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a b s t r a c t

Cardiovascular disease (CVD) is the leading cause of death globally. People living with type 2 diabetes
mellitus (T2DM) have up to three times higher risk of developing CVD, particularly heart failure with
preserved ejection fraction (HFpEF), for which there is no effective treatment. The need for tangible
interventions has led to investigations into a number of biomarkers associated with metabolic and
vascular dysfunction that could be utilised for diagnostic and treatment purposes. This review discusses
the importance and mechanisms of inflammatory and angiogenic biomarkers, which have shown the
most potential in the pathogenesis and diagnosis of HFpEF, particularly in the presence of diabetes. In
depth “in silico” analysis was also carried out to identify pathogenic pathways associated with HFpEF,
both in the presence and absence of diabetes. The results identified mostly inflammatory pathways
associated with HFpEF in the presence of diabetes, and a number of pathways related to angiogenesis,
remodelling, metabolism as well as inflammation, in the absence of diabetes. The shared and unique
pathways identified in HFpEF in the presence and absence of diabetes, should be explored further in
order to improve management and outcomes of people living with HFpEF, taking into the account other
underlying conditions.
© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communication Co., Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Diabetes and cardiovascular disease

Over the past 40 years there has been a four-fold increase in the
incidence of type 2 diabetesmellitus (T2DM) globally.1 According to
theWorld Health Organisation (WHO), the number of people living
with diabetes reached 422 million in 2014, where the world pop-
ulation had climbed to 7.2 billion.1,2 Over the last 20e30 years,
sedentary lifestyle choices and the influence of the Western diet,3,4

have led to a global increase in obesity5,6 and subsequent co-
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morbidities, such as, CVD. Worldwide, CVD is the biggest killer,
claiming ~18 million lives annually, equating to 31% of total
deaths,7,8with the incidence of CVD up to three-fold higher in
people with diabetes.9,10

Heart failure as a diabetic comorbidity in Australia

Hyperglycaemia, as the major hallmark of diabetes, has been
linked to both micro- and macrovascular complications, including
coronary artery disease and stroke.11 Poor glycaemic management,
therefore, can lead to the development of co-morbidities, such as
heart failure (HF), which is associated with high morbidity and poor
prognosis.12 Currently, HF is classified as either heart failure with
reduced ejection fraction (HFrEF) or heart failure with preserved
ejection fraction (HFpEF). It is estimated that approximately 480,000
Australians, 66% ofwhomaremale, are affected byHFrEF, accounting
for ~2% of the total population, or 6.3% of people aged 45 years and
over. Comparatively, HFpEF is estimated to affect a similar amount of
people, although predominating within the female population.13
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Fig. 1. The number of individual and overlapping pathways identified as aberrantly
activated in HFpEF in the presence and absence of diabetes. Diab_1, diabetes; Non_-
diab_2, non-diabetes.
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While HFrEF has been more closely studied and pharmacologi-
cally well managed,14 HFpEF is still poorly understood and lacking
effective treatment strategies. HFrEF is defined as a left ventricular
ejection fraction (LVEF) measurement of less than 50%, with or
without signs of clinical heart failure. In contrast, defining HFpEF has
proven to bemuchmore complicated, as themain marker of cardiac
abnormality (LVEF) is, by definition, preserved. As such, the defini-
tion of HFpEF (with or without clinical signs of heart disease) is
constantly changing and, currently the diagnosis includes a LVEF of
at least 50%, with other evidence such as structural heart disease or
diastolic dysfunction.15 HFpEF is associated with high morbidity, a
shortened life expectancy, and a 5-year mortality of newly diag-
nosed patients that is as high as 50%. This is likely due to the lack of
effective interventions and diagnostics for the HFpEF form of the
syndrome and a paucity in knowledge in relation to the pathogen-
esis leading to HFpEF in both people with and without diabetes.16,17

Reliable blood-based biomarkers reflective of the cardiac pathology,
such as ST2 or hs-CRP, could be beneficial in predicting the risk of
HFpEF occurrence and also be utilised in the development of novel
therapeutic agents.18 This review provides a detailed outline of
angiogenesis-related and inflammatory mechanisms in HFpEF,
particularly in the presence of diabetes, and “in silico” analyses of
pathogenic pathways implicated in HFpEF in the presence or
absence of diabetes. These identified mechanisms could be investi-
gated and validated in the future studies as biomarkers or targets for
prevention or treatment of HFpEF in people with diabetes.

