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A B S T R A C T   

Households are responsible for a significant share of global greenhouse emissions. Hence, academic and policy 
discourses highlight behavioral changes among households as an essential strategy for combating climate 
change. However, formal models used to assess economic impacts of energy policies face limitations in tracing 
cumulative impacts of adaptive behavior of diverse households. The past decade has witnessed a proliferation of 
agent-based simulation models that quantify behavioral climate change mitigation relying on social science 
theories and micro-level survey data. Yet, these behaviorally-rich models usually operate on a small scale of 
neighborhoods, towns, and small regions, ignoring macro-scale social institutions such as international markets 
and rarely covering large areas relevant for climate change mitigation policy. This paper presents a methodology 
to scale up behavioral changes among heterogeneous individuals regarding energy choices while tracing their 
macroeconomic and cross-sectoral impacts. To achieve this goal, we combine the strengths of top-down 
computable general equilibrium models and bottom-up agent-based models. We illustrate the integration pro-
cess of these two alien modeling approaches by linking data-rich macroeconomic with micro-behavioral models. 
Following a three-step approach, we investigate the dynamics of cumulative impacts of changes in individual 
energy use under three behavioral scenarios. Our findings demonstrate that the regional dimension is important 
in a low-carbon economy transition. Heterogeneity in individual socio-demographics (e.g. education and age), 
structural characteristics (e.g. type and size of dwellings), behavioral and social traits (e.g. awareness and per-
sonal norms), and social interactions amplify these differences, causing nonlinearities in diffusion of green in-
vestments among households and macro-economic dynamics.   

1. Introduction 

Energy consumption is the primary culprit behind anthropogenic 
global warming. Humanity’s demand for energy is satisfied by 
consuming fossil fuels as well as renewable energy sources, leading to 
varied greenhouse gas emission (GHGs) footprints. Households are 
responsible for 70% of global GHGs (Hertwich and Peters, 2009). In 
Europe, one quarter of direct total energy consumption and GHGs comes 
from households.1 Academic and policy discourses highlight behavioral 
changes among households as an essential strategy for reducing GHG 
emissions and combating climate change (Dietz et al., 2013; Doppelt 
et al., 2009; Faber et al., 2012; McKinsey, 2009; Nielsen et al., 2020). 

Importantly, an individual’s decision-making is known to deviate from 
rational and perfectly informed optimization process, calling for a 
thorough understanding of behavioral aspects (Abrahamse and Steg, 
2011; Bamberg et al., 2015, 2007; Poortinga et al., 2004; Stern, 2016; 
van Raaij, 2017). 

Policy-makers rely on decision support tools to assess future changes 
in energy markets and the economy as a whole. Macroeconomic 
Computable General Equilibrium (CGE) models serve as standard tools 
for quantitative policy assessments in climate change mitigation 
(Babatunde et al., 2017; Fujimori et al., 2017; IPCC, 2014; JRC, 2014; 
Rive et al., 2006; Vandyck et al., 2016). CGE models are popular among 
governments and academia for ex-ante policy analysis. They rely on 
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advancements in micro-based macro-economic theory that represent the 
aggregate behavior of rational and fully-informed economic agents 
(households and firms) and their trade interactions via supply-chains. 
Behavioral changes, including behavioral climate change mitigation 
actions driven by the increased level of knowledge about climate change 
in society and shifts in preferences, are difficult to model directly with 
CGE models. This is one of the critics regarding their capacity to support 
climate change mitigation policy (Creutzig et al., 2018; Farmer et al., 
2015; Farmer and Foley, 2009; Isley et al., 2015; Niamir et al., 2018b; 
Stern, 2016). 

In contrast to this macroeconomic “top-down” approach, “bottom- 
up” agent-based models (ABMs) focus on behaviorally-rich representa-
tion of energy consumers, integrate technological learning, out-of- 
equilibrium dynamics and social interactions (Bhattacharyya, 2011; 
Farmer et al., 2015; Hunt and Evans, 2009; Niamir and Filatova, 2015; 
Niamir et al., 2018b; Tesfatsion, 2006). Agents in ABMs follow a set of 
if-else rules, sometimes combined with equations, that guide their ac-
tions, interactions with other actors or institutions (e.g. markets), and 
learning. ABMs could compliment macro-economic models by accom-
modating heterogeneity, adaptive behavior and interactions, bounded 
rationality, and imperfect information (Filatova and Niamir, 2019). 
However, their use for climate policy is hindered by high-data intensity 
for individual behavioral rules and interactions. When energy ABMs are 
grounded in empirical data, their upscaling remains limited (Humphreys 
and Imbert, 2013; Lamperti et al., 2019), preventing the assessment of 
economy-wide impacts, effects of national or EU policies and general-
ization of ABMs’ results. 

There is a long history in bridging top-down CGE models with 
bottom-up models (Krook-Riekkola et al., 2017), usually non-ABM. 
Specifically for energy, macroeconomic models are linked with engi-
neering micro-simulation models focusing on the technological pro-
cesses of electricity generation (Sue Wing, 2008). Scholars either 
establish a ‘soft-link’ between micro and macro models, or complement 
one by a reduced form of the other, or combine them directly through 
‘hybrid’ modeling (Böhringer and Rutherford, 2009). Since engineering 
bottom-up models often rely on mathematical programming, the latter 
approach focuses on resolving mixed complementarity problems (Boh-
ringer and Rutherford, 2008). Besides linking to engineering 
micro-simulations, national level CGEs rely on complimentary 
micro-simulation models for environmental analysis, taxation (Peichl 
and Schaefer, 2009), fiscal analyses (Debowicz, 2016) and labor market 
analysis (Benczúr et al., 2018). However, an integration of micro-macro 
approaches at the regional (sub-national) level is scarce (Verikios and 
Zhang, 2015). In parallel, as inequality and distributional impacts of 
climate change policies come into a spotlight internationally, intro-
ducing heterogeneity into CGE models becomes increasingly important 
(Bijl et al., 2017; Kulmer and Seebauer, 2019; Melnikov et al., 2017; Rao 
et al., 2017; van Ruijven et al., 2015). This is commonly done by dis-
aggregating the representative agent in macro models with micro-level 
survey data (Rausch et al., 2011). Duarte et al. (2016) provide an 
excellent example on modeling of pro-environmental consumer 
behavior in a regional CGE model for Spain using micro-level data. This 
study evaluates the impact of improving environmental awareness by 
specifying drivers of behavioral changes – adoption of household ap-
pliances with different energy efficiency levels – for different income 
levels using household survey data (Duarte et al., 2016). While using 
survey data in CGEs is a major step in accommodating heterogeneity, the 
choices that economic agents pursue remain fixed and are still assumed 
to be taken under conditions of perfect information. It hinders the rep-
resentation of behavioral changes, bounded-rationality and social in-
fluences so prominent in understanding pro-environmental choices 
(Niamir et al., 2020a; Steg and Vlek, 2009). 

Linking macroeconomic CGE models with micro-level behaviorally- 
rich ABMs can operationalize behavioral changes in formal policy 
analysis and open new synergies between micro and macro approaches 
(Krook-Riekkola et al., 2017; Melnikov et al., 2017; Parris, 2005; 
Safarzyńska et al., 2013; Smajgl et al., 2009). Earlier attempts to inte-
grate ABM and CGE models include the work of Safarzyńska et al. (2013) 
who propose an elegant way to integrate the evolutionary dynamics of 
ABMs into a CGE model. Yet, authors leave it at the conceptual level 
without an implementation. Smajgl et al. (2009) discuss a farm-level 
integration of ABM-CGE for fishery policy impact assessment, with no 
integration results. To the best of our knowledge, there is no empirical 
example of resolving the key methodological differences between ABM 
and CGE modeling while aligning with survey data on behavioral 
heterogeneity. 

The current paper addresses this methodological gap by demon-
strating how aggregated impacts of household energy behavior changes 
emerging from an empirical ABM could be scaled up and linked to the 
macroeconomic dynamics of a CGE model. To demonstrate the feasi-
bility of the method we employ a soft-linkage between the two empirical 
models; future work will focus on a hard-link integration following our 
earlier pilot on using software wrappers to assure a real-time data ex-
change between toy ABM and CGE models (Belete et al., 2019). Here we 
ensure models’ consistency by aligning functional forms and by using 
the same database and economic scenarios. The objective of this paper is 
twofold: (1) to investigate feasibility of an original approach to link 
empirical ABM and CGE models while targeting individuals’ heteroge-
neity, social interactions, and behavioral changes; and (2) to explore the 
impacts of climate change mitigation behavior across scales, from in-
dividuals to the EU regions. Towards this end, we propose a three-step 
upscaling approach that goes beyond our specific application and may 
serve as a systematic way to link ABM and CGE models (Section 2). Our 
results demonstrate that it permits tracing the macro-economic and 
cross-sectoral impacts and indirect effects of individual energy behav-
ioral changes (Section 3). Section 4 concludes with a discussion and 
outlining future work. 

2. Methods 

To explore economy-wide impacts of behavioral changes and the role 
of social interactions the current paper employs the strengths of micro 
and macro socio-economic models. We use an empirical behavioral ABM 
(BENCH-v.3) originally developed to study cumulative impacts of indi-
vidual changes in energy use (Niamir et al., 2020b, 2018a). To trace 
indirect effects and cross-sectoral impacts of shifts in residential energy 
demand and changes in households consumption behavior, we employ 
an empirically-calibrated CGE model (EU-EMS) (Ivanova et al., 2019). 

