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Key Points

•Circulating cytotoxic
CD692TTE cells medi-
ating antimyeloma
responses and noncy-
totoxic BM-resident
CD691TTE cells exist in
NDMM patients.

• A balance between
CD692TTE and CD691

TTE cells may regulate
antimyeloma responses
and contribute to clini-
cal heterogeneity in
NDMM patients.

CD81CD571 terminal effector T (TTE) cells are a component of marrow-infiltrating

lymphocytes and may contribute to the altered immune responses in multiple myeloma

(MM) patients. We analyzed TTE cells in the bone marrow (BM) and peripheral blood (PB) of

age-matched controls and patients with monoclonal gammopathy of undetermined

significance (MGUS), smoldering MM (SMM), and newly diagnosed (ND) MM using flow

cytometry, mass cytometry, and FlowSOM clustering. TTE cells are heterogeneous in all

subjects, with BM containing both CD692 and CD691 subsets, while only CD692 cells are

found in PB. Within the BM-TTE compartment, CD692 and CD691 cells are found in comparable

proportions in controls, while CD692 cells are dominant in MGUS and SMM and predominantly

either CD692 or CD691 cells in NDMM. A positive relationship between CD691TTE and CD692TTE
cells is observed in the BM of controls, lost inMGUS, and converted to an inverse relationship in

NDMM. CD692TTE cells include multiple oligoclonal expansions of T-cell receptor/Vb families

shared between BMand PB of NDMM.Oligoclonal expanded CD692TTE cells from the PB include

myeloma-reactive cells capable of killing autologous CD38hi plasma cells in vitro, involving

degranulation and high expression of perforin and granzyme. In contrast to CD692TTE cells,

oligoclonal expansions are not evident within CD691TTE cells, which possess low perforin and

granzyme expression and high inhibitory checkpoint expression and resemble T resident

memory cells. Both CD692TTE and CD691TTE cells from the BMofNDMMproduce large amounts

of the inflammatory cytokines interferon-g and tumor necrosis factor a. The balance between

CD692 and CD691 cells within the BM-TTE compartment may regulate immune responses in

NDMM and contribute to the clinical heterogeneity of the disease.

Introduction

Multiple myeloma (MM) is a plasma cell (PC) neoplasm that is preceded by the premalignant condition
monoclonal gammopathy of undetermined significance (MGUS) or asymptomatic, smoldering MM
(SMM). In MM, malignant PCs in the bone marrow (BM) are accessible to T cells (marrow-infiltrating
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lymphocytes [MILs]) entering the BM by blood circulation. This
proximity between PCs and T cells may facilitate autologous
T-cell–mediated immune responses against malignant PCs. Direct
evidence of autologous T-cell–mediated antimyeloma responses
has been demonstrated in the Vk*MYC mouse model,1,2 while
a number of clinical studies provide indirect evidence to support
autologous antimyeloma responses in humans.3-6

CD57 has been most widely explored as a marker of senescent
CD81T cells.7 Persistent immune stimulation is believed to induce
the conversion of memory T (TM) cells from CD281CD572 cells to
senescent CD282CD571 cells characterized by limited prolifera-
tive capacity.8 Acquisition of CD57 is thought to reflect a shift
toward highly cytotoxic terminally differentiated effector T (TTE)
cells, with increased perforin and granzyme production.9

We have previously reported on the existence of oligoclonal
expansions of TTE cells, identified by expression of T-cell receptor
(TCR) variable b (TCR-Vb) families, in the peripheral blood (PB)
of the majority of MM patients7 and related their presence to
a favorable prognosis.10 Such oligoclonal expanded TTE cells have
lower expression of the inhibitory checkpoint CD279 (PD-1),
suggesting that these cells may not be an optimal target for
checkpoint blockade immunotherapy.11,12 It has also been sug-
gested that TTE cells within MILs may impair immune responses to
myeloma due to their senescent status.13

Expansion of oligoclonal TTE cells in MM patients may result from
persistent stimulation of CD81T cells by myeloma-associated
antigens6,14 in the absence of effective clearance of malignant clones.
Recently, it has also been reported that progression from MGUS
to MM involves attrition of the BM-resident T-cell compartment15 and
the appearance of exhausted T cells.16 We considered that cytotoxic
TTE cells, being a constituent of MILs, may undergo changes that can
help explain the altered immune responses observed in MM patients
and provide novel ground for future immunotherapeutic approaches.17

