
 

1 
 

 1 

Insights from extreme coral reefs in a changing world 2 

 3 

Burt JA1,*,  Camp EF2, Enochs IC3, Johansen JL4, Morgan KM5, Riegl B6, Hoey AS7  4 

 5 

1 Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 6 
United Arab Emirates 7 

2 University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo NSW 8 

2007, Australia 9 
3 NOAA, Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and 10 

Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL 33149, USA 11 
4 Hawaii Institute of Marine Biology, University of Hawaii Manoa, HI, USA 12 
5 Asian School of the Environment, Nanyang Technological University, Singapore 637459, 13 

Singapore 14 
6 Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania 15 

Beach, Florida, USA  16 
7 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 17 

4811, Australia 18 

* Correspondence: John.Burt@nyu.edu 19 

 20 

Abstract 21 

Coral reefs are one of the most biodiverse and economically important ecosystems in the world, 22 

but they are rapidly degrading due to the effects of global climate change and local 23 

anthropogenic stressors. Reef scientists are increasingly studying coral reefs that occur in 24 

marginal and extreme environments to understand how organisms respond to, and cope with, 25 

environmental stress, and to gain insight into how reef organisms may acclimate or adapt to 26 

future environmental change. To date, there have been >860 publications describing the biology 27 

and/or abiotic conditions of marginal and extreme reef environments, most of which were 28 

published within the past decade. These include systems characterized by unusually high, low, 29 

and/or variable temperatures (intertidal, lagoonal, high-latitude areas, and shallow seas), turbid 30 

or urban environments, acidified habitats, and mesophotic depth, and focus on reefs 31 
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geographically spread throughout most of the tropics. The papers in this special issue of Coral 32 

Reefs, entitled Coral Reefs in a Changing World: Insights from Extremes, build on the growing 33 

body of literature on these unique and important ecosystems, providing a deeper understanding 34 

of the patterns and processes governing life in marginal reef systems, and the implications that 35 

these insights may have for the future of tropical coral reefs in our rapidly changing world.  36 
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 39 

Introduction 40 

Coral reefs are one of the most biodiverse and economically important ecosystems in the world, 41 

but they are increasingly under threat from anthropogenic activities (Mora and Sale 2011; 42 

Hughes et al. 2017a; 2018; Pörtner et al. 2019). Land-use changes and coastal development have 43 

increased sedimentation, eutrophication, and pollution in many nearshore areas. Declining water 44 

quality, along with overharvesting of functionally important fishes, have led to the degradation 45 

of reef habitats (Hughes et al. 2007; Maina et al. 2013; Kroon et al. 2016; Burt and Bartholomew 46 

2019). These localized pressures have been greatly compounded by global stressors, namely 47 

ocean warming and acidification resulting from enhanced greenhouse gas emissions (Baker et al. 48 

2008; Riegl et al. 2009; Hoey et al. 2016b; Hoegh-Guldberg et al. 2017) and growing extent and 49 

severity of oxygen-depleted ‘dead zones’ (Diaz and Rosenberg 2008) and hypoxia events 50 

(Hughes et al. 2020). Importantly, the increasing frequency and intensity of marine heat waves 51 

have led to thermally-induced mass fish mortalities and coral bleaching events (Pearce et al. 52 

2011; Hughes et al. 2017b; Holbrook et al. 2019), declines in coral cover globally (Gardner et al. 53 
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2003; De’ath et al. 2012; Perry and Morgan 2017; Hughes et al. 2018b), shifts in coral 54 

assemblages (Hughes et al. 2018a; Pratchett et al. 2020), and the subsequent recruitment failure 55 

of coral populations (Riegl et al. 2018; Burt and Bauman 2019; Hughes et al. 2019). 56 

Reef scientists are increasingly studying coral reefs that inhabit marginal and extreme 57 

environments to develop an understanding of how reef organisms elsewhere in the tropics may 58 

respond to future environmental change (Perry and Larcombe 2003; Burt et al. 2014; Camp et al. 59 

2018; Glynn et al. 2018; Schleyer et al. 2018). Reefs occurring in thermally extreme habitats 60 

(e.g. Howells et al. 2016a; Camp et al. 2019), or thermally variable high-latitude environments 61 

(e.g. Krueger et al. 2017; Thomas et al. 2017), highly turbid or urban areas (e.g. Loya et al. 2016; 62 