The scientific challenge is in aligning the two models that differ in 
key assumptions. Namely:  

- Representative vs. heterogeneous agents: CGE models work with 
a representative agent (group) while ABMs assume heterogeneity in 
attributes and behavior;  

- Perfect vs. bounded rationality: agents in CGE are assumed to be 
fully rational while ABMs proliferate in tackling research problems 
where bounded rationality is relevant; 

- Static vs. adaptive behavior: households in CGE have fixed pref-
erences and perfect information, while ABM are designed to explic-
itly model adaptive expectations. Since ABM-agents do not have full 
information, they learn over the course of a simulation, either from 
their own experience, from their social network or through market 
signals; 
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- Unique one shot equilibrium, vs. out-of-equilibrium dynamics: 
CGE models are solved via the assumption of a unique equilibrium 
occurring in one shot when markets clear. In contrast, ABMs trace the 
process of out-of-equilibrium dynamics and transitions between 
multiple equilibria while eliciting path-dependencies. 

2.1. Models and scenarios 

2.1.1. The BENCH agent-based model 
Originally, the BENCH ABM (Niamir et al., 2020b, 2018a; Niamir 

and Filatova, 2017) was developed to investigate the role of behavioral 
changes with respect to an individual energy use in the transition to a 
low-carbon economy. Households in BENCH ABM are heterogeneous in 
socio-demographic characteristics (e.g. income, age, education), 
dwelling characteristics (e.g. type, size, age), energy consumption pat-
terns (e.g. electricity and gas consumption, energy provider), and 
behavioral factors (e.g. awareness, personal norms, social norms). 
BENCH is spatially explicit, with behavioral rules of agents calibrated 
based on the survey data for two EU NUTS22 regions: Navarre, Spain and 
Overijssel, The Netherlands (Niamir et al., 2020a). 

We advance this ABM further to permit integration with the EU-EMS 
CGE both in terms of the theoretical consistency of functional forms used 
in ABM and CGE as well as the datasets and scenario assumptions. We 
start aligning the ABM model with its macro counterpart by including 
the empirically estimated discrete choice functions for the representa-
tion of households’ investment decisions. These functions stem from the 
utility optimization approach that is also used for the derivation of de-
mand functions in the CGE model and are further relaxed in the ABM to 
accommodate bounded rationality. Namely, agents’ utility functions are 
modified to align with empirically-grounded energy decisions from the 
households’ survey (Niamir et al., 2020a), social interactions and 
learning – with macroeconomic dynamics in our data-driven CGE 
model. In particular, BENCHv.3 focuses on energy investments that 
households may decide to undertake: significant investments in house 
insulation (I1) or moderate investment in solar panels (I2), and modest 
investments in energy-efficient appliances (I3) (Fig. 1). 

Cognitive process behind individual behavioral changes: in 
accordance with the Theory of Planned Behavior and Norm Activation 
Theory from psychology, we assume that boundedly rational individuals 
in BENCH-v.3 make decisions following a number of cognitive steps: 
knowledge activation, motivation, and consideration (Niamir et al., 

2020a, 2018a). Fig. 2 shows heterogonous households in sociodemo-
graphic characteristics, dwelling conditions, electricity and gas con-
sumption follow a cognitive process to decide whether to pursue any 
energy investment (I1–I3). Niamir et al. (2018a) describes how each 
individuals knowledge activation and motivation are measured and 
calculated at the model initialization stage based on the survey data. In 
summary, an individual knowledge activation level is calculated based 
on the average of three types of knowledge - person’s 
climate-energy-environment knowledge (K), awareness about climate, 
environment and energy issues (AC), and energy decision (AE). If this 
average for an individual is above the empirical threshold, then the 
person is tagged as “feeling guilt” and proceeds to the next step to assess 
his/her motivation for actions I1–I3. Such individuals proceed to eval-
uate the motivational factors: personal and social norms (NP, NS) for 
each action (I1–I3). If individuals are highly motivated and “feel 
responsible”, the perceived behavior controls4 (PBC), and the dwelling 
ownership status (owner or renter) are evaluated to assess “intentions”. 
Individuals with a high level of intention proceed to estimate utilities, 
which are formulated as a discrete choice problem here. Household 
agents follow these stages for each action: when deciding whether to 
invest in insulation, solar panels or energy-efficient appliances. 

Households in BENCH-v.3 make choices based on the indirect utility 
function (Eq. (1)). As the inverse of the expenditure function when 
prices are constant, it reflects individual preferences for different energy 
actions under budget constraints. 

Vij =
∑

xijβi + εij (Eq. 1) 

The utility of individual j associated with choice i (Vij) is calculated 
based on the vector of explanatory observed and latent variables ( xij) – 
including socio-economic characteristics of the individuals, dwelling 
characteristics, and financial and ownership situation, as well as 
behavioral factors – and the parameter vector ( βi) estimated using a 
probit regression (Niamir et al., 2020a). Finally, εij is the vector of error 
terms. An individual chooses a particular sub-action (i) when their 
utility is non-negative: 

If Vij ≥ 0
(
Iij = True else Iij =False

)
(Eq. 2) 

Social interactions and learning: The speed of green investments 
diffusion does not depend only on social interactions that affect updat-
ing of knowledge, awareness and norms. It depends also on the indi-
vidual heterogeneity: socio-economic characteristics or dwelling 

Fig. 1. Households’ choices in the spatial BENCH agent-based model.3.  

2 The Nomenclature of territorial units for statistics, abbreviated NUTS is a 
geographical nomenclature subdividing the economic territory of the European 
Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, 
moving from larger to smaller territorial units). 

3 Photo sources: I1 by Tracey Nicholls (CC BY 3.0); I2 by Enrix-Knuth (CC BY- 
SA 4.0); I3 by Tommaso.sansone91(CC0). Available from: https://commons.wi 
kimedia.org.  

4 Own perception of their ability to perform an action or change behavior. 

L. Niamir et al.                                                                                                                                                                                                                                  

https://commons.wikimedia.org
https://commons.wikimedia.org


Environmental Modelling and Software 134 (2020) 104839

4

characteristics, which affect utility of taking an action I1–I3 (i.e. serve as 
proxy for the perceived behavior control, PBC). In BENCH-v.3, agents 
exchange information following a simple opinion dynamics model 
(Moussaïd et al., 2015). When a neighbor takes an action (I1–I3), it may 
alter knowledge, awareness and the motivational factors regarding en-
ergy choices of others in this peer group. Namely, individuals compare 
own behavioral factors (K, AC, AE, NP, NS, PBC) with those of their 
closest neighbors, and gradually adjust them (Fig. 3, Eq. (3)). We run 
various scenarios of this social learning (see section 2.1.3). 

Our ABM uses the same baseline scenario of regional demographic 
and economic development as the CGE model ensuring the consistency 
between the scenario analysis in two models. Further, the ABM takes as 
inputs data on the regional GDP projections estimated for 2015–2050 by 
the CGE model. The detailed description of the BENCH agent-based 
model is presented in Appendix 1. 

2.1.2. Computable general equilibrium model 
EU-EMS (Ivanova et al., 2019) is a spatial CGE model developed by 

the PBL Netherlands Environmental Assessment Agency for policy 
impact assessments. The current version of EU-EMS covers 276 NUTS2 
regions across the EU28 member states. Goods and services are pro-
duced by firms and consumed by households or other firms and 
exchanged on competitive markets. Spatial interactions between regions 
are captured through the trade in goods and services, factor mobility, 
and knowledge spill-overs. 

Following the tradition of comprehensive empirical CGE models, EU- 
EMS uses large datasets of real economic data in combination with 
complex computational algorithms to assess how the economy reacts to 
changes in governmental policy, technology, availability of resources 
and other external macro-economic factors. The EU-EMS model consists 
of (a) the system of non-linear equations, which describes the behavior 
of various economic actors, and (b) a very detailed database of eco-
nomic, trade, environmental and physical data. The core part of the 
model database is the Social Accounting Matrix, which represents in a 
consistent way all annual economic transactions. 

The database5 of the model has been constructed by PBL using the 
combination of national, European and international data sources and 

represents a detailed regional level (NUTS2 for EU28 plus 34 non-EU 
countries) multi-regional input-output (MRIO) table for the world. The 
main datasets used for the construction of this MRIO include the 2013 
OECD database, BACI trade data, Eurostat regional statistics, and na-
tional Supply and Use tables, as well as the detailed regional level 
transport database of DG MOVE called ETIS-Plus.6 The later dataset 
allows us to estimate the inter-regional trade flows at the level of NUTS2 
regions that are currently not available from official statistical sources. 
The aggregated groups of the sectors can be directly linked to the panel 
data econometric analysis and estimations that have been done for Total 
Factor Productivity (TFP) projections using the EU-KLEMS database.7 

We have used panel data techniques on EU-KLEMS data in order to 
model the development of TFP according to the technological catch-up 
theory. The detailed description of our CGE model is presented in Ap-
pendix 2. 

Measuring economic inequality: economists often measure 
regional disparities using Theil’s T inequality index (Eq. (3)), the 

Fig. 2. BENCH-v.3 ABM structure: cognitive process behind individual behavioral changes (I1–I3).  