In this study, we analyzed CD81CD571TTE cells in the BM and PB
of age-matched controls and patients with MGUS, SMM, and newly
diagnosed (ND) MM using fluorescence flow cytometry, mass
cytometry,18 and unsupervised FlowSOM clustering algorithm
analyses.19 We found that TTE cells in all subjects can be subdivided
by expression of CD69. CD692TTE cells circulate between PB and
BM, while CD691TTE are restricted to the BM and have many
characteristics in common with T resident memory (TRM) cells. Within
the BM-TTE compartment, CD692 and CD691 cells are found in
comparable proportions in controls, while CD692 cells are dominant in
MGUS and SMM and predominantly either CD692 or CD691 cells in
NDMM. Within the BM-TTE compartment, a positive relationship
between CD691 and CD692 cells is observed in controls, lost in
MGUS, and converted to an inverse relationship in NDMM. We also
demonstrated that the previously described oligoclonal expansions7 are
found within the CD692TTE cells in BM and PB, but not in CD691TTE
cells, and that oligoclonal expanded cells from the PB of NDMM
patients are capable of eliminating autologous CD38hiPCs in vitro
involving degranulation and high expression of perforin and granzymeB.

Materials and methods

Patients and controls

MGUS, SMM, and NDMM patients, diagnosed using the criteria
established by the International Myeloma Working Group,20 were

recruited through the Department of Hematology, Royal Prince
Alfred Hospital (RPAH). Age-matched controls included healthy
blood donors and patients without diagnosed malignancy or active
infection, undergoing hip arthroplasty at the Department of
Orthopedic Surgery, RPAH. Patients and controls characteristics
are shown in Table 1. Where possible, paired BM and PB samples
were collected and, dependent on sample availability, analyzed by
mass cytometry, fluorescence flow cytometry, or both. The study
was approved by the institutional human ethics committee. All
patients signed informed consent before sample collection in
accordance with the amended Declaration of Helsinki.

Fluorescence flow cytometry analyses

Fluorescence flow cytometry samples comprised fresh whole-blood
samples, cryopreserved BM mononuclear cells (MNCs), and PB
MNCs isolated by Ficoll-Hypaque density gradient. To analyze
cytokine production, BM MNCs were rested overnight, sorted into
CD31CD692 and CD31CD691 cells (BDFACS Aria II, BD
Biosciences), and stimulated with phorbol 12-myristate 13-
acetate and ionomycin calcium salt (Sigma-Aldrich) for 4 hours with
the addition of protein transport inhibitor cocktail (Thermo Fisher
Scientific) for the last 3 hours of culture. Following stimulation, cells
were labeled with monoclonal antibodies (mAbs) targeting surface
antigens (supplemental Table 1), fixed and permeabilized (fixation/
permeabilization buffer, BD Biosciences), and stained with mAbs
specific to interferon-g (IFN-g) and tumor necrosis factor a (TNF-a)
in Perm/Wash buffer (BD Biosciences).

TCR-Vb usage was analyzed using the IOTest b Mark TCR-Vb
Repertoire Kit (Beckman Coulter Life Sciences). TCR-Vb family–
expressing populations within a patient’s TTE were determined to be
oligoclonally expanded when the percentage of TTE cells expressing
that TCR-Vb family was more than 3 standard deviations (SDs)
higher than the mean frequency within the naive CD81T (TN)
compartment of healthy blood donors. The dominant oligoclonal
expansion in each patient was defined as the one representing the
largest percentage of PB TTE cells.

To analyze the elimination of autologous CD38hiPCs (target) by
CD692TTE cells (effectors), 2 subsets of TTE cells were flow-sorted
from PB MNCs: those expressing the dominant TCR-Vb family and
the remainder expressing all other TCR-Vb families. Sorted cells
were stimulated for 12 to 14 hours by CD2/CD3/CD28-loaded
anti-biotin MACSiBead (Miltenyi Biotec) before the addition to the
target cells; CD3-depleted autologous BM MNCs (effector/target
ratio of 1:2). To assess degranulation and associated IFN-g
expression, aCD107a and protein transport inhibitor cocktail were
added at the beginning of cell culture. Following 1 to 2 hours of
culture, cells were labeled with mAbs targeting surface markers
(supplemental Table 1), fixed and permeabilized, and stained
depending on the experiment with mAbs specific to cleaved
caspase-3 AF488, rabbit immunoglobulin G AF488, or IFN-g in
Perm/Wash buffer.