Morgan et al. 2016; Bauman et al. 2017), mesophotic depths (e.g. Loya et al. 2016; Semmler et 63 

al. 2017), near volcanic vents (e.g. Fabricius et al. 2011; Enochs et al. 2015), or lagoons where 64 

multiple abiotic parameters vary (Camp et al. 2019),  among others, act as natural laboratories in 65 

which researchers can examine the response of reef organisms to unabated environmental 66 

stressors.  67 

These marginal reef sites are particularly valuable because they represent exposure to extreme 68 

conditions for durations greatly in excess of what can be replicated in the lab; they incorporate 69 

environmental complexity, subjecting organisms to naturally co-occurring stressors; and they 70 

involve diverse community interactions and complicated ecological processes that can be 71 

difficult to simulate in experimentally. Ultimately, this understanding of how reef species and 72 

communities are coping with extreme environments is shedding light onto how they may 73 

acclimate or adapt to changing conditions elsewhere in the world in the coming decades.  74 

A search of the literature relating to four marginal or extreme environments from 1965 - 2019 75 

(Web of Science: topic = coral AND (marginal OR peripheral OR sub-tropical OR turbid OR 76 
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mesophotic OR vent) returned >2,500 records. These publications were then filtered for 77 

relevance, with 867 being conducted in marginal or extreme environments. The total number of 78 

publications relating to extreme temperature (including sub-tropical reefs), turbid or urban, and 79 

mesophotic environments was broadly comparable (316, 223, and 292 publications, 80 

respectively), with far fewer being conducted in extreme pH setting (29 studies). There were, 81 

however, considerable differences in the spatial and temporal distribution of publications arising 82 

from these environments (Figure 1). The vast majority of studies that have examined the effects 83 

of extreme and/or variable temperatures on coral reefs have been conducted in subtropical 84 

regions or areas of extensive upwelling (i.e., the Tropical East Pacific), while those examining 85 

turbid reefs have been concentrated around the inshore reefs of Australia’s Great Barrier Reef, 86 

and reefs in urbanized areas of Indonesia and Singapore (Figure 1a, b). Studies of extreme pH 87 

waters have been concentrated around Japan and southeast Asia (Figure 1c), while studies of 88 

mesophotic reef environments were broadly spread across most tropical locations, with higher 89 

concentrations of studies in the Atlantic, Hawaii and Gulf of Aqaba (Figure 1d). There were also 90 

marked differences in the temporal distribution of publication among extreme environments, 91 

with the number of publications conducted in unusually warm, cold and turbid environments 92 

increasing relatively gradually since the 1990’s (Figure 1a,b). In contrast, there has been a rapid 93 

increase in the number of publications relating to mesophotic environments since 2010 (Figure 94 

1d), likely reflecting technological advancements (e.g., rebreathers) that have facilitated access 95 

to these environments (e.g. Loya et al. 2019). The 25 papers included in this special issue Coral 96 

Reefs in a Changing World: Insights from Extremes build on these previous studies to provide 97 

new insights into the ecology of extreme reefs through investigation of intertidal, lagoon, turbid, 98 

urban, acidified, and thermally anomalous environments. 99 
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>>INSERT FIG. 1>>> 101 

 102 

Intertidal and shallow reefs 103 

Shallow and coastal reef environments are often subject to marginal environmental conditions 104 

including variable and high temperatures and pH, high turbidity and sedimentation, and 105 

fluctuating salinity (Camp et al. 2018).  For example, in the back reef tide pools on Ofu Island, 106 

American Samoa, sea surface temperatures can reach >35 °C during low tides, and fluctuations 107 

of up to 10 °C across tidal cycles (Oliver and Palumbi 2011a). Such systems provide a useful 108 

model system to understand how organisms respond to highly variable environmental stress. The 109 

continued and increasing interest in thermally extreme environments (Figure 1a) is not surprising 110 

given increasing water temperature is seen as the greatest threat to the structure and functioning 111 

of coral reefs globally (Hoey et al. 2016b; Hughes et al. 2018b). There has been a long history of 112 

coral reef research in thermally extreme environments that initially focused on the environmental 113 

conditions that limited the distribution of corals and coral reefs (Kinsman 1964; Glynn and 114 

Wellington 1983; Sheppard et al. 1992). However, the increased frequency and intensity of 115 

marine heatwaves (Holbrook et al. 2019) has led to a renewed focus to understand how corals in 116 

these areas acclimate and/or adapt to extreme temperatures through examination of intertidal 117 

reefs, lagoonal coral communities, and reefs in thermally stressful seas (Glynn 1983,1984; Riegl 118 

et al. 2011; Glynn et al. 2016; Camp et al. 2018).  119 

Despite the hostile environmental conditions in shallow and intertidal reef environments, they 120 

have been demonstrated to house diverse and abundant coral communities (Craig et al. 2001), 121 
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including a range of bleaching-resistant corals (Safaie et al. 2018). These coral communities 122 

have demonstrated enhanced thermal tolerance that is underpinned by association with heat-123 

tolerant symbionts (Oliver and Palumbi 2011b), unique bacterial communities (Ziegler et al. 124 