Fig. 3. Social dynamics and learning in a neighborhood where an individual 
undertook an action at time t. 
X ={Kn, ACn , AEn , NPn , NSn ,PBCn} , n={1,…9}; (Eq. 3)  

If Max
(
mean

(
Xt

n

)
, median

(
Xt

n

))
≥ Xt

j

(
Xt+1

j = Xt
j + 0.02 ⋅ Xt

j

)

5 http://themasites.pbl.nl/winnaars-verliezers-regionale-concurrentie/. 

6 http://viewer.etisplus.net/.  
7 http://www.euklems.net/. 
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absolute value of which indicates the distance from equality. 

Theil T =
θi
∑

i
θi

∑N

i=1
log
(γi

μ

)
(Eq. 3a)  

Where θo is the GDP of each NUTS2 region, γi is the GDP per capita in 
each region as a measure of regional income, and μ is the average GDP 
per capita across the EU28 NUTS2 regions. 

The EU-EMS CGE model estimates the cross-sectoral aggregated 
impacts of individual behavioral changes produced by the ABM, and 
traces the consequent changes across the EU regions triggered by the 
macro economy. The CGE receives measures: a) the diffusion of each of 
the three types of actions (I1–I3) among heterogeneous households 
(classified in 12 age and education groups); b) the changes in electricity 
and gas consumption; c) saved CO2 emissions; and d) the amount of 
investment from BENCH model results. 

2.1.3. Scenarios 
Micro-level end-user behavioral scenarios: besides being hetero-

geneous in terms of sociodemographic characteristics (e.g. age, income, 
education), housing they reside in (e.g. tenure status, size, energy label), 
and psychological factors (e.g. attitudes and beliefs, personal norms), 
agents in the BENCH-v.3 ABM exhibit heterogeneous behavioral char-
acteristics, such knowledge and awareness, engage in social interactions 
and learn. BENCH.v3 ABM introduces three end-user behavioral sce-
narios (Baseline, FD, ID) by differentiating between the intensity of social 
interactions and the speed of learning (see Table 1). Based on the 
neighborhood size, this social learning may occur at either a slow or fast 
pace (see scenarios in Appendix 1). 

Macro-level scenarios: in addition to these three behavioral sce-
narios, the EU-EMS CGE model relies on the demographic projections 
from Eurostat until 2050 and Total Factor Productivity (TFP) projections 
by economic sector based on our own econometric analysis. Hence, the 
macroeconomic and demographic scenarios are combined with the 
slow/fast/informative dynamics scenarios of micro-level behavior with 
respect to energy-related investments of heterogeneous households. 

2.2. Upscaling behavioral changes 

ABM and CGE models each have their own assumptions, strength and 
weaknesses. We attempt to overcome the latter by linking the two 

models. To pursue this in a systematic manner, we take a step-wise 
approach to bridge the ABM with the CGE model (Fig. 4). 

2.2.1. Step 1: from individual households to regional shifts in energy use 
BENCH-v.3 ABM calculates the extent of behavioral changes among 

heterogeneous household agents who evolve through a cognitive pro-
cess (section 2.1.1, Fig. 2) before reaching a more rational stage where 
the discrete-choice utility maximization is activated (section 2.1.1, Eqs. 
(1) and (2)). Given the stochastic nature of ABMs, we use the mean 
values from 100 ABM simulations run for each scenario and case-study 
to feed them further into the CGE model. The main outcomes of the 
BENCH-v.3 ABM used in the EU-EMS CGE model are the relative changes 
in electricity and gas use and the total investments made by various 
individuals (I1–I3). The EU-EMS CGE model, however, operates at the 
level of all 276 EU28 NUTS2 regions, and needs regional changes in 
energy consumption and investments of the representative households 
as an input. Hence, the behavioral patterns emerging at the Overijssel 
and Navarre provinces for different households need to be scaled not 
only up to the national level, but up to the entire EU (see next steps and 
Fig. 4). 

2.2.2. Step 2: Dynamic socio-demographic groups with similar behavioral 
patterns 

We take an intermediate step to derive the changes in investments, 
gas and electricity consumption across households of different age and 
education levels for all 276 EU28 NUTS2 regions based on the outcomes 
of two regional ABMs. Economic theory suggests that investment 
choices depend on households’ incomes. However, our survey on 
behavioral changes regarding energy use (Niamir et al., 2020a) reveals 
that age and education are the most important factors explaining 
households preparedness to invest in low-carbon energy (I1–I3).8 Thus, 
we define behavioral patterns for a group of households in the Dutch and 
Spanish regional ABMs separately, aggregating by age and education 

Table 1 
Micro-level end-user behavioral scenarios. Source: BENCH.v3  

Behavioral scenarios Social dynamics Definition 

Baseline Slow 
In an active neighborhood: individuals interacts 
with a maximum of four neighbors 

Individuals with the value of their behavioral attributes – components shaping awareness and motivation 
– lower than that of their neighbors adjust by increasing the value of by 2%a (see Eq. (3)). 

FD (Fast Dynamics) Fast 
In an active neighborhood: individuals interacts 
with all available neighbors 

Individuals with the value of their behavioral attributes – components shaping awareness and motivation 
– lower than that of their neighbors adjust by increasing the value of by 2% (see Eq. (3)). 
This scenario represents a rapid bottom-up diffusion of pro-environmental social norms driven by 
households alone without any policy support. 

ID (Informative 
Dynamics) 

Informative 
In an active neighborhood: individuals interacts 
with all available neighbors 
+

Intense information policy 

This scenario assumes an intense information policy – e.g. social advertising and the promotion of pro- 
environmental behavior – that raises the level of knowledge and motivation across the entire population. 
Hence, at initialization all households agents start with 2% higher values of behavioral attributes, before 
engaging in any social learning. 
The ID scenario highlights the importance of information diffusion and information campaigns focusing 
on behavioral climate mitigation. It assumes that all individuals do update their knowledge and 
motivation when an information policy applies.  

a As an ABM the BENCH model permits experimentation with numerous “what if” scenarios. Exploring the entire space of complex adaptive models, such as BENCH, 
is a massive research project on its own (Kwakkel and Pruyt, 2013). We tested different level of diffusion ranging from 1% to 4% and choose 2% since it captures the 
qualitative trend anticipated by experts. For example, the higher level of diffusion generate more active neighborhoods in earlier years converting all households to 
became energy-efficient between 2035 and 2040, but that does not resemble the narratives in the literature (Allen et al., 2018; Creutzig et al., 2016; Grubler et al., 
2018; IPCC, 2014). Exploring the entire parameter space would be an interesting topic for future research. 

8 With the help of our empirical data, we examined the impact socio- 
demographic factors, namely income, gender, education and age, on house-
holds energy bahavior changes in two provinces (Overijssel, NL and Navarre, 
ES). Particulary, our analysis shows the probability of households energy 
behavior increases with the level of eduction (95% confidential interval) 
(Niamir et al., 2020a). 
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level. Following the Eurostat classification, we work with 12 
age-education groups (Table 2). 

For all 12 groups, we estimate a number of households pursuing an 
action (I1–I3) and calculate the corresponding average gas and elec-
tricity savings and investments. The behavioral factors –awareness, 
motivations, intentions and likely actions– across 12 groups differ be-
tween the two countries in our survey sample, and so do the patterns of 
behavioral climate change mitigation emerging in the ABMs. To utilize 
the information regarding regional differences in patterns of behavioral 
change, we create the mapping between NUTS2 regions of the EU28 
with the two ABM regions according to their perceived cultural distance. 
Social structure, wealth and lifestyle, religion, institutional and eco-
nomic conditions, and natural environment play a role in assessing 
cultural distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 
2016; Schwartz, 2014; Vignoles et al., 2018). Specifically, in the absence 
of more granular data, we use the Dutch case to approximate how the 
behavioral patterns may evolve in the North-West EU states, and the 
Spanish case – for the South-East EU states (see Table A3.1 in Appendix 

3). We acknowledge that this approach does not fully capture all the 
cultural differences but it, for example, accounts for the role of social 
network (higher among the Spanish respondents compared to the 
Dutch) in behavioral climate change mitigation. Ideally, one should use 
native survey data regarding the modeled behavior or employ secondary 
data on revealed empirical differences on behavioral changes across 
regions. Furthermore, differences in policy, institutional, technological, 
and environmental conditions across EU countries are indirectly 
accounted for in our CGE model and the databases it relies upon. 

Since behavioral changes vary primarily among households with 
different age and education levels, the changes in these characteristics 
over time are crucial. Hence, we employ demographic projections for 
the period until 2050. The only regional NUTS2 level projections that 
have been done for the EU28 are EUROPOP20089 projections of Euro-
stat. Population projections of Eurostat provide information about the 
development of the population until 2050, detailed by age and gender 
groups. Furthermore, Eurostat population projections at NUTS2 level 
are combined with IIASA Global Education Trends scenario pro-
jections10 related to the share of high, medium and low-educated per-
sons in each EU country. This allows us to construct population 
projections by age and education level for the period 2020–2050 for 
each NUTS2 region of the EU28. These NUTS2-level population pro-
jections till 2050 match with the scaled-up mapping of behavioral pat-
terns of 12 groups in our ABM. Hence, now we use age and education 
information to linked it with the emerging behavioral patterns of the 
agent-based BENCH v.3 model when creating NUTS2 specific – that is, 
corresponding to the population structure of that region – inputs into the 
spatial EU-EMS CGE model. 

Fig. 4. Upscaling individuals behavioral change via linking ABM and CGE models.  