The pathogenesis of HFpEF in diabetes

HFpEF is classified as a diastolic dysfunction affecting the left
ventricle (LV),manifesting as either an impairment of left ventricular
relaxation or increased diastolic stiffness, which can be attributed to
myocardial hypertrophy, progressive myocardial fibrosis and/or
increased cardiomyocyte stiffness.19e21 The evident slowed relaxa-
tion is due to a loss inflexibility that impactsmid to late diastole, also
resulting in elevated blood pressure.22 The loss of flexibility is due to
the re-characterisation of a large sarcomeric protein called titin,
which is responsible for recoil, remaining in a compressed state
during systole.23 This occurs through transcriptional and post-
translation modifications24,25 that results in extracellular matrix
accumulation and fibrosis (i.e. an imbalance between depressed
collagen degradation and exaggerated collagen synthesis), mani-
festing in disturbed LV filling26 and detrimental structural mod-
ifications.19e21 Furthermore, when stretching of the heart occurs,
cardiomyocytes within the ventricles secrete a B-type natriuretic
peptide (BNP) that is used as a biomarker for the onset of HFpEF.27

The presence of HFpEF is more common in diabetes, likely due
to the accumulation of adipose tissue and lipids within non-adipose
tissue that can lead to the development of insulin resistance within
myocytes, hepatocytes and adipocytes.28 T2DM causes endothelial
cell dysfunction and hence aberrant angiogenesis,29,30 elevating
levels of fibrinogen,31,32 thrombin,33 coagulation factors VII34 &
VIII,35 inflammatory mediators36,37 and Plasminogen-Activator In-
hibitor Type 1.38 These factors induce a pro-thrombotic environ-
ment within the vasculature by accelerating atherosclerotic plaque
formation through chronic inflammation and injury to arterial
walls.39

Inflammation in HFpEF
As far back as the 1990s, links between increased inflammatory

profiles and LV dysfunction have been identified in a number of rat
models, suggesting a cause and effect relationship between
inflammation and the development of fibrosis.40,41 However, the
element of time and the inflammatory cascade varies between
species, as does the reliance on identifying specific biomarkers at
specific time points in disease progression that may be relevant to
the overall heart condition. Pentraxin-3 (PTX3) is one such
biomarker that has a well-established association with vascular
inflammation and, only recently Zlibut et, al. highlighted a role for
PTX3 in decreasing nitric oxide (NO) synthesis within endothelial
cells, altering their function and inhibiting cell proliferation.42

Furthermore, correlation between upregulation of the pro-
inflammatory cytokine interleukin-6 (IL-6) and PTX3 have also
been found in HFpEF,43 with studies showing that IL-6 forms a
cluster with periostin (involved in vasculature remodelling) and C-
reactive protein (CRP), but only within a diabetic environment.44

This pro-inflammatory state underlying the pathophysiology of
HFpEF allows a contrast to be made when compared to the path-
ophysiology pathway of HFrEF, which shows stronger positive as-
sociation with NT-proBNP than HFpEF.45e54
Angiogenesis in HFpEF
Aberrant angiogenesis caused by a T2DM-induced pro-

thrombotic environment arising from adipose tissue and lipid
accumulation, resulting in insulin resistance, also plays an impor-
tant role in the pathogenesis of diastolic dysfunction and HFpEF.
Barroso et, al. recently identified the endogenous angiogenesis in-
hibitor, endostatin, as a possible biomarker of HFpEF, due to its
correlation to the presence and severity of HFpEF, with the evident
deterioration of diastolic function correlated with increased
endostatin levels.41 Other angiogenesis biomarkers that have
delivered predictive results particular in terms of HFpEF and not
HFrEF are the vascular endothelial growth factor co-receptor neu-
ropilin and the remodellingmarker osteopontin.43 Similarly, C-type
natriuretic peptide (CNP)-guided therapy as studied by Lok et, al.
showed promise in predicting endpoints of patients' re-
hospitalisations or all-cause mortality as a result of HFpEF, which
was not observed in patients with HFrEF Higher concentrations of
NT-proCNP in HFpEF were observed as a result of these endpoints
hence demonstrating strong prognostic biomarker potential of NT-
proCNP for HFpEF patients.55 Furthermore, in the presence of dia-
betes, there is a direct association between CNP and HFpEF, which is
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promising, especially considering its predominant localisation in
the endothelium and the detrimental impact diabetes has on
inducing endothelial damage.55

