 

weak, as the green SNR of NaYF4:Yb0.8,Er0.06@NaYF4 covered by 1 mm pork tissue is 6.1 while the 

SNR of NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs is only 1.5 (Figure S12). 

 
Figure 4. Luminescence imaging of NaYF4:Yb0.8,Er0.06@NaYF4 (a) and NaYF4:Yb0.2,Er0.02@NaYF4 (b) at 
660 ± 13 nm under different thickness of pork tissue. (c) Quantitative analysis of luminescent signal 
to noise ratio. In vivo tumor imaging of mice injected with NaYF4:Yb0.8,Er0.06@NaYF4 (d) and 
NaYF4:Yb0.2,Er0.02@NaYF4 (e) with the 980 nm laser intensity of 0.112 W/cm2. (f) The power-
dependent signal to noise ratio of the tumor site injected with the upconversion contrast agents.

To demonstrate NaYF4:Yb0.8,Er0.06@NaYF4 UCNPs as a more efficient contrast agent for bio 

imaging, we perform an in vivo tumor imaging experiment in the mouse model. As shown in Fig. 4 

d-e, the tumor site shows an obvious luminescence signals after the administration of 

NaYF4:Yb0.8,Er0.06@NaYF4 under the excitation power density of 0.112 W/cm2, while the tumor site 

injected with NaYF4:Yb0.2,Er0.02@NaYF4 only shows a quite weak signal. Further reducing the 

excitation power, the luminescence signals of both samples becomes weaker (Fig. S13). The minimum 
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excitation laser intensity of 0.112 W/cm2 is required and the signals are barely distinguished from 

background for the tumor area injected with NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs. In contrast, though 

the irradiance decreases from 0.112 to 0.0027 W/cm2, the NaYF4:Yb0.8,Er0.06@NaYF4 UCNPs are still 

detectable with a SNR of 1.4, as shown in Fig. 4f. The new formula of NaYF4:Yb0.8,Er0.06@NaYF4 

UCNPs allows an extremely low excitation power density of 0.0027 W/cm2 to ignite the marginal area 

of tumor. This intensity is sufficiently low for their safety usage in the eye region 17, which is 

potentially useful for mammalian vision repair and enhancement. The reduced dependency of UCNPs 

on the high excitation power is prospective for non-invasive in vivo imaging to avoid the serious 

damage in biological tissues. 

In conclusion, we identified that 80% Yb3+ sensitizers and 6% Er3+ activators as the optimal 

concentrations to yield the highest brightness of UCNPs when mild irradiance of 0.005 to 0.5 W/cm2 

is required for many in vivo bio applications. The optimized formula leads to more than one orders of 

magnitude enhancements of the upconversion emissions. We further realized the controlled synthesis 

of 12 nm NaYF4:Yb0.8,Er0.06@NaYF4 for in vivo tumor imaging with 980 nm excitation irradiance as 

low as 0.0027 W/cm2. This work suggests the many recently demonstrated applications of the 

conventional NaYF4:Yb0.2,Er0.02@NaYF4 UCNPs in photodynamic therapy, light-triggered drug 

release, optogenetics, and night vision enhancement will immediately benefit by achieving at least one 

order of magnitude better performance or significantly reduced power requirement to improve the 

safety concerns associated with high power irradiance.

Associated Content
Supporting Information
The Supporting Information is available on the ACS Publications website including:
Detailed experiment sections, UCNPs synthesis, TEM images and size distribution histograms, 
luminescent spectra, integrated luminescent signals, In vitro and in vivo luminescence images 
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