Table 2 
Socio-demographic groups, based on the Eurostat classification.  

Group number Education level (1–3) Age group (1–4) 

G1 Low (ISCED 0–2) 1 (younger than 20) 
G2 Low (ISCED 0–2) 2 (20–40 years old) 
G3 Low (ISCED 0–2) 3 (40–60 years old) 
G4 Low (ISCED 0–2) 4 (older than 60) 
G5 Middle (ISCED 3–4) 1 (younger than 20) 
G6 Middle (ISCED 3–4) 2 (20–40 years old) 
G7 Middle (ISCED 3–4) 3 (40–60 years old) 
G8 Middle (ISCED 3–4) 4 (older than 60) 
G9 High (ISCED 5–8) 1 (younger than 20) 
G10 High (ISCED 5–8) 2 (20–40 years old) 
G11 High (ISCED 5–8) 3 (40–60 years old) 
G12 High (ISCED 5–8) 4 (older than 60)  

9 https://ec.europa.eu/eurostat/documents/3433488/5564440/KS-SF-1 
0-001-EN.PDF/d5b8bf54-6979-4834-998a-f7d1a61aa82d.  
10 http://www.iiasa.ac.at/web/home/research/researchPrograms/WorldPop 

ulation/Projections_2014.html. 
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2.2.3. Step 3: Cumulative economy-wide impacts of behavioral changes 
Finally, we use the predicted population structure by age and edu-

cation level for the period 2020–2050 to calculate aggregated changes in 
the residential use of gas and electricity for each NUTS2 regions of EU28 
on the basis of calculated averages for each of the 12 individual groups. 
The EU-EMS CGE model estimates the cross-sectoral impacts of these 
shifts in the aggregated residential energy demand that impacts GDP 
projects. The linked ABM-CGE model quantifies the cumulative impacts 
of behavioral changes among heterogeneous households at the level of 
276 EU28 NUTS2 regions. This allows us to understand the impacts of 
various behavioral scenarios within the CGE framework, including 
distributional effects across these EU regions. An important direction of 
future work would be to develop direct two-way linkages between the 
two models, with the CGE-generated GDP projections feeding back into 
the ABM. Data flows between two models are presented in Fig. 4. 

This step-wise approach to linking the ABM and CGE models allows 
us to address the key methodological challenges:  

- From representative to heterogeneous agents: Heterogeneous 
households in the ABM are matched with representative households 
in the CGE model. Aggregation occurs along the two dimensions that 
impact relevant behavioral changes among households most: age and 
education levels. This is done using detailed information about the 
structure of the population by age and education in each NUTS2 
region for the period 2020–2050 while keeping behavior heteroge-
neous across the 12 groups.  

- From perfect to bounded rationality: Agents in our ABM are 
boundedly rational due to the presence of behavior factors (K, AC, AE, 
NP, NS, PBC) that precede discrete choice utility estimate: subjective 
knowledge and awareness, motivation, and intention to consider a 
change in behavior, which are all prone to social influence. The use 
of the ABM allows us to assess the impacts of pure behavioral 
changes in the CGE model and calculate their broader economic 
impacts. The rest of the economy in the CGE model – e.g. households’ 
decisions on a labor market, decisions of firms, clearing of the mar-
kets – still operates in line with the rationality principles, allowing 
for the coherent treatment of macro-economic processes in the CGE 
model.  

- From static to adaptive agents: Agents in the ABM are prone to 
social influence and learn from their neighbors. As their behavior 
attributes – knowledge and awareness – evolve, they go through 
various cognitive stages of knowledge activation, motivation and 
consideration and may eventually decide to invest in low carbon 
energy. By scaling up these behavioral patterns through age- 
education groups, we are able to link to the architecture of a CGE. 
By default CGE models assume perfect information and rational ex-
pectations, omitting a variety of behavioral strategies through which 
adaptive behavior can be channeled into macro dynamics.  

- From an equilibrium to adaptive dynamics with social learning: 
The CGE model is based on assumptions of market equilibrium and 
interlinkages between different agents, sectors and markets in the 
economy. The ABM treats agents’ decisions as a cognitive process in 
the presence of social interactions and fast/slow/informative 
learning. 

Before discussing the results, it may be useful to be explicit about the 
limitations of the current study. The presented CGE-to-ABM link is 
currently indirect, operationalized via the EU GDP growth rates sce-
narios (the dotted curve in Fig. 4). Furthermore, to demonstrate the 
applicability of method, we work with two survey datasets; for a real 
policy analysis it is essential to work with a richer representation of 
regions that may also account for differences in climatic and 

institutional conditions across countries. While our ABM relies on 
households’ surveys (Niamir et al., 2020b, 2020a; 2018a) for 
micro-validation, macro-validation against regional-level panel data 
remains a subject of future work. We believe that micro-validation is 
sufficient for the methodological demonstration of the applicability of 
this approach for upscaling behavioral climate change mitigation. 
Complementing it with macro-validation would be essential when per-
forming a real policy analysis. 

3. Results and discussion 

Given the stochastic nature of ABMs, we run BENCH multiple times 
under the same parameter settings for each scenario. The ABM results 
presented below plot the means across 100 random runs. Therefore, we 
use the mean values from each ABM scenario and case-study to scale up 
the observed behavioral patterns and to estimate their cross -sectoral 
impacts in the CGE model. 

3.1. Step 1: From behavioral patterns in survey data to cumulative 
impacts in two provinces 

Firstly, we run the BENCH.v3 ABM for two EU provinces (Overijssel 
and Navarre) under the three behavioral scenarios (Baseline, FD and ID). 
We report the regional impacts of the energy behavior choices of het-
erogeneous households: the diffusion of each of the three types of 
behavioral actions among heterogeneous households over time, the 
changes in electricity and gas consumption, saved CO2 emissions, and 
the amount of investment. 

Fig. 5 illustrates the dynamics of electricity and gas saving in the two 
EU provinces as a result of households’ energy investments. The general 
trend is as expected: faster learning boosted by an information campaign 
leads to more investments in solar panels (I2) and in appliances (I3), and 
consequently to higher electricity savings in both provinces. Intensive 
social learning boosts electricity savings by 40% and 100% in Overijssel 
and Navarre (FD vs Baseline, Fig. 5 a and Table 3). In addition, electricity 
savings increase by 14% and 22% in two provinces if pro-environmental 
awareness is raised through an information policy (ID vs FD, Fig. 5 a and 
Table 3). However, these trends do not hold for investments in insulation 
(I1) and corresponding gas savings. Informative strategy (ID) has a 
mixed impact on insulation investments in Navarre (crossing of FD and 
ID curves in Fig. 5b) and the opposite effect in Overijssel (ID delivers 
26% lower gas savings compared to FD, Fig. 5b). The difference between 
cases may be driven by initial conditions (climate, institutional settings, 
gas prices) in the two countries. In addition, comparing FD and ID sce-
narios shows that an information policy and social interactions among 
neighbors impact households’ insulation decisions in a non-linear way. 

Table 3 shows the amount of CO2 emission savings that households’ 
energy behavior changes could deliver, and at what investment cost. 
Intensive social interaction (FD scenario) leads to 1.4 and 2 times more 
saved CO2 emissions in Overijssel and Navarre compared to the Baseline. 
As expected, information policy along with social interactions (ID sce-
nario) amplify the impact 1.1 and 1.2 times more on top of the FD sce-
nario in Overijssel and Navarre respectively. We observe a non-linear 
pattern in total investments (Euro per households) under behavioral 
scenarios over time. When information policy (ID scenario) is activated, 
Dutch households invest 17% more compared to the FD scenario in 2020 
and this then drops in 2050 (20% less than the FD scenario). Spanish 
household investments in the ID scenario increases up to 33% in 2030 
and then drops by 5% compared to the FD scenario. These nonlinearities 
emerge from households’ preferred actions (I1–I3) unequally distributed 
over time and space. These results are a pure effect of individual changes 
driven by behavioral factors: we do not include any price-based 

L. Niamir et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 134 (2020) 104839

8

scenarios (subsidies for green or taxes on grey energy) or changes in 
technological costs in this article. 

Our analysis confirms that faster learning boosted by an information 
campaign (FD vs Baseline scenarios) leads to more investments (I2, I3), 
and consequently to higher electricity savings (40%–100%) in both 
provinces. In addition, electricity savings increase by 14%–22% in two 
provinces if pro-environmental awareness is raised through an infor-
mation policy (ID vs FD scenarios). However, ID has a mixed impact on 
insulation investments (I1) and gas consumption in Navarre and the 
opposite effect in Overijssel (ID delivers 26% lower gas savings 
compared to FD). 

3.2. Step 2: Scaling-up behavioral scenarios to national and EU level 

After analyzing the dynamics in households’ behavioral changes in 
two provinces over time, we switch to understanding how they change 
over space. Using the population projection scenarios for the EU28 (see 
section 2.2, step 2), we scale the dynamics in household energy 
behavioral changes in two provinces over time up to national and EU 
levels. Namely, we define behavioral patterns for a heterogeneous group 
of households in the Dutch and Spanish regional ABMs. For each of the 
12 age-education groups (Table 2), a number of households perusing an 
action (I1–I3) is estimated together with the average investments, and 

Fig. 5. Saved energy (kWh) per household as a result of investment (I1–I3) under three behavioral scenarios in two EU provinces over 34 years (2017–2050). Source: 
BENCH-v.3. 