Mass cytometry staining and data acquisition

BM MNCs and PB MNCs from MGUS (n 5 4) and NDMM (n 5 8)
patients were analyzed by mass cytometry. Cells were stained with
1.25 mL cisplatin (Fluidigm) followed by quenching and washing
with fluorescence-activated cell sorter buffer. Cells were initially
incubated with an AF647-labeled CD160 (BD Biosciences) mAb,
followed by a cocktail of metal-conjugated mAbs targeting surface
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proteins (supplemental Table 2). Cells were subsequently fixed and
permeabilized (Foxp3 fixation kit, Thermo Fisher Scientific) and
stained with metal-conjugated mAbs targeting intracellular proteins
(supplemental Table 2). Cell acquisition occurred at a rate of 200 to
400 cells per second using a CyTOF 2 Helios upgraded mass
cytometer (Fluidigm, Charles Perkins Centre, University of Sydney,
NSW, Australia).

Analysis of mass cytometry data

After exclusion of CD32CD38hiPCs, CD561NK cells, and CD191

B cells, BM-TTE and PB-TTE cells in MGUS and NDMM were
manually gated based on CD57 expression within the CD81T
gate, imported into R studio (v1.2.1135), and analyzed using the
CAPX (v0.3) script, which includes both the clustering algorithm
FlowSOM19 and dimensionality reduction algorithm t-distributed
stochastic neighbor embedding (tSNE)21 in a single script.22 tSNE
plots were generated using the same 15 antigens selected for
FlowSOM, with the addition of 3 TCR-Vb antigens (supplemental
Table 2) to allow visualization of oligoclonal expanded CD692TTE
cells expressing dominant TCR-Vb family.

Statistical analysis

The nonparametric Mann-Whitney U test was used to compare 2
variables, and the Kruskal-Wallis and Friedman test with Dunn’s
multiple comparisons was used to compare multiple unpaired and
paired data sets, respectively. Relationships between 2 variables
were analyzed by linear regression and between multiple variable by
nonparametric Spearman correlation. Statistical significance was
determined at Spearman R , 20.5 and . 0.5 and P , .05 for all

statistical analyses using GraphPad Prism version 8.02 (GraphPad
Software).

Results

TTE cells within BM and PB of controls and MGUS,

SMM, and NDMM patients

We initially characterized CD81CD571TTE cells in the BM and PB
of age-matched controls and patients with MGUS, SMM, and
NDMM by fluorescence flow cytometry. In all subjects, BM-TTE cells
contained both CD692 and CD691 subsets, whereas PB TTE cells
contained only the CD692 cell subset (Figure 1). Although CD691

TTE cells were “resident” within BM, only a minority expressed
another marker of residency, CD10323 (supplemental Figure 1).
CD692 and CD691 cells accounted for comparable proportions of
BM-TTE cells in controls, while CD692 cells dominated within BM-
TTE cells of MGUS and SMM patients (Figure 1B). Neither of these
trends was apparent in BM-TTE cells of NDMM patients; instead,
CD692 cells in some patients and CD691 cells in other patients
represented the majority of BM-TTE compartment (Figure 1B). In
addition, CD692 and CD691 subsets, as well as total BM-TTE cells,
accounted for highly variable proportions of BM-CD81T cells in
NDMM (Figure 1C; supplemental Figure 2A). Despite interpatient
variability, CD692TTE and total TTE cells were significantly increased
in the BM of NDMM patients compared with controls (expressed as
a percentage of CD81T cells; Figure 1C; supplemental Figure 2A).
In contrast to BM TTE cells, PB CD692TTE and total PB TTE cells
were present in similar proportions in all subjects (Figure 1B-C;
supplemental Figure 2A). These data suggest that BM TTE cells

Table 1. General and clinical characteristics of patients and controls

NDMM (n 5 36) SMM (n 5 11) MGUS (n 5 24) Controls (n 5 26)

Age, median (range), y 69 (38-90) 73 (50-85) 64 (42-89) 60 (35-84)

Sex, male, n (%) 20 (55) 5 (45) 7 (29) 12 (46)

ISS stage,* n (%)

ISS1 11 (34) 3 (37.5) NA NA

ISS2 10 (32) 3 (37.5) NA NA

ISS3 11 (36) 2 (25) NA NA

Isotype, n (%)