2017), and acclamatory and adaptive mechanisms in the coral host itself (Barshis et al. 2013; 125 

Bay and Palumbi 2014; Thomas et al. 2018). 126 

While research indicates that corals from highly variable intertidal environments have enhanced 127 

resilience to thermal stress, they are not immune to extreme conditions. In the Kimberley region 128 

of northwestern Australia where tidal amplitude can be > 10 m, intertidal coral assemblages, 129 

often dominated by Acropora, are regularly experiencing water temperatures as high as 37 °C, 130 

and aerial exposure for several hours a day (Richards et al. 2015). Despite being seemingly 131 

adapted to these extreme conditions, these intertidal corals are also susceptible to elevated 132 

temperatures with up to 80% of coral colonies bleaching following prolonged exposure to 133 

elevated temperatures (4.5–9.3 Degree Heating Weeks, DHW) in 2015/16 (Le Nohaïc et al. 134 

2017). An experimental study demonstrated that intertidal corals from the Kimberley region are 135 

highly sensitive to relatively small increases in water temperature above the typical range for this 136 

region, with several species experiencing more pronounced bleaching and Acropora spp. 137 

experiencing up to 75% mortality after only a few days of exposure to a 1 °C increase in water 138 

temperature (Schoepf et al. 2015). This result indicates that while they may be resilient to the 139 

short-term temperature variation and extremes that occur over tidal cycles (e.g. through short-140 

term changes in gene expression over tidal cycles, Ruiz-Jones and Palumbi 2017), they have 141 

limited capacity to contend with thermal stress over longer durations (i.e., days to weeks). 142 

Consistent with these findings from the Kimberley region, Buckee et al. (2019) reported the 143 

recent loss of large areas of intertidal corals in the Houtman Abrolhos Islands, a high-latitude 144 
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reef system off Western Australia in 2018. Three months of recurrent low water levels exposed 145 

intertidal coral communities to aerial conditions in the middle of the day and resulted in a ca. 146 

30% loss of total coral cover, due entirely to mortality of Acropora. This mortality of shallow 147 

Acropora occurred despite these corals being regularly exposed during spring tides, with no 148 

previous records of bleaching (Webster et al. 2002). The unusually low mid-day water levels that 149 

occurred in the spring of 2018 were due to the confluence of diurnal spring tides, seasonal sea-150 

level minima, and  El-Nino-Southern Oscillation-related interannual variability in sea levels 151 

(Buckee et al. 2019).  These results indicate that the effects of the El-Nino-Southern Oscillation 152 

on coral reefs extend beyond the well documented influence on temperatures, and that while 153 

intertidal corals are able to cope with high diurnal variations in temperature, they (like their 154 

subtidal counterparts) are susceptible to prolonged exposure to elevated temperatures.   155 

 156 

Lagoonal reefs 157 

Another environmentally extreme reef system that is drawing increasing attention is that of 158 

mangrove lagoons. Due to the shallow depth, restricted flushing in these systems, coral 159 

communities are often subject to extreme and highly variable temperatures (diel range: 7.7 °C, 160 

Camp et al. 2019). High metabolic demands drive frequent exposure to low dissolved oxygen (< 161 

3 mg L-1), and recurrent reduced pH (< 7.3 pHT) across seasonal and tidal cycles (Manzello et al. 162 

2012; Camp et al. 2017), making them one of the most extreme coral habitats identified to date. 163 

Several recent studies have shown that lagoon coral communities tend to have increased 164 

respiration accompanied by reduced net photosynthesis (Camp et al. 2017; Camp et al. 2019; 165 

Camp et al. 2020), indicating that heterotrophic energy acquisition is likely an important 166 

mechanism of physiological plasticity that allows corals to survive in these extreme conditions. 167 
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These are similar to patterns reported for turbid reefs (Guest et al. 2016b; Teixeira et al. 2019), 168 

suggesting that heterotrophy may be a broadly utilized strategy across marginal environments. In 169 

mangrove lagoons, reduced coral species diversity and lower calcification rates relative to 170 

adjacent reefs demonstrates some of the costs and trade-offs of survival into suboptimal 171 

environmental conditions (Camp et al. 2016; Camp et al. 2017; Camp et al. 2019). 172 