Computational analysis of the literature on HFpEF biomarkers in the
presence and absence of diabetes

A number of “omics” approaches have been employed for
biomarker discovery in CVD including genomics, transcriptomics,
proteomics and metabolomics in order to understand molecular
mechanisms of underlying pathogenesis. The wealth of scientific
Fig. 2. Pathogenic pathways identified using “in silico” analysis of publica

Fig. 3. Pathogenic pathways identified using “in silico” analysis of publicly available datase
above.
data available in public repositories can also be helpful to integrate
relevant biomarkers in HFpEF and contextualise these into patho-
genic biological pathways. Therefore, this study carried out
computational analyses of biomarkers identified in the literature to
further evaluate pathogenic pathways associated with HFpEF both
in the presence and absence of diabetes. For this purpose, a com-
bination of a series of literature queries, public data repositories
(Pubtator, Reactome and gProfiler) and in-house developed R
scripts were employed. This allowed retrieval and analysis of these
biomarkers in the context of pathways/gene sets, similar to what
was previously described.56 The retrieval of relevant literature was
lly available datasets in relation to HFpEF in the presence of diabetes.

ts in relation to HFpEF in the absence of diabetes as per the search strategy depicted
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built on two queries, one focused on identification of publications
related to biomarkers for HFpEF in the presence of diabetes (1) and
another one that does not include diabetes (2):

1. ((“HFpEF”[Title/abstract] OR “heart failure with preserved
ejection fraction”[Title/abstract]) AND (“Diabetes Melli-
tus”[MeSH Terms] OR “diabetes”[Title/abstract])) AND (“Bio-
marker”[Title/abstract] OR “biomarkers”[MeSH Terms]) AND
(“1900/01/01”[EDAT]: “2019/06/01”[EDAT])

2. ((“HFpEF”[Title/abstract] OR “heart failure with preserved
ejection fraction”[Title/abstract]) NOT (“Diabetes Melli-
tus”[MeSH Terms] OR “diabetes”[Title/abstract])) AND (“Bio-
marker”[Title/abstract] OR “biomarkers”[MeSH Terms]) AND
(“1900/01/01”[EDAT]: “2019/06/01”[EDAT])

This computational analysis generated the total number of 1776
pathways in relation to HFpEF in the absence of diabetes, and 437
pathways in the presence of diabetes; 1326 pathways were iden-
tified in HFpEF as shared between diabetes and in the absence of
diabetes (Fig. 1). When these results were extrapolated into specific
pathways using Reactome knowledgebase, a number of inflam-
matory biomarkers were identified including tumour necrosis
factor (TNF), nuclear factor NFkB and interleukin (IL) signalling
pathways (Fig. 2) as key in HFpEF pathogenesis in the presence of
diabetes. On the other hand, in the absence of diabetes, a number of
additional pathways were identified including extracellular matrix
degradation, hypoxia inducible factor, coagulation, fibrosis and
metabolic/insulin signalling pathways (Fig. 3). These biomarkers
and pathways should be further explored and validated using
appropriate clinical samples from people with HFpEF with and
without diabetes as well as pre-clinical in vivo and in vitromodels of
diabetes- and/or hypertension-induced HFpEF. Although the search
of the literature excluded the word “diabetes” from titles and ab-
stracts as a MeSH term, it does not guarantee exclusion of diabetes
in cases where these types of patients were included, but not re-
ported as having diabetes in the publications.

Conclusion

This review outlines the complexity of HFpEF pathogenesis and
the need for further investigation into specific biomarkers that
could be utilised as diagnostic or therapeutic targets specifiacally
for HFpEF, both in the presence and absence of diabetes. Using this
bioinformatics approach, this study identified some shared and
some unique pathogenic pathways of HFpEF in the presence and
absence of diabetes, identifying inflammation as a key process
associatedwith HFpEF, particularly in the context of diabetes. These
pathways should be explored further for their role and mechanism
in the pathogenesis of HFpEF in order to develop more effective
predictive, diagnostic and treatment strategies.
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