IgG 21 (60) NA NA NA

IgA 8 (23) NA NA NA

Light chain 6 (17) NA NA NA

Oligosecretory 1 (3) NA NA NA

Cytogenetics, n (%) 33 (92) NA NA NA

17p deletion 4 (12) NA NA NA

21p and/or 11q 13 (40) NA NA NA

FISH,† n (%) 20 (55) NA NA NA

t(4;14) 2 (11) NA NA NA

t(14;16) 0 (0) NA NA NA

LDH,‡ median (range), U/L 157 (89-407) NA NA NA

Above normal, n (%) 5 (18) NA NA NA

FISH, fluorescence in situ hybridization; IgA, immunoglobulin A; IgG, immunoglobulin G; ISS, International Staging System; LDH, lactate dehydrogenase; NA, not available.
*b2 microglobulin available for ISS grading in 32 out of 36 NDMM patients and 8 out of 11 SMM patients.
†High-risk genetics by FISH, including del17p, t(4;14), and t(14;16), were tested in 20 out of 36 NDMM patients.
‡Available in 28 out of 36 NDMM patients.
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possess inherent non–myeloma-related heterogeneity (based on
CD69 expression) that is differently regulated during progres-
sion from MGUS and/or SMM to NDMM and that there is an
accumulation of both CD692TTE and total TTE cells (expressed as
a percentage of CD81T cells) in the BM of NDMM patients.

Inverse relationship between CD692TTE and CD691TTE

cells in BM of NDMM patients, but not in MGUS

patients and controls

We next analyzed whether the different contribution of CD692 and
CD691 subsets to BM-TTE compartments of controls and MGUS
and NDMM patients along with the increase in CD692TTE and total
TTE cells seen in BM of NDMM patients involve different relation-
ships between various memory/effector subsets within CD81

T cells. We analyzed relationships between CD692TTE cells,
CD691TTE cells, total TTE cells, conventional T memory cells
(CD81CD572CD45RO1TM), and total CD81T cells (Figure 2;
supplemental Figure 3). SMM patients were excluded from this
analysis due to limited numbers (SMM, n 5 5, Figure 1B-C;
supplemental Figure 2A). In controls, there was a positive
correlation between CD692 and CD691 subsets within the BM-
TTE compartment. Further, there was a strong positive correlation
between total BM-TTE cells and their CD692 and CD691 subsets
(Figure 2A,D-E). Compared with controls, MGUS patients main-
tained only a strong positive correlation between total BM-TTE cells
and their CD692 subset (Figure 2B,D-E). None of the positive
correlations observed in controls and MGUS patients were
sustained in NDMM patients; instead, a negative correlation was

established between CD692 and CD691 subsets within the BM-
TTE compartment (Figure 2C-E). These data suggest that inverse
relationships established between CD692 and CD691 subsets
within the BM-TTE compartment discriminate NDMM from MGUS
and controls.

Oligoclonal expanded CD692TTE cells contain

myeloma-reactive cells capable of eliminating

autologous CD38hiPCs

Our group has previously reported the presence of oligoclonal
expansions expressing different TCR-Vb families within PB-CD81

T cells in the majority of MM patients.7 To reveal oligoclonal
expansions within CD81TTE cells that may be overlooked at the
level of CD81T cells, we assessed TCR-Vb usage within PB TTE
cells in age-matched controls and patients with MGUS, SMM, and
NDMM (Figure 3A). As expected based on the known oligoclonality
of TTE cells,

24 TCR-Vb expansions were evident in 98.8% (84 out of
85) of analyzed samples, with an average of 3 expanded TCR-Vb
families detected per sample. The average size of the oligoclonal
expansions expressed as a percentage of PB-TTE cells was higher
in NDMM (12.2%) than in controls (10.3%), MGUS (8.7%), and
SMM (8.6%) (Figure 3A). Although the data may be skewed due to
differences in the numbers of subjects in each group, results
suggest that expanded TCR-Vb families account for higher
proportions of PB TTE in NDMM than in MGUS (Figure 3A). Since
the significance of oligoclonal expansions comprising ,5% of PB-
TTE cells maybe not conclusive, we excluded them from further
analysis. The percentage of oligoclonal expansions of size .5% of
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PB TTE cells was higher in NDMM (83.7%) than in controls (74.7%),
MGUS (76.9%), or SMM (76.3%) (supplemental Figure 4).
Occasionally, very highly expanded TCR-Vb families representing
.50% of PB TTE cells were detected across cohorts (Figure 3A;
supplemental Figure 4). In addition, the majority of expanded TCR-
Vb families were shared between BM-TTE and PB-TTE cells of
NDMM patients (Figure 3B).