There is increasing recognition of the role that the microbiome plays in supporting the coral 173 

holobiont, especially in lagoon systems. Lagoon coral communities have repeatedly been shown 174 

to be associated with unique assemblages of algal symbionts compared with adjacent open-water 175 

reefs (Camp et al. 2019; Camp et al. 2020). Several studies have now reported that rather than 176 

hosting a prevalence of stress-tolerant Durusdinium, lagoon corals are often dominated by novel 177 

unexpected symbiont partners (Smith et al. 2017b; Camp et al. 2020), suggesting that flexibility 178 

in symbiont associations supports coral persistence under the unique metabolic demands in these 179 

lagoon systems. Recent development of analytical tools that use next‐generation sequencing data 180 

of the ITS2 rDNA to exploit intragenomic variants now allows identification of ITS2‐type 181 

profiles representative of putative Symbiodiniaceae taxa that were unresolved using earlier 182 

methods (Hume et al. 2019). Such techniques have the capacity to show fine-scale divergence in 183 

algal genotypes that may represent highly niche-adapted coral-Symbiodiniacaea associations 184 

(Howells et al. 2020; Hume et al. 2020), and will allow further insights into the role of algal 185 

symbionts in the survival of corals in extreme lagoon environments. 186 

There is also increasing interest in understanding how host-associated bacterial communities 187 

support coral survival in such extreme conditions. Camp et al. (2020) showed divergent bacterial 188 

communities associating with corals in lagoon habitats compared with open reef habitats, 189 

suggesting species-specific plasticity in altering bacterial composition in relation to the 190 



 

9 
 

prevailing environmental conditions. Such flexibility may offer opportunity for rapid holobiont 191 

acclimation or adaptation to environmental stress through bacterial microbiome changes (e.g. 192 

Ziegler et al. 2017; Ziegler et al. 2019), and thus may represent a currently under-studied 193 

mechanism for corals to cope with environmental extremes and future climate change.  194 

 195 

Thermally extreme seas 196 

In addition to specific habitat types, research has also grown rapidly on larger marginal marine 197 

systems for the insights that they can provide into how reef fauna and ecosystems cope with 198 

environmental extremes, in particular in the Persian/Arabian Gulf and the Red Sea (Riegl et al. 199 

2011; Berumen et al. 2013; Burt 2013; Vaughan and Burt 2016). Large areas of both the 200 

Persian/Arabian Gulf and the Red Sea are characterized by extreme sea surface temperatures in 201 

summer (>35 °C and >33 °C, respectively), large seasonal temperature ranges (>15 °C and >10 202 

°C, respectively), and by persistent hyper-salinity (>44 and >41 PSU, respectively) 203 

(Ateweberhan et al. 2006; Riegl and Purkis 2012; Carvalho et al. 2019; Vaughan et al. 2019). 204 

Despite these conditions, corals occur in all eight nations bordering the Persian/Arabian Gulf, 205 

and the Red Sea harbors one of the most diverse and endemic-rich reef assemblages in the world 206 

(Carvalho et al. 2019; Vaughan et al. 2019).  207 

Recent research has shown that the superior thermal tolerance of corals in the Persian/Arabian 208 

Gulf is the result of a suite of mechanisms including prevalent and persistent association with a 209 

novel species of thermally tolerant symbiodinium, Cladocopium thermophilum (Hume et al. 210 

2015; Hume et al. 2018; Howells et al. 2020), genetic adaptations in both the algal symbionts 211 

and the coral host (Howells et al. 2016a; Smith et al. 2017a), enhanced transcription of host 212 
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stress response genes during thermal extremes (Kirk et al. 2018), and heritable epigenetic 213 

modifications though DNA methylation that can promote acclimatization within generations and 214 

the transfer of these modifications between generations (Liew et al. 2020). Similarly, corals in 215 

the northern Red Sea have an exceptionally high bleaching threshold that may have been shaped 216 

by the selective thermal barrier presented in the southern Red Sea, resulting in coral genotypes 217 

that have lower susceptibility to thermal stress (Fine et al. 2013), and able to resist bleaching 218 

even after >15 DHW (Osman et al. 2018). 219 

Despite the superior thermal tolerance of reef organisms in this region, there is increasing 220 

evidence that life in these extremes comes at a cost. It is well documented that species richness 221 

of reef fauna declines dramatically in relation to environmental stress in the Persian/Arabian 222 

Gulf (471 vs 1171 fish species and 40 vs 140 coral species in the adjacent Sea of Oman; Burt et 223 

al. 2011; Riegl et al. 2012; Bauman et al. 2013a; Buchanan et al. 2019; Claereboudt 2019), but 224 

more subtle pictures have emerged in recent years. Compared with conspecifics in the 225 

neighboring Sea of Oman, corals in the Persian/Arabian Gulf have smaller colony size (Bauman 226 

et al. 2013b), reduced fecundity in some species (Howells et al. 2016b), and, depending the 227 

species and local environmental conditions, can have reduced calcification rates (Howells et al. 228 