Table 3 
Saved CO2 and household investment in two provinces (Overijssel and Navarre) under three micro-level behavioral scenarios over time. We report the mean value 
across 100 runs under each scenario. Source: BENCH-v.3 ABM.   

Scenarios Provinces 2030 2050 

Saved CO2 emission (tons per household) Baseline Overijssel 0.50 1.09 
Navarre 0.23 0.78 

FD Overijssel 0.71 1.53 
Navarre 0.47 1.59 

ID Overijssel 0.75 1.93 
Navarre 0.85 1.75 

Total investments (in 2016 Euro per 
household) 

FD Overijssel 2,908 6,858 
Navarre 2,198 8,020 

ID Overijssel 2,578 5,430 
Navarre 2,931 7,585 

The share of preferred actions (in percentage) Overijssel I1:4.9% 
I2: 26.1% 
I3: 69% 

I1:4.0% 
I2: 20.1% 
I3: 75.9% 

Navarre I1:12.1% 
I2: 26.7% 
I3: 61.3% 

I1:9.4% 
I2: 22.5% 
I3: 68.1% 

Total number of actions Overijssel 2,839 6,875 
Navarre 1,239 3,690 

Investments in 2016 Euro per action, % of total invested money in 
two provinces  
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gas and electricity savings. The analysis reveals that in the Netherlands 
and Spain that the majority of households – 75.9% and 68.1% – intend to 
invest in energy-efficient appliances (I3) by 2050. The minority – 4.9% 
and 9.4% – want to invest in insulation (I1); this trend is stable over time 
(2020–2050). Electricity consumption resulting from individual 
behavioral changes decreases between 51 and 71% (the Netherlands) 
and 51–66% (Spain) by 2050 (see Appendix 4, Table A4.1). 

Fig. 6 shows percentage changes in residential electricity consump-
tion as a result of scaling up the output of the empirical ABM with the 
population change scenario. Electricity consumption resulting from 

individual behavioral changes decreases between 56.2-69.5% and 
13.8–63.8% by 2050 in the Netherlands and Spain correspondingly. 
Importantly, there is significant spatial heterogeneity in how behavioral 
changes diffuse and what regions emerge as laggers or pioneers in 
bottom-up investments in energy-efficiency. If behavioral patterns eli-
cited through our survey hold in the next few decades, it could be ex-
pected that the Limburg, Drenthe, and Zeeland provinces in the 
Netherlands and the Castile-Leon and Asturias regions in Spain will be 
pioneers compared to others in respective countries. 

Fig. 6. Percentage change in electricity consumption in 2050 from the base 2015, calculated as a result of scaling up the outcomes of the ABM model with population 
changes in the “Fast dynamics” scenario. Source: scaled-up BENCH-v.3 results. 

Fig. 7. Saved energy per capita (electricity and gas) as a result of households’ energy investments among 12 sociodemographic groups (Table 2) under behavioral 
scenarios (FD,ID) in two countries. Source: EU-EMS and BENCH-v.3. 
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3.3. Step 3: From regional to the national and EU28 economy 

Scaled-up outputs of the ABM are used as input to the simulation 
setup of the spatial CGE model. Namely, information from BENCH-v.3 on 
the decrease in households’ use of electricity and gas is used in order to 
exogenously modify the minimum subsistence level of households’ 
consumption of the respective services in EU-EMS (see Appendix 2). The 
ABM-CGE results indicate that households with higher education levels 
are more likely to change their behavior compared to less educated 
people. Importantly, among these higher educated households, younger 
people (20–40) are more active. In particular, Dutch youth saves up to 
17% and 74% more electricity and gas compared to 40+ households 
under the FD scenario (Fig. 7). Among the pioneers (g6-8, i.e. middle 
educated and 20+ age; see Table 2), Spanish households save 1.9–2.8 
and 1.0–1.4 times more gas and electricity compared to Dutch house-
holds depending on groups and behavioral scenarios. Intensive social 
dynamics (FD scenario) has a stronger impact on saving gas, while the 
informative ID scenario activates more households in saving electricity. 
Appendix 4 presents a more detailed ABM-CGE analysis on diffusion of 
households’ investment per capita per action among sociodemographic 
groups. 

A reduction in the consumption of gas and electricity by households 
results in a higher budget share that becomes available for other types of 
consumption. Depending on households’ consumption patterns, such 
shifts in consumption might result in higher values of GDP over time. 

The EU-EMS model operates at the level of NUTS2 regions of the 
EU28, and hence enables the calculation of the regional impacts of 
various behavioral scenarios on real GDP that is GDP that includes only 
quantity effects. We choose to use GDP in our analysis instead of welfare 
indicators such as equivalent variation measure because the monetary 
indicator such as GDP can be easily compared with the outcomes of the 

ABM model in terms of monetized energy savings and investments. The 
focus of the present study is in illustrating the added-value of the use of 
CGE model and the degree of the indirect and economy-wide effects 
calculated by the CGE which justifies the choice of monetary GDP in-
dicator for our analysis. Fig. 8 illustrates the difference in regional real 
GDP levels in 2050 between the Baseline and FD scenarios. Most of the 
EU28 regions benefit from the behavioral changes, which leads to a 
decrease in energy consumption, with a few regions affected negatively. 
The level of overall real GDP impacts depends on the size of the region in 
terms of population and its share of highly-educated youth. Appendix 4 
presents the percentage changes on the level of regional GDP relative to 
the Baseline scenario (see Figures A4.2). 

Fig. 9 presents the effects in relative terms (scenario as % of the 
baseline which already accounts for whether a region is rural or urban) 
and relate them to GDP per capita. It implies there is a statistical rela-
tionship between the two variables: the Baseline GDP per capita (which 
is also positively correlated with the share of highly educated persons) 
and the benefits in terms of additional economic growth per capita from 
the modeled behavioral changes. Though the relationship is non-linear, 
the trend indicates that rich and economically well-developed regions 
receive higher benefits from promoting behavioral changes in the long- 
run compared to the lagging regions. 

This phenomena raises the question of whether the distribution of 
economic benefits skewed towards rich and well-developed regions in-
creases the overall interregional inequality in Europe. To understand 
how behavioral changes under our scenarios impact EU28 regional 
disparities, we calculate economic inequality index for the period 
2015–2050 (section 2.1.2, Eq. (3)). The dynamics of Theil’s T inequality 
index demonstrate that the inequality between regions decreases in the 
period of large investments in energy savings (2025–2035) and then 
starts to increase again over time, indicating the non-linear nature of the 

Fig. 8. Deviation in the levels of regional real GDP under the “Fast dynamics” scenario compared to Baseline in 2050 as an aggregated effect of households’ 
behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v.3. 
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process (Fig. 10). However, the regional inequality in 2050 does not 
reach the level of 2015, indicating the positive overall impact of 
behavioral changes on equality. Despite this, changes in inequality due 
to the implementation of behavioral scenarios remain modest. 

4. Conclusions and outlook 

The potential of individual behavioral changes in reducing carbon 
emissions attracts considerable attention as one of the climate change 
mitigation strategies (Creutzig et al., 2016; IPCC, 2014; Niamir, 2019). 
Comprehensive empirical CGEs, which support quantitative climate 
change mitigation policy assessments, are strong in tracing 
cross-sectoral impacts, feedback in the economy as a whole and in 
linking to readily-available datasets. However, their 
econometrically-estimated equations reflect past behavior, making it 
difficult to integrate behavioral changes (Babatunde et al., 2017; Farmer 
and Foley, 2009). Moreover, while empirical evidence suggests that 
individual decision-making deviates from a rational and perfectly 
informed optimization process, the latter is the core of CGE models 
(Farmer et al., 2015; Stern, 2016; Wilkerson-Jerde and Wilensky, 2015). 

ABMs compliment macroeconomic models by accommodating het-
erogeneity, adaptive behavior and interactions, bounded rationality, 
and imperfect information (Rai and Henry, 2016). While there are few 
(largely non-empirical) ABMs in policy and institutional domain that 
take a macro, e.g. country and global scale perspective (Castro et al., 
2020; Gerst et al., 2013), behaviorally-rich empirical ABMs mostly 
operate on small scales of neighborhoods, cities, and regions. Although 
these micro ABMs are strong in aggregating heterogeneous adaptive 
behavior, they omit feedbacks with the rest of the economy and 
cross-sectoral impacts. Survey data is increasingly used to specify indi-
vidual agent’s rules, yet this behavioral data is not always compatible 
with the data used in macro models. Linking ABMs and CGE models 
could ameliorate their weaknesses. Yet, the models should be aligned 
coherently conceptually and data-wise to benefit from their strengths 
(Voinov and Shugart, 2013). Methodologically, this article contributes 

Fig. 9. Correlation between changes in GDP per capita under “Fast dynamics” scenario and the level of regional GDP per capita under “Baseline” scenario in 1000 
Euros per individual in 2050. Source: EU-EMS and BENCH-v.3. 

Fig. 10. Dynamics of the Theil-T income inequality index over time under “Fast 
dynamics”. Source: EU-EMS and BENCH-v.3. 
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to the ongoing debate (Krook-Riekkola et al., 2017; Parris, 2005; 
Safarzyńska et al., 2013; Smajgl et al., 2009) on linking these two alien 
approaches by presenting a method of systematic upscaling of individual 
heterogeneity and social dynamics to combine ABM and CGE models. 