The increase in the percentage of oligoclonal expanded TCR-Vb
families within PB-TTE of NDMM suggested intensified immune
responses. To address the possibility that these responses may be
mediated by PB-TTE cells against the patient’s myeloma, we purified
oligoclonal expanded PB-TTE cells expressing the dominant TCR-
Vb family from the remaining PB-TTE cells within that individual and
tested both populations for their capacity to kill autologous CD38hi

PCs in a 2-hour culture assay (Figure 3C-D). Contamination by

natural killer T (NKT) cells (CD31CD561CD161 cells) and gd
T cells was negligible, as NKT cells represented,5% and gd T cells
were undetectable in PB-TTE compartment (data not shown). PB-
TTE cells expressing the dominant TCR-Vb families eliminated on
average 70% of autologous CD38hiPCs within the last hour of a 2-
hour culture assay (Figure 3D). Elimination of CD38hiPCs involved
caspase-3 activation; however, we were not able to demonstrate
an increase in caspase-3 activity in CD38hiPCs cultured with
oligoclonal expanded PB-TTE (either at 1- or 2-hour time points),
likely due to the rapid cell death following caspase-3 activation (data
not shown). In 8 out of 9 patients, oligoclonal expanded PB-TTE cells
expressing the dominant TCR-Vb family were superior to the
remaining PB-TTE cells in eliminating autologous CD38hiPCs
(Figure 3D). However, PB-TTE cells that did not contain the
dominant oligoclonal expansion also exhibited some cytotoxic
activity against autologous CD38hiPCs (eliminating on average
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Figure 3. Distribution and function of oligoclonal expanded PB TTE cells. (A) Scatter plots of oligoclonal expansion of TCR-Vb family–expressing populations within

PB-TTE cells of controls (n 5 26), MGUS patients (n 5 13), SMM patients (n 5 10), and NDMM patients (n 5 36). Expanded TCR-Vb family–expressing populations were
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(see “Materials and methods”). Each dot represents the percentage of PB-TTE cells with an individual TCR-Vb family expansion, with multiple expansions shown for each

subject (average 3 expanded TCR-Vb families per subject). The arrows indicate selected dominant TCR-Vb family expansions that were tested for capacity to kill autologous

CD38hiPCs (n 5 9; #12 to #20; see below, panel D). (B) Oligoclonal expansion of TCR-Vb family–expressing populations in paired BM-TTE and PB-TTE of NDMM patients

(n 5 11, #1 to #11). Each colored segment in a stacked vertical bar indicates the proportion of an individual oligoclonal expansion within total BM-TTE and PB-TTE compartment.

(C) Dot plots gated for CD32CD142 cells show CD38hiPCs after a 2-hour culture assay with the target (CD31T-cell-depleted BM MNCs) alone, the target with flow-sorted
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30% of autologous CD38hiPCs), suggesting that smaller oligoclo-
nal expansions also contribute to antimyeloma activity (Figure 3D).
At the 2-hour time point of coculture, both PB-TTE cells expressing
the dominant TCR-Vb family and the remaining PB-TTE cells
exhibited comparable levels of degranulation, as measured by
CD107a expression, without concordant IFN-g production (Figure
3E-F). These results indicate that the enhanced cytotoxic capacity
of PB-TTE cells expressing the dominant TCR-Vb family against
autologous CD38hiPCs likely relies on increased perforin and
granzyme B content (Figure 3G) rather than on increased activity of
degranulation. This is the first direct evidence supporting autolo-
gous antimyeloma responses mediated by oligoclonal expanded
PB-TTE cells. It is worth noting that myeloma-reactive PB-TTE cells
expressing the dominant TCR-Vb family inversely correlate with
CD691TTE (Figure 3H), implying that antimyeloma responses may
be limited in NDMM patients with increased proportions of CD691

TTE cells in their BM.