2018), suggesting trade-offs are incurred to survive in these extreme conditions, as also reported 229 

in lagoonal systems (e.g. Camp et al. 2017). Recent surveys of coral disease in the southern Gulf 230 

have shown that white syndrome outbreaks consistently occur in early summer and increased 231 

exponentially with cumulative heat exposure (Howells et al. In Press), suggesting that thermal 232 

stress may also compromise coral immune systems and/or enhance virulence of the disease 233 

pathogens. The occurrence of these outbreaks, despite a near absence (<5%) of bleaching when 234 

daily temperatures were >35 °C, indicates that disease presents as a primary signal of thermal 235 
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stress that would not otherwise be readily discernable (Howells et al. In Press). These 236 

observations are complimented by a larger-scale survey across 17 reefs in Persian/Arabian Gulf 237 

and adjacent water bodies which showed that disease prevalence was more than four to eight 238 

times higher in Gulf (2.05%) than in the adjacent seas, with disease prevalence primarily related 239 

to extreme temperature ranges (Aeby et al. 2020). These findings indicate that disease-related 240 

costs of thermal stress are likely a common feature across species and reefs in this extreme 241 

environment.  242 

Similar environmental constraints also apply to reef fishes. Although less studied than coral, 243 

research over the past decade has shown that reef fish communities in the Persian/Arabian Gulf 244 

are low in species richness (241 species), abundance and biomass, and are comprised of smaller 245 

individuals than conspecifics that occur in adjacent seas (Feary et al. 2010; Burt et al. 2011; 246 

Buchanan et al. 2016). These communities also function differently, being largely dominated by 247 

small-bodied herbivores, omnivores and generalist predators and containing relatively few 248 

planktivores, corallivores and large herbivores (e.g. parrotfishes) that are common to reefs 249 

elsewhere (Burt et al. 2011; Pratchett et al. 2013; Hoey et al. 2016a). Dietary patterns are also 250 

divergent. For example, butterflyfish communities are largely dominated by facultative 251 

corallivores, while obligate corallivores are rare or absent (Pratchett et al. 2013), and several 252 

species of fishes have been shown to consume unusual food resources relative to their typical 253 

diets, particularly during the metabolically challenging summer season (Shraim et al. 2017), 254 

suggesting that they are resorting to dietary flexibility to support seasonally dynamic and 255 

sometimes extreme energetic demands for survival.  256 

The results of a recent behavioral study suggest that reef fishes may also use behavioral changes 257 

to downregulate costly activities during extreme seasons and upregulate activities that enhance 258 
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energy stores during more benign seasons. Using a combination of field observations and aquaria 259 

experiments, D’Agostino et al (2019) showed that during the metabolically challenging summer 260 

and winter seasons, the damselfish Pomacentrus trichrourous substantially reduced their feeding 261 

rates and movement, but increased feeding and activity during the shoulder seasons when 262 

conditions are most benign, presumably to maximize energy intake when physiological demands 263 

were more optimal. Individuals also switched diets in a manner that suggest behavioural 264 

modification to maximize energy budgets, feeding mainly on plankton in the cooler seasons, but 265 

on a combination of plankton and a variety of benthic resources during the hottest time of year 266 

when energetic demands would be greatest (D’Agostino et al. 2019). Together, these studies 267 

suggest that adopting a more flexible behavioral and dietary lifestyle may be necessary to 268 

support the physiological and energetic demands presented in thermally extreme seas.  269 

 270 

Turbid reefs 271 

In addition to thermally extreme or variable systems, turbid reefs have drawn increasing attention 272 

in recent years for their role as a potential climate change refuge due to the shading effect of 273 

turbid water for benthic organisms (Cacciapaglia and Van Woesik 2016). While turbid reefs have 274 

historically been considered marginal for coral growth due to high suspended sediment loads and 275 

low light levels, causing reduced depth distribution, photosynthesis, growth rates and juvenile 276 

survival (Rogers 1990; Erftemeijer et al. 2012; Jokiel et al. 2014), there is a growing body of 277 

evidence that these systems, under certain conditions, can support coral communities with cover 278 

that is comparable to or exceeds that of clear-water reefs (e.g. Browne et al. 2010; Guest et al. 279 