The insights from this methodological exercise offer three conclu-
sions. Firstly, we demonstrate the feasibility and importance of intro-
ducing heterogeneity and behavioral-rich dynamics in assessing climate 
change mitigation policies. We develop a transparent step-wise process 
to integrate an empirical behaviorally-rich ABM and a spatial CGE 
model. To the best of our knowledge, this is the first attempt to link 
empirical ABM and CGE models to estimate the macroeconomic impacts 
of individual energy behavioral changes. In the absence of this inte-
gration, one should twist the CGE parameters and structure in an ad-hoc 
manner to permit some representation of a behavioral change. Instead, 
an ABM that relies strongly on the theoretical and empirical micro- 
foundations from surveys, quantifies the patterns of behavioral change 
across heterogeneous households in a transparent way accounting for 
non-monetary aspects of individual energy choices. 

Secondly, this article demonstrates that scaling up behavioral change 
dynamics has policy-relevant consequences at large scales. Our ABM 
grounded in theory and survey data quantifies the patterns of behavioral 
change, which could further be channeled into the CGE models that 
traces macroeconomic and cross-sectoral dynamics. Specifically, here 
we find that the regional dimension is important in a low-carbon 
economy transition driven by individual behavioral change. Some re-
gions lag behind while others are pioneers, due to the heterogeneity in 
individuals’ socio-demographics (e.g. education and age), structural 
characteristics (e.g. type and size of dwellings), behavioral and social 
traits, and spatial characteristics (e.g. urban vs. rural) which produce 
incremental differences at small scales. Yet, when aggregated, they 
cumulatively create disparities, which are amplified by macro-economic 
forces. Importantly, the inequality between regions decreases in the 
period of large investments (2015–2035) and starts to increase over time 
following it. 

Finally, as behavioral barriers to climate change mitigation in 
designing policies gain attention, policy-makers would benefit from 
decision support tool that go beyond a stylized representation of 
households as perfectly-informed optimizers. Individual awareness, di-
versity in norms, and knowledge play a key role in a green economy 
transition and climate change mitigation policies should ideally 
combine the conventional macroeconomic analysis with these behav-
ioral barriers and drivers. Considering bottom-up behavioral patterns 
would not easily change over time. To see substantial changes, we need a 
mix of external intervention, from soft information policies aimed to 
raise awareness bottom-up, to financial incentives altering the macro 
landscape of energy markets and technological transitions. At times, 
information and price-based policies create a non-linear effect on cu-
mulative behavioral changes regarding energy use (Niamir et al., 
2020b). Our approach demonstrates that with computational ABM 
directly linked to survey data and macroeconomic CGE models, indi-
vidual behavioral heterogeneity and social influences can now be 
considered when designing implementable and politically feasible pol-
icy options. 

The future work can go in two main directions: advancing the 
modeling approach and improving the models dataset. From the modeling 
perspective, future work could focus on introducing direct feedbacks 
between CGE-ABM, enabling the evaluation of price-based and 
information-policies jointly at multiple scales. The feedbacks between 
the two empirical models may be enabled through software wrappers 

and modern web interfaces for integration (Belete et al., 2019). In 
addition, due to the large number of parameters and multidimension-
ality of the generated data from any ABM (Lee et al., 2015), the global 
sensitivity and uncertainty analysis was out of scope of this article. 
Future work should focus on quantifying uncertainties that this inte-
gration of ABM and CGE models may impose, including for example 
exploratory analysis (Kwakkel and Pruyt, 2013) to understand the in-
tegrated model’s behavior and its sensitivity to initial configurations of 
its parameters. From the dataset perspective, running surveys in more EU 
countries would improve the model accuracy, especially vital when 
predicting policy impacts. Also, data-wise, the behaviorally rich 
demand-side modeling could benefit from endogenizing the dynamics of 
dwelling stock. Static and aging housing should be replaced by scenarios 
of structural and technological progress in new urban development (e.g., 
zero-carbon footprint buildings) and refurbishing old housing stock in 
cities. 

Data availability 

The extensive description of the models and data is presented in the 
Appendix of this manuscript. The BENCH model is calibrated based on 
the empirical dataset. We designed and conducted the survey in two 
provinces in Europe for the purpose of this research (Niamir et al., 
2020a). The agent-based BENCH model is parameterized using the 
survey data on socio-demographic, economic, structural and behavioral 
attributes of households and their dwelling characteristic (Table A1.1). 
The BENCH agent-based model is open source and available on CoMSES 
(https://www.comses.net/). 

The main database of EU-EMS model is the PBL-JRC world-wide 
MRIO database documented in https://ec.europa.eu/jrc/sites/jrcsh/fi 
les/jrc115439.pdf and available to download from https://data.overh 
eid.nl/dataset/pbl-euregio-database-2000-2010. Besides this MRIO 
database we have also used the national accounts data from Eurostat 
(Research Project RPP 342/2016-CSIS-EU-SILC-HBS-LFS) and OECD for 
the construction of Social Accounting Matrices used to calibrate the 
model. According to the terms of use, authors are not allowed to redis-
tribute the Eurostat micro-data. The derived intermediate result are 
available from the corresponding author upon reasonable request. 
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Appendix 1. BENCH agent-based model 

The BENCH ABM (Niamir et al., 2020b, 2018a) is developed to study shifts in residential energy use and corresponding emissions driven by 
behavioral changes among individuals. 

Main processes of the model (ODD protocol) 

Table A1.1 
BENCH-v.3 ABM ODD protocol  

Guiding Protocol The BENCH-V.3 model 

A. Overview A.1. Purpose The BENCH-v.3 agent-based model is designed to study shifts in residential energy use and corresponding emissions at the 
regional level driven by behavioral changes among heterogeneous individuals. 
This empirically grounded model is of interest to (i) environmental scientists interested in modeling human behavior and 
economic institutions, (ii) energy economists working on micro aspects, (iii) scholars integrating individuals behavioral 
change in climate change mitigation modeling. 

A.2. Entities, state variables and 
scales 

Agents (individuals) in BENCH-v.3 model are heterogeneous in socio-demographic and dwelling characteristics, energy 
consumption and patterns, source of energy and energy provider, and behavioral factors. 
The BENCH-v.3 simulations 1035 and 755 individual households in the Overijssel province, the Netherlands, and Navarre 
province, Spain over 34 years (2016–2050). 
One time step represents one round in the behavioral experiments. Each run consist of 34 time steps aligning to the 34 
rounds in the behavioral experiments. 

A.3. Process overview One time step represents one-year. In each time step a household goes through several processes:  
1. Asses behavioral factors:  

- Knowledge activation  
- Motivation  
- Consideration  

2. Calculate utilities  
3. Pursue an action or not  
4. Calculate saved energy and CO2 emission  
5. Social dynamics and learning process  
6. Satisfaction and regret  
7. Updates 
See Fig. 2 for algorithm and decision-making proccess in the BENCH-v.3 agent-based model. 

B. Design 
concept 

B.1 Theoretical and Empirical 
background 

In application to environmental- and energy-related choices, three behavioral change theories are commonly applied: 
theory of planned behavior (TPB), norm activation theory (NAT), and value–belief–norm (VBN) theory.  
- TPB, formulated by Ajzen (1980) and based on the theory of reasoned action, is one of the most influential theories in 

social and health psychology and has been used in many environmental studies (Armitage and Conner, 2001; Onwezen 
et al., 2013).  

- NAT, originally developed by Schwartz (1977), operates in the context of altruistic and environmentally friendly 
behavior. It is mostly focused on anticipating pride in doing the “right” thing and on studying the evolution of feelings of 
guilt.  

- VBN theory (Stern et al., 1999; Stern, 2000) explains environmental behavior and “good intentions” such as willingness 
to change behavior (Nordlund and Garvill, 2003; Steg and Vlek, 2009; Stern et al., 1999), environmental citizenship 
(Stern et al., 1999), and policy acceptability (De Groot and Steg, 2009; Steg et al., 2005). 

B.2. Individual decision making We introduce a framework that combines the strengths of the three key behavioral theories, see Figure A1.1. 
B.3. Heterogeneity Agents are heterogeneous in respect of the following variables, see Table A1.2:  

- Socio-demographic  
- Dwelling  
- Energy consumption  
- Energy provider  
- Behavioral factors 

B.4. Interactions, social dynamics 
and learning 

Agents (heterogeneous individual households) engage in interactions and learn from each other. In particular, they can 
exchange information with neighbors, which may alter own knowledge, awareness, and motivation regarding energy- 
related behavior. We employ a simple opinion dynamics model (Acemoglu and Ozdaglar, 2011; Degroot, 1974; 
Hegselmann, 2002; Moussaïd et al., 2015) assuming that each agent interacts with a fixed set of nearby neighbors. 
The BENCH_v.3 model is a spatially explicit model that takes the raster maps of the two NUTS2 regions as an input. Hence, 
an agent who is in active neighborhood where at least one out of eight nearest spatial neighbors within 1 raster cell (Moor 
neighborhood concept) undertakes an energy-related action will interact and exchange opinions. The idea of the Moore 
neighborhood comes from cellular automata literature and used only to enable opinion exchange between neighbors 
about climate and environmental awareness and compare norms. Agents compare values of their own behavioral factors – 
knowledge, awareness, and motivation – with those of their eight closest neighbors, and adjust their values for a closer 
match, see Fig. 3 and Eq. (3). However, the agents’ heterogeneity beyond their spatial location (income, age, education) 
and economic factors affect individual choices of undertaking any of energy actions (I1–I3) or not. 