Phenotypic and functional differences between

CD692TTE and CD691TTE cells revealed by

mass cytometry

We used mass cytometry18 and FlowSOM clustering analyses19 to
obtain a more comprehensive signature of CD692TTE and CD691

TTE cells in NDMM. In agreement with flow cytometry data, we
confirmed the presence and tissue distribution of CD692TTE and
CD691TTE cells in NDMM (Figure 4A). By including mAbs to detect
dominant oligoclonal expansions in matched PB and BM samples,
we demonstrated that oligoclonal expanded TTE cells were
restricted to the CD692TTE subset in BM and PB of NDMM
patients (Figure 4B-C). This suggests that BM-CD692TTE cells
could be the direct counterpart of the PB-CD692TTE cells capable
of killing autologous CD38hiPCs in vitro.

To further define the phenotype of CD692TTE and CD691TTE cells,
we examined the expression of additional molecules within the
CD691TTE and oligoclonal expanded CD692TTE cells expressing
the dominant TCR-Vb family in PB and BM of NDMM patients. BM-
CD691TTE cells expressed a TbetloEomeshi transcriptional signa-
ture and low perforin and granzyme B (Figure 4D-E). In contrast, the
phenotype of BM-CD692TTE cells strongly indicated cytotoxic
function, with high expression of perforin and granzyme B and the
reciprocal TbethiEomeslo/neg signature (Figure 4D-E). The dominant
TCR-Vb13.11 oligoclonal expansion within BM-CD692TTE and PB-
CD692TTE cells shared the cytotoxic phenotype and transcriptional
signature of the CD692TTE population as a whole (Figure 4E). Both
BM-CD692TTE and BM-CD691TTE cells produced the cytokines
IFN-g and TNF-a at equivalent levels (Figure 4F). BM-CD691TTE
were further distinguished from oligoclonal expanded CD692TTE
expressing the dominant TCR-Vb family in PB and BM of NDMM by

decreased expression of CD45RA, retention of CD27 and CD28,
and higher expression of several inhibitory checkpoints, CD279
(PD-1), TIGIT, CD223 (Lag3), and CD160 (supplemental Figure 5).
Overall, based on the expression of CD69, BM residency, cytokine
production, and inhibitory checkpoint expression, CD691TTE cells
appear closely related to TRM cells,23 while the phenotype of the
oligoclonal expanded CD692TTE cells was that of highly cytotoxic
CD81TTE cells.

CD691TTE cells account for a small proportion of TTE

cells in BM of MGUS patients

Using mass cytometry, we next compared CD692TTE, CD691TTE,
and total TTE cells in small cohorts of premalignant MGUS and
NDMM patients, aiming to understand CD692TTE-cell and CD691

TTE-cell development during disease progression. We used 2
approaches: manual gating and FlowSOM clustering of mass
cytometry data. Although data are preliminary (due to limited
availability of BM samples from MGUS patients), both CD692TTE
and CD691TTE cells were clearly identified within total BM-TTE cells
in MGUS and maintain the same tissue distribution as their
counterparts in NDMM (Figure 5A-C). CD691TTE and total TTE
cells accounted for a significantly lower proportion of BM-CD81

T cells in MGUS than in NDMM (Figure 5D; supplemental
Figure 2B). In particular, CD691TTE cells were very sparse,
representing on average 13.8% of TTE cells and 2.1% of CD81

T cells in BM of MGUS patients (Figure 5C-D). Expression of CD69
on TM cells, and the extent of its downregulation during the
transition from the TM to the TTE stage of differentiation, appeared to
be related to the proportions of CD691TTE cells in BM of NDMM
and MGUS patients (Figure 5E). Our data suggest that CD69
expression may be amplified on TM and TTE cells in BM of NDMM
compared with their counterparts in BM of MGUS patients.

Finally, to compare the degree of heterogeneity of BM-TTE cells in
both MGUS and NDMM, we analyzed the phenotypes of the 25
metaclusters (MCs) generated by FlowSOM clustering (Figure 5F-G).
This revealed that BM-CD691TTE cells, like their CD692TTE
counterparts, are still phenotypically heterogeneous in both MGUS
and NDMM. CD691TTE can be subdivided into 4 MCs based on
differences in expression of CD45RA, CD45RO, CD27, CD28,
CD279, and CD38 while uniformly expressing TIGIT, KLRG1, and
CD49d and lacking expression of CD127, CD197 (CCR7),
CD62L, and CD39 (Figure 5F). These 4 MC are variable in size
but persist in all MGUS and NDMM patients (Figure 5G).

Discussion

This study provides the first definitive evidence that circulating
oligoclonal expanded cytotoxic CD692TTE cells are myeloma-
reactive cells capable of eliminating autologous CD38hiPCs in vitro.