2016a; Morgan et al. 2016; Schleyer and Porter 2018). Over the past decade a number of field 280 

studies have documented lower levels of bleaching and mortality on turbid inshore reefs 281 
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compared with clear-water offshore reefs, despite being exposed to similar or higher 282 

temperatures (Wagner et al. 2010; van Woesik et al. 2012; Morgan et al. 2017; van Woesik and 283 

McCaffrey 2017). The resilience of some turbid reefs to thermal stress has been suggested to be 284 

due to a combination of factors including the dominance of existing communities by stress-285 

tolerant species, pre-adaptation to thermal stress as a result of chronic exposure to high and 286 

variable temperature regimes, and the attenuation of light by high suspended sediment loads that 287 

reduces the additive stress of solar irradiance on corals during high temperature events (van 288 

Woesik et al. 2012; Morgan et al. 2017; Teixeira et al. 2019). Recent modeling studies suggest 289 

that turbidity may mitigate against high-temperature bleaching for 12% of the world’s reefs, with 290 

30% of these reefs located in the species-rich Coral Triangle (Sully and van Woesik 2020). 291 

Furthermore, corals in turbid waters have also been shown to have faster recovery and lower 292 

mortality following bleaching, likely as a result of enhanced heterotrophic capacity (Guest et al. 293 

2016b; Banha et al. 2019), a process that has also been shown to confer resilience against ocean 294 

acidification (Towle et al. 2015). 295 

However, natural turbidity processes on nearshore reefs, such as sediment resuspension or 296 

planktonic light attenuation, are often becoming elevated by terrigenous sediment run-off and 297 

dredging activities (Friedlander et al. 2005). Terrigenous run-off is typically accompanied by a 298 

multitude of anthropogenic pollutants (nutrients, pathogens, pesticides, insecticides, oil, waste, 299 

sewage) that are known to have deleterious effects on corals and associated fish and invertebrate 300 

biota (Field et al. 2007; Stender et al. 2014; Hess et al. 2017; Johansen et al. 2017) and has been 301 

correlated with severely reduced fish abundance and yields on affected reefs (including loss of 302 

corals and herbivores typically seen as critical for a productive and resilient ecosystem) (Mallela 303 

et al. 2007; DeMartini et al. 2013; Jokiel et al. 2014). Our current limited understanding shows 304 
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suspended sediment to impair vision and olfaction in fishes looking for shelter and food (Wenger 305 

et al. 2011; Wenger et al. 2012), and their response to predators (Bauman et al. 2019; Hess et al. 306 

2019). Gill damage may occur after short-term sediment exposure and bacterial and pathogens 307 

may accumulate on the gills (Au et al. 2004) and limit capacity to extract oxygen needed to 308 

support high energetic demands (Hess et al. 2015). These data highlight the complexity of 309 

turbidity impacts on reefs, and why sedimentation and run-off is recognized as a major threat to 310 

many inshore coral reefs (e.g. Gombos et al. 2010). 311 

 312 

Urban reefs 313 

One subset of turbid reefs that has received growing attention are urban reefs. About 25% of the 314 

global human population live within 50 km of a coastline (UNEP 2002). This concentration of 315 

human populations and economic activity, coupled with associated changes in land-use, coastal 316 

modification, and dredging is leading to increasingly urbanized coral reef environments (Burt 317 

2014; Guest et al. 2016a; Browne et al. 2019). Importantly, impacts from turbidity are often 318 

compounded by additional anthropogenic pressure from eutrophication, pollution, fishing 319 

pressure, and related stressors (Heery et al. 2018; Burt and Bartholomew 2019; Todd et al. 2019; 320 

Figueroa-Pico et al. 2020). While these extreme environmental conditions come at a cost (e.g. 321 

low carbonate accretion and coral growth rates, Browne et al. 2015; Januchowski-Hartley et al. 322 

2020), urban reefs are typically heavily dominated by robust, stress-tolerant corals that are 323 

relatively resistant to bleaching and/or are able to recover rapidly from stressors (Guest et al. 324 

2016b; Brown et al. 2020).  325 
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Numerous studies are beginning to elucidate the role that the coral-associated microbial 326 

communities may play in the resilience of turbid-water urban corals to environmental stress. 327 

Flexible host-bacterial associations have been suggested to provide opportunity for dynamic 328 

microbiome adjustment under environmental change (Ziegler et al. 2019), permitting corals to 329 

optimize their bacterial compliment to reflect prevailing conditions and enhance survival. Röthig 330 

et al. (2020) tested this hypothesis by examining the microbiome of Oulastrea crispata across 331 

the water quality gradient presented by Hong Kong’s highly urbanized coastline. Despite 332 

dramatic differences in environmental conditions among reefs, O. crispata’s microbiome was 333 

relatively stable, even at sites with very poor water quality. These results suggest that O. crispata 334 

maintains a conserved microbiome, and that environmental flexibility in its bacterial complement 335 

do not underpin robustness of the coral, but rather its wide environmental tolerance may be 336 

largely due to acclamatory or adaptive mechanisms in the coral host itself (Röthig et al. 2020).  337 