B.5. Spatial scale Lowest scale: Individuals 
Highest scale: NUTS2 
The focus of this research is on Overijssel, the Netherlands (NL21) and Navarre, Spain (ES22) NUTS2 regions, which 
consist of 25 and 10 main cities/municipalities respectively. 

B.6. Individual prediction Individuals do not predict future condition. 
B.7. Stochasticity There are various sources of stochasticity in the model:  

1 Initial setting: 
Agents attributes (initialization are partly random)  
2 During the process: 
Social dynamics and learning (process is partly random) 

B.8. Observation 

(continued on next page) 
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Table A1.1 (continued ) 

Guiding Protocol The BENCH-V.3 model 

BENCH-v.3 estimates cumulative impacts of energy-related behavioral changes of individual households on electricity 
and gas consumption and CO2 emissions. 
Reports:   

- Number of energy-related actions per year: investment, conservation, switching  
- Saved electricity and gas per action/year: investment, conservation, switching  
- Avoided CO2 emission per action/year: investment, conservation, switching 
Across socioeconomic (age and education) groups (see Table 1) and cases (NL vs. ES). 

B.9. Implementation Details The model is coded in Netlogo 6.0.4, Open source and available on CoMSES (https://www.comses.net) 
R is used for the result visualizations. 

C. Details C.1. Initialization The variations in socio-demographic, dwelling and psychological factors among our survey respondents are used to 
initialize a population of heterogeneous agents in the BENCH-v.3 model (see Table A1.1 and A1.3). 

C.2. Input data The data on the behavioral and economic factors affecting household energy choices were collected using an online 
questionnaire (N = 1790 households) and serve as empirical micro-foundation of agent rules in the BENCH-v.3 model.  

Fig. A1.1. BENCH-v.3 conceptual behavioral framework. Source: (Niamir et al., 2020a)   

Table A1.2 
Overview of main variables and parameters used in BENCH-v.3  

Factors Variables Value range 

Socio-demographic Income [1000–150,000] 
Education [primary - doctoral] 

Dwelling Energy label [a-f] 
Ownership status [owner - renter] 

Energy Consumption [500–5000] 
Provider Grey, brown, green 
Energy saving habit [0–3] 

Behavioral Knowledge [1–7] 
Cee awareness [1–7] 
Ed awareness [1–7] 
Personal norms [1–7] 
Social norms [1–7] 
Intention a1 [1–7] 
Intention a2 [1–7] 
Intention a3 [1–7]  

Data 

The BENCH-v.3 model is calibrated based on an empirical dataset. We designed and conducted the survey in two provinces in Europe for the 
purpose of this research. In 2016, 1035 households in the Overijssel province, the Netherlands, and 755 households in the Navarre province, Spain, 
filled out our online questionnaire (Niamir, 2019; Niamir et al., 2020a; Niamir and Filatova, 2017, 2016). The agent-based BENCH-v.3 model is 

L. Niamir et al.                                                                                                                                                                                                                                  

https://www.comses.net


Environmental Modelling and Software 134 (2020) 104839

15

parameterized using the survey data on socio-demographic, economic, structural and behavioral attributes of households and their dwelling char-
acteristic (Table A1.3).  

Table A1.3 
Survey data on households’ characteristics and behavioral intentions. The data is used to parameterize households’ behavior in the BENCH-v.3 ABM. Source: (Niamir et al., 
2020a, 2018a)  

Factors Overijssel Navarre 

Socio-demographic characteristics 
Gender Female: 46.4% 

Male: 53.6% 
Female: 57.1% 
Male: 42.9% 

Age, years 53 41 
Education, ISCED* 

Annual income, in 
thousand Euros 
per year 

Dwelling characteristics 
Type of residence Apartment: 14.9% 

House: 85.1% 
Apartment: 77.8% 
House: 22.2% 

Tenure status Owner: 71% 
Renter: 29% 

Owner: 80.3% 
Renter: 19.7% 

Size of residence 

Age of residence 

(continued on next page) 
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Table A1.3 (continued ) 

Factors Overijssel Navarre 

Behavioral characteristics, value on the 1–7 scale 
Knowledge (K) 4.2 (0.7) 5.0 (0.8) 
Awareness, Climate 

(AC) 
4.9 (0.8) 5.4 (0.8) 

Awareness, Energy 
decision (AE) 

4.5 (1.0) 5.3 (1.1) 

Personal Norms(NP) 4.6 (0.9) 5.4 (1.0) 
Social Norms (NS) 3.3 (1.1) 4.5 (1.2) 
Perceived Behavior 

Control (PBC) 
4.4 (1.1) 5.0 (1.3) 

* https://ec.europa.eu/eurostat/statistics-explained/index.php/International_Standard_Classification_of_Education_(ISCED). 

Outputs 

The agent-based BENCH-v.3 model tracks the individual and cumulative impacts of three energy behavioral changes (investments on insulation, 
PVs installation and energy-efficient appliances) among heterogeneous individuals in the Overijssel and Navarre provinces over 34 years 
(2016–2050). We report the number of individuals pursuing a particular action (I1–I3), the cumulative electricity and gas consumption, and saved carbon 
emissions. Given the stochastic nature of ABMs, we perform multiple (N = 100) repetitive runs of each simulation experiment (Lee et al., 2015). 

Appendix 2. Spatial EU-EMS CGE Model 

General description 

EU-EMS is a spatial computable general equilibrium (SCGE) model developed by PBL Netherlands Environmental Assessment Agency. The sectoral 
and geographical dimensions of the model are flexible and can be adjusted to the needs of a specific policy or research question. The model is used for 
policy impact assessment and provides sector-, region- and time-specific model-based support to Dutch and EU policy makers on structural reforms, 
growth, innovation, human capital and infrastructure policies. The current version of EU-EMS covers 276 NUTS2 regions of the EU28 Member States 
and each regional economy is disaggregated into 63 NACE Rev. 2 economic sectors.11 Goods and services are consumed by households, government 
and firms, and are produced in markets that can be perfectly or imperfectly competitive. Spatial interactions between regions are captured through 
trade of goods and services, factor mobility and knowledge spill-overs. This makes EU-EMS particularly well suited for analyzing policies related to 
human capital, transport infrastructure, R&I and innovation. 

In the current application of the model, we have aggregated the economic sectors to the following six large groups, following the Eurostat clas-
sification of the economic sectors according to their R&D intensity: (1) Traditional, (2) Low-tech industry, (3) Medium-tech industry, (4) High-tech 
industry, (5) Knowledge intensive services and (6) Other services. 

Main processes of the model 

EU-EMS accounts for the (a) feedback between price and demand/supply quantities, and (b) interactions between economic agents at the macro 
and sectorial level. Therefore, it gives the economic relations between all industry sectors via their intermediate use. The EU-EMS model is a dynamic, 
recursive over time model, involving dynamics of capital accumulation and technology progress, stock and flow relationships and adaptive expec-
tations. The model equations are neo-classical in spirit, assuming cost-minimizing behavior by producers, average-cost pricing and household de-
mands based on optimizing behavior. The CGE model database consists of tables of transaction values and elasticities: dimensionless parameters that 
capture behavioral response. The database is presented as a Social Accounting Matrix, which covers an entire national economy, and distinguishes a 
number of sectors, commodities, primary factors and types of households. As a classical CGE model, EU-EMS represents the behavior of the whole 
population group or of the whole industrial sector as the behavior of one single aggregate agent. It is further assumed that the behavior of each such 
aggregate agent is driven by certain optimization criteria such as maximization of utility or minimization of costs. In following, detailed representation 
of the EU-EMS model and its main equations are presented.  

11 https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF. 
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Regional structure of the model 
Regions differ by the type of production sectors which dominate overall production activities in the region. Some specialize in traditional sectors 

such as agriculture, whereas others specialize in modern sectors such as finance and industry. Those sectors are characterized by different levels of 
agglomeration and its importance. Traditional sectors do not experience any agglomeration effects, whereas modern sectors do; this allows some 
sectors to grow faster than other. The prototype model will incorporate the regional difference in sectoral specialization and hence the difference of 
agglomeration economies between the regions.  