Figure 3. (continued) autologous oligoclonal expanded PB-TTE cells expressing the subject’s dominant TCR-Vb family, or the target with flow-sorted autologous PB-TTE cells

not expressing the dominant TCR-Vb family (remaining PB-TTE cells). Boxes and numbers indicate the percentage of CD38hiPCs recovered in each culture condition. FSC,

forward scatter. (D) Graph shows percentage of CD38hiPCs recovered in culture with PB-TTE cells expressing dominant TCR-Vb family or with remaining PB-TTE cells,

normalized to the percentage of CD38hiPCs recovered in culture with target only. The dominant TCR-Vb family expansion from each of 9 tested patients (NDMM, #12-13,#15-

20; SMM, #14) is indicated by an arrow in Figure 3A. (E) Dot plots show cell surface CD107a and intracellular IFN-g expression. (F) Graph shows proportions of CD107a1TTE
cells (n 5 4) in PB-TTE cells expressing dominant TCR-Vb family and remaining PB-TTE cells after a 2-hour culture assay with target. (G) tSNE plots show distribution of

Vb13.1 and Vb8 family–expressing PB-TTE cells (top, indicated by red dotted circles) with high perforin and granzyme B expression (bottom) within PB-TTE cells of NDMM #2.

(H) Relationship between paired proportion of PB-TTE cells expressing dominant TCR-Vb family (presented as percentage of PB-TTE cells) and CD691TTE cells (presented as

percentage of BM-TTE cells) in NDMM patients (n 5 14) analyzed by linear regression model. *P , .05; **P , .01.
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It also suggests the novel concept that balance between cytotoxic
oligoclonal expanded CD692TTE cells and noncytotoxic CD691TTE
cells, which resemble TRM cells with BM residency, may regulate
immune responses in NDMM patients.

The most clinically important outcome of this study is the demonstra-
tion that antimyeloma responses occur in NDMM patients and are
executed by oligoclonal expanded PB-CD692TTE cells. Thus,
oligoclonal expanded PB-CD692TTE cells, which we previously
reported as “T-cell clones,”7 are indeed myeloma reactive.
Elimination of autologous CD38hiPCs occurs rapidly within
a 2-hour culture, likely through degranulation and release of

preformed perforin and granzyme from lytic granules of PB-CD692

TTE cells. As expected, no IFN-g production was detected after
2 hours of culture, as it requires a longer time to be produced de
novo following T-cell activation.25 The potent cytotoxic functions of
myeloma-reactive PB-CD692TTE cells are further reinforced by
their lower expression of inhibitory receptors, CD279, TIGIT, Lag 3,
and CD160, consistent with our previous studies.11,26 Mass
cytometric analysis indicated a high degree of similarity between
CD692TTE cells in PB and BM, and this similarity is further extended
to the dominant oligoclonal expansions present in both tissues (BM
and PB) of NDMM patients. Direct testing of oligoclonal expanded
CD692TTE cells in the BM for their myeloma reactivity remains
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challenging due to their limited numbers and small volume of
diagnostic BM samples available for research. However, our data
are consistent with the concept that myeloma-reactive cells likely arise
within MIL in the MM microenvironment and undergo oligoclonal
expansion and terminal differentiation into CD692TTE cells, which
then circulate between BM and PB.

We found that myeloma reactivity is not restricted to oligoclonal
expanded PB-CD692TTE cells expressing dominant TCR-Vb
families, since remaining PB-CD692TTE cells expressing less
expanded TCR-Vb families also retain some capacity to eliminate
autologous CD38hiPCs. Also, highly expanded TCR-Vb families
representing.50% of PB-TTE cells are not restricted to patients, as
they are occasionally seen in age-matched controls, perhaps
induced by aging-associated autoimmune and infective pro-
cesses.27 We ruled out the possibility that contaminating NKT
and gd T cells play a significant role in the elimination of autologous
CD38hiPCs. This is consistent with the observation that NKT and gd
T cells are not required for antimyeloma immunity in mice bearing
Vk*MYC myeloma and that CD81T-cell clones of rare, small, and
medium size are protective.1 Nonetheless, antigen specificity of
readily accessible TCR-Vb restricted myeloma-reactive PB-CD692

TTE cells could be further explored, in particular by testing for
restriction to major histocompatibility complex class I–related
molecule (MR1), which is expressed on myeloma cells.28 The
possibility that PB-CD692TTE cells include MR1-reactive T cells
capable of killing a variety of cancers expressing MR129,30 is an
interesting future research topic.