These findings are in contrast to the findings of Wainwright et al. (2019) who examined the 338 

bacterial communities of Pocillopora acuta across the urbanized reef environment of Singapore. 339 

They showed that coral microbiomes diverged sharply among sites and that small-scale (<1 km) 340 

differences in environmental factors were responsible for these patterns (Wainwright et al. 2019). 341 

It is unclear to what extent the flexibility of these bacterial associations is responsible for the 342 

success of P. acuta in Singapore, suggesting that additional research is needed to discern its 343 

functional role in environmental tolerance.  344 

In addition to bacteria, there is also growing attention to the role that algal symbionts play in 345 

supporting coral survival in turbid urban environments (e.g. Poquita-Du et al. 2020; Tan et al. 346 

2020). Smith et al. (Smith et al. 2020) used next-generation sequencing and the SymPortal 347 

analytical framework to explore Symbiodiniaceae communities in five coral species across 348 
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Singapore. In contrast to earlier suggestions that stress-tolerant Durusdinium strains likely play a 349 

crucial role in supporting the resilience of Singapore’s corals (Guest et al. 2016b; Tanzil et al. 350 

2016), they showed that symbiont communities were instead heavily dominated by 351 

Cladocopium, adding to a growing list of studies showing that prevalence of Durusdinium is not 352 

a prerequisite for survival in marginal and extreme environments (e.g. Smith et al. 2017b; Hume 353 

et al. 2018; Camp et al. 2020; Osman et al. 2020). They also showed that, in contrast with other 354 

marginal reef environments, Singapore’s reefs contained remarkably low diversity and a lack of 355 

host-specificity in the symbiont communities (Smith et al. 2020), suggesting that while these 356 

reefs support diverse coral assemblages, the strong selective pressure exerted by the extreme 357 

turbidity likely limits the diversity of the associated symbiont community. The observations from 358 

this and related studies suggests that as high-resolution ITS2 analyses become more widespread 359 

and the usage of SymPortal framework increases, it will be possible to develop a deeper and 360 

more nuanced understanding of important aspects of coral-algal symbioses in marginal reef 361 

environments. 362 

 363 

Volcanic CO2 vents 364 

Beyond thermally extreme and turbid reefs, coral communities associated with ojos and volcanic 365 

CO2 vents have drawn attention due to potential acclimation of resident corals to ocean 366 

acidification. While volcanic reefs have long been studied for successional processes and 367 

disturbance/recovery dynamics (Grigg and Maragos 1974; Tomascik et al. 1996; Starger et al. 368 

2010; Vroom and Zgliczynski 2011; Smallhorn-West et al. 2019), it is only recently that the 369 

focus has shifted towards using acidified waters near volcanic CO2 vents as natural laboratories 370 

to understand how tropical reef organisms may respond to future ocean acidification (Hall-371 



 

17 
 

Spencer et al. 2008; Fabricius et al. 2011; Inoue et al. 2013; Enochs et al. 2015; Januar et al. 372 

2017). These studies have shown various ecological consequences of exposure to acidified 373 

waters near these vents, including shifts from hard corals to soft coral or macro-algal dominance 374 

(Inoue et al. 2013; Enochs et al. 2015), reduced coral diversity (Fabricius et al. 2011; Enochs et 375 

al. 2015), and enhanced colonization by bioeroders (Enochs et al. 2016a; Enochs et al. 2016b), 376 

providing insights into possible future changes to tropical reefs under ocean acidification. 377 

However, a recent study of a volcanically acidified vent site documented pronounced resilience 378 

of some coral colonies that are periodically exposed to extreme low pH (frequently < 7.0). The 379 

persistence of these corals was likely related to rapid flushing of low pH waters during tidal 380 

cycles, indicating that temporal dynamics in stress exposure can strongly influence response 381 

patterns (Enochs et al. 2020; see also Oprandi et al. 2019).  382 

To date, volcanic CO2 vent studies for tropical coral reefs have focused on a small number of 383 

geographic regions within the Pacific, including Papua New Guinea (Fabricius et al. 2011), 384 

Indonesia (Oprandi et al. 2019), Japan (Inoue et al. 2013), and the Mariana Islands (Enochs et al. 385 

2015), but the first ecological assessment of volcanically acidified coral reef in the Caribbean 386 

was recently described (Enochs et al. 2020), and non-volcanic CO2 vents at fault lines are being 387 

discovered in other parts of the tropics (e.g. Oporto-Guerrero et al. 2018). This suggests that our 388 

understanding of the patterns and processes governing reef communities in naturally acidified 389 

environments will continue to improve with expanded geographic scope. 390 

 391 

Conclusion 392 
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Coral reefs around the globe are being modified at an unprecedented rate as a result of local 393 

anthropogenic pressures and global climate change (Hoegh-Guldberg et al. 2017; Hughes et al. 394 

2017a). Since the devastating 1998 global bleaching event, there has been growing research 395 

interest on marginal and extreme reef systems for the role that they might play as potential 396 

refugia for reefs elsewhere in the tropics, and the insights that they provide on how reef 397 

organisms might respond to the increasingly marginal nature of coastal environments in the 398 

future (Perry and Larcombe 2003; Camp et al. 2018). This research growth has largely occurred 399 

in just the past decade, suggesting that we are only beginning to understand where these marginal 400 

reefs occur and how they function; as time goes on we will continue to learn from these unique 401 

ecosystems.  402 

The articles in this special issue add to the growing body of literature exploring how organisms 403 

in marginal reef environments are able to cope with extreme environmental conditions. A 404 

common emerging theme across marginal systems is the importance of ecological plasticity in 405 

allowing reef fauna to persist under conditions that might otherwise be lethal. From flexible 406 

bacterial and symbiont associations in corals in marginal inshore environments (e.g. Camp et al. 407 

2020; Smith et al. 2020), to enhanced heterotrophic capacity in light-limited turbid reefs (e.g. 408 

Guest et al. 2016b; Banha et al. 2019), to behavioral, physiological and dietary plasticity in 409 

fishes in thermally extreme seas (e.g. Shraim et al. 2017; D’Agostino et al. 2019), there is 410 

growing evidence that such ecological flexibility may be a broadly utilized, but still 411 

underappreciated, strategy for persistence of reef fauna in extreme and variable environments. 412 

Evidence also continues to grow that there are trade-offs for survival across many marginal 413 

systems. Despite long-term persistence, observations that corals can have reduced calcification 414 

(e.g. Camp et al. 2017; Howells et al. 2018), enhanced bioerosion (e.g. Enochs et al. 2016a; Al-415 
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Mansoori et al. 2019), more prevalent disease (e.g. Aeby et al. 2020), and various other 416 

negatively affected traits (Perry and Larcombe 2003) suggests that there are significant costs to 417 

living in marginal environments that are still not yet fully appreciated. There is also growing 418 

recognition that the potential for marginal and extreme systems to serve as refugia for other 419 

tropical reefs is increasingly coming under question. While there is much evidence that reef 420 

fauna in marginal systems have developed important acclamatory and adaptive mechanisms to 421 

allow their survival under environmental extremes (Coles and Brown 2003), these organisms 422 

often live very close to their physiological limits and are vulnerable to being pushed over this 423 

threshold (Kleypas et al. 1999; Camp et al. 2018). As a result, the same pressures that are 424 

affecting reef fauna on more benign reef systems are affecting marginal reefs, including recent 425 

devastating bleaching events on intertidal reefs (Le Nohaïc et al. 2017), turbid reefs (Lafratta et 426 

al. 2017), mesophotic reefs (Frade et al. 2018), and those in the world’s hottest sea, the 427 

Persian/Arabian Gulf (Burt et al. 2019). Instead of singularly focusing attention on their potential 428 

role as refugia under climate change, there is a growing consensus that marginal and extreme 429 

reef systems should be recognized for their importance in their own right, as biodiverse and 430 

highly unique ecosystems that are important assets for climate change science (Burt et al. 2014; 431 

Loya et al. 2016; Camp et al. 2018; Soares 2020). As research continues to grow we will gain a 432 

broader understanding of the patterns and processes governing life in extremes and allowing for 433 

improved conservation and management of these ecosystems. Increasing research will also 434 

deepen insights into what the future may hold for reefs elsewhere in the tropics as environmental 435 

conditions become increasingly marginal for reef fauna globally in our rapidly changing world.  436 
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Figure 1. Spatial and temporal distribution of publications reporting on the biology and/or abiotic 841 

conditions of four marginal or extreme reef environments. The number of publications was 842 

determined based on a Web of Science  search (topic = coral AND marginal OR peripheral OR 843 

subtropical OR turbid OR mesophotic OR vent); year = 1965-2019), with each publication 844 

examined for relevance. 845 
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