Our finding that oligoclonal expanded PB-CD692TTE cells in
NDMM patients are highly functional conflicts with a number of
reports that T cells in MM patients are dysfunctional, senescent,
and/or exhausted.13,14,16 Our data strongly support the concept
that potent antimyeloma immunity mediated by oligoclonal ex-
panded CD692TTE cells persists in NDMM. However, how these
naturally induced circulating myeloma-reactive CD692TTE cells can
be retained within MIL and protected from the harmful effects of
myeloma therapeutics is not clear. In particular, it will be important to
determine the sensitivity of myeloma-reactive CD692TTE cells to
myeloma therapies and to understand their role in the immunolog-
ical aspects of autologous stem cell transplantation, a front-line
therapy for transplant-eligible MM patients.20

In addition to defining myeloma-reactive cytotoxic CD692TTE cells,
this study provides a detailed analysis of noncytotoxic, proinflam-
matory BM-CD691TTE cells that are present in controls and all
patient groups. Correlative analysis performed in this study revealed
that noncytotoxic BM CD691TTE cells maintained inverse relation-
ships with their CD692TTE counterparts within BM-TTE cells of
NDMM patients, but not MGUS patients and controls. They also
maintain negative relationships with myeloma-reactive oligoclonal
expanded PB-CD692TTE cells expressing dominant TCR-Vb
families indicating altered immune homeostasis over and above
the direct effect of oligoclonal expansion within the CD692TTE
subset. How the development of CD691TTE and CD692TTE cells
within the BM-TTE compartment is regulated remains unclear.
However, our mass cytometry data suggest that the development of
BM-CD691TTE cells may be more closely related to the transition
from TM cells expressing CD69 rather than from CD692TTE cells
and that regulation of this transition may differ between NDMM and
MGUS patients.

We demonstrated that CD691TTE cells have markedly different
properties from cytotoxic CD692TTE cells, including low expression
of the cytotoxic molecules perforin and granzyme B, an Eomeshi

Tbetlow/neg transcriptional signature, and high expression of multiple
inhibitory checkpoints, such as CD279, TIGIT, Lag 3, and CD160,
suggesting CD691TTE cells may be a suitable target for checkpoint
inhibition immunotherapy.17 CD691TTE cells reside in the BM and
appear closely related to TRM cells.23 Small proportions of CD81

CD691CD571TRM cells have been reported in human lung and
spleen23 and may be equivalent to the CD691TTE cells described in
this study. To the best of our knowledge, this is the first
documentation of BM-resident CD691TTE cells, which likely belong
to the resident CD81CD691 cells seen in human BM.31

We found that CD691TTE cells account for highly variable
proportions of the BM-TTE compartment in NDMM patients (5%
to 84%), a finding that may relate to clinical heterogeneity. CD691

TTE cells appear to be less frequent within BM-TTE cells of MGUS
and SMM patients (6% to 47% MGUS; 6% to 34% SMM),
suggesting that progression to clinical MM, at least in some
patients, may be associated with an accumulation of noncytotoxic
CD691TTE cells within MILs. Accumulation of CD691TTE within
MILs may contribute to local inflammation through the production
of the proinflammatory cytokines IFN-g and TNF-a, impair the
development of cytotoxic CD692TTE cells, and thus promote
myeloma growth. It has already been demonstrated by a study in
CD69-knockout mice that CD69 expression on T cells impaired the
antitumor immune response, suggesting CD69 is an attractive
target for cancer immunotherapy.32 Understanding the role of
CD691TTE cells within MILs throughout disease progression has
the potential to lead to the development of novel immune-based
approaches for the management of MM.

Our study suggests that changes in TTE cells contributing to
MILs, without apparent changes in the PB-TTE compartment, are
associated with myeloma progression from premalignant MGUS or
asymptomatic SMM. Data also suggests that the development of
cytotoxic CD692TTE cells, which mediate antimyeloma responses
in NDMM patients, can be affected by the accumulation of
noncytotoxic CD691TTE cells within MILs. Tracing CD691TTE cells
within MILs and correlating their numbers with clinical outcome
in MM patients receiving MILs as adoptive T-cell therapy33,34 could
provide essential insights into role of BM-CD691TTE cells in
antimyeloma immunity.
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