Table A2.1 
Regions in EU-EMS CGE models. Source: (Ivanova et al., 2019)  

Code Name Code Name 

AUS Australia ARG Argentina 
AUT Austria BGR Bulgaria 
BEL Belgium BRA Brazil 
CAN Canada BRN Brunei Darussalam 
CHL Chile CHN China 
CZE Czech Republic CHN.DOM China Domestic sales only 
DNK Denmark CHN.PRO China Processing 
EST Estonia CHN.NPR China Non processing goods exporters 
FIN Finland COL Colombia 
FRA France CRI Costa Rica 
DEU Germany CYP Cyprus 
GRC Greece HKG Hong Kong SAR 

(continued on next page) 

Fig. A2.1. Circular economic flow in the CGE EU-EMS model. Source: (Ivanova et al., 2019)   
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Table A2.1 (continued ) 

Code Name Code Name 

HUN Hungary HRV Croatia 
ISL Iceland IDN Indonesia 
IRL Ireland IND India 
ISR Israel KHM Cambodia 
ITA Italy LTU Lithuania 
JPN Japan LVA Latvia 
KOR Korea MLT Malta 
LUX Luxembourg MYS Malaysia 
MEX Mexico PHL Philippines 
MEX.GMF Mexico Global Manufacturing ROU Romania 
MEX.NGM Mexico Non-Global Manufacturing RUS Russian Federation 
NLD Netherlands SAU Saudi Arabia 
NZL New Zealand SGP Singapore 
NOR Norway THA Thailand 
POL Poland TUN Tunisia 
PRT Portugal TWN Chinese Taipei 
SVK Slovak Republic VNM Viet Nam 
SVN Slovenia ZAF South Africa 
ESP Spain RoW Rest of the world 
SWE Sweden  
CHE Switzerland  
TUR Turkey  
GBR United Kingdom  
USA United States   

Household preferences and governmental sector 
The households’ and governmental demand for goods and services is represented by the Linear Expenditure System (LES) that is derived as a 

solution to the Stone-Geary utility maximization problem:() 

Ur =
∏

i
(Cri − μri)

γri (Eq. A2.1) 

The resulting demand system, where Ir denotes households’ disposable income and Pri are consumer prices of goods and services that include taxes, 
subsidies, transport and trade margins can be written as follows: 

Cri = μri + γri ⋅
1

Pri
⋅

(

Ir −
∑

j
μrj ⋅ Prj

)

(Eq. A2.2) 

Households always consume a certain minimum level of each good and services where this level reflects the necessity (or price elasticity) of the 
good or service. Necessities such as food have low price elasticity and hence a higher minimum level of consumption. The disposable income of the 
households consists of wages, return to capital and social transfers from the government minus the income taxes and households’ savings. 

The government collects production, consumptions and income taxes. The tax revenue is further used to pay social transfers and buy goods and 
services for public consumption. The governmental savings can be either endogenous or exogenous in the model depending on the type of simulation 
and the type of chosen macro-economic closure. 

Firms production 
Domestic production XD

ri is obtained using the nested-CES production technology of Capital-Labour-Energy-Materials (KLEM) type, where K is the 
capital, L is the labour, E is the energy and M is the materials. Figure A2.2 represents the nests in the KLEM production function used in the model with 
services between used according to the fixed Leontief input coefficients in the production process. The energy in the model is differentiated between 
electricity and other types of energy with some substitution possibilities between them. The labour is differentiated according to three education levels 
according to International Labour Organisation (ILO) classification. The domestic production is generated according to nested production CES 
function, which is described by the following set of composite CES functions that follow the production structure from top to the bottom nest 

XD
ri = [(ari⋅Mri)

ρM,KLE + ((1 − ari)⋅KLEri)
ρM,KLE ]

1/ρM,KLE (Eq. A2.3)  

KLEri = [(bri⋅Eri)
ρE,KL + ((1 − bri)⋅KLri)

ρE,KL ]
1/ρM,KLE (Eq. A2.4)  

KLri = [(cri⋅Kri)
ρK,L + ((1 − cri)⋅Lri)

ρK,L ]
1/ρK,L (Eq. A2.5)  

Eri =
[(

dri⋅ENELEC
ri

)ρE +
(
(1 − dri)⋅EELEC

ri

)ρE
]1/ρE (Eq. A2.6)  

Lri =

[
∑

e

(
frieLED

rie

)ρL

]1/ρL

(Eq. A2.7)  

Where ari, bri, cri, dri and frie are the share parameters of the corresponding production function nests and ρM,KLE , ρE,KL, ρK,L, ρE and ρL represent the 
substitution possibilities for each of the production function nests. The inputs into the production are denoted as Mri input of materials, KLEri com-
posite capital-labor-energy nest,Eri energy inputs, KLri composite capital-labor nest, Kri capital input, Lri labor input, ENELEC

ri input of non-electric 
energy, EELEC

ri input of electric energy and LED
rie inputs of labor by type of education e. 
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Fig. A2.2. Structure of KLEM production functions in the model. Source: (Ivanova et al., 2019)  

International and inter-regional trade 
The total sales Xri of tradable goods and services i in region r in the model is an Armington Constant Elasticity of Substitution (CES) [ref] composite 

between domestic output XD
ri and imports XM

ri such that 

Xri =
[(

αD
ri ⋅X

D
ri

)ρi +
(
αM

ri ⋅XM
ri

)ρi
]1/ρi (Eq. A2.8)  

Where αD
ri and αM

ri are the calibrated share parameters of the CES function and ρi =
σi − 1

σi 
with σi being the Armington elasticity of substitution between 

domestic and imported tradable goods and services. The elasticity of substitution varies between different types of goods and services depending on 
the available empirical estimates. In case of non-tradable, the composite is equal to the domestically produced product. 

Imported goods can come from various regions and countries represented in the model and the composite imported goods and services are rep-
resented by the CES composite that uses a higher Armington elasticity of substitution as compared to the upper Armington nest. We assume, as in the 
GTAP model, that the elasticity of substitution between the same type of goods and services coming from different countries is twice as large as the 
elasticity of substitution between domestic and aggregate imported goods and services. The aggregate imported good is calculated according to the 
following CES composite function: 

XM
ri =

[
∑

s

(
αT

sriX
T
sri

)ρT
i

]1/ρT
i

(Eq. A2.9)  

Where αT
sri is the calibrated share coefficient of the CES production function,XT

sri is the flow of trade in commodity i from country sto country r. The 

coefficient ρT
i =

σT
i − 1
σT

i 
where σT

i is the elasticity of substitution between commodities produced in different countries. 

Labour, capital and goods markets 
Market equilibrium in the economy results in equalization of both monetary values and quantities of supply and demand. Market equilibrium 

results in equilibrium prices that represent in the case of CGE models the solution to the system of nonlinear equations that include both intermediate 
and final demand equations as well as accounting constraints that calculate households’ and government incomes, savings and investments, as well as 
trade balance. EU-EMS model represents a closed economic system, meaning that nothing appears from nowhere or disappears into nowhere in it. This 
feature of the CGE model constitutes the core of the Walrasian equilibrium and ensures that even if one excludes any single equation of the model, it 
will still hold. This is the property of CGE models called Walras law that tells us that in the closed economic system, if n-1 markets are in equilibrium 
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the last nth market will also be in equilibrium. In our EU-EMS model, the static equilibrium is described by the set of commodity and factor prices, total 
outputs, final demands of households and government, investments, savings and net transfers from abroad, such that (1) markets for goods and 
services clear, (2) total investments are equal to total savings, (3) total households’ consumption is equal to their disposable income minus savings, (4) 
total governmental consumption is equal to its net tax revenues minus transfers to households minus savings, (5) total revenue of each economic sector 
is equal to its total production costs and (6) difference between imports and exports is equal to the net transfers from abroad. 

Recursive dynamics 
EU-EMS is a dynamic model and allows for the analysis of each period of the simulation time horizon. This horizon is currently set at 2050 but it can 

be extended to longer time periods. For each year of the time horizon, EU-EMS calculates a set of various economic, social and environmental in-
dicators. The economic growth rate in EU-EMS depends positively on investments in R&D and education. By investing in R&D and education each 
region is able to catch up faster with the technological leader region and better adopt its technologies. 

Time periods in EU-EMS are linked by savings and investments. By the end of each time period, households, firms and government in the model 
save a certain amount of money. This money goes to the investment bank, distributing it as investments between the production sectors of the various 
regions. The allocation decisions of the investment bank sectors depend on the sector’s financial profitability. The model runs in time steps of five 
years for the period 2015–2050. 

The capital stocks evolve according to the dynamic rule presented below, where the capital stock in period t is equal to the capital stock in period t- 
1 minus the depreciation plus the new investments into the capital stock 

Ktri =Kt− 1ri(1 − δi) + Itri (Eq. A2.10) 

At the end of each period there is a pool of savings Sr available for investments into additional capital stocks of the sectors. This pool of savings 
comes from households, firms and foreign investors. The sector investments Itri are derived as a share of the total savings in the economy according to 
the discrete choice formula 

Itri =
STt− 1rBriKt− 1rieϑ⋅WKRt− 1ri

∑

j
BrjKt− 1rjeϑ⋅WKRt− 1rj

(Eq. A2.11)  

WKRt− 1ri =
rt− 1ri

PIt− 1r
⋅(gr + δri) (Eq. A2.12)  

Where WKRt− 1ri denotes the capital remuneration rate, gr the steady-state growth rate, Bri the calibrated gravity attraction parameter and ϑ the speed 
of investment adjustment. 

Outputs 

The EU-EMS model produces detailed dynamics of regional GDP, production and value added by region and by economic sector, interregional 
trade flows by the type of commodity, electricity and gas consumption per region and sector, employment by regional and economic sector, household 
income and consumption, and governmental revenues and spending. For the purpose of this article we limit the presentation of the main CGE output to 
Gross Domestic Product (GDP), percentage change in the electricity consumption per NUTS2 region, country and the entire EU. 

Appendix 3. Upscaling 

Distance between countries is not only the geographical and therefore the regional economic integration should not happen regardless other local 
factors. Social structure, wealth and lifestyle, religion, institutional and economic conditions, and natural environment play a role in assessing cultural 
distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 2016; Schwartz, 2014; Vignoles et al., 2018). Table A3.1 summarized the value of 
cultural dimensions. In this study, due to the absence of more granular data, we use the Dutch case to approximate how the behavioral patterns may 
evolve in the North-West EU states, and the Spanish case for the South-East EU states, which is in line with the values presented below.  

Table A3.1 
Values of cultural dimensions for all EU countries, sources: 
(Čuhlová, 2018)  

Country PDI INV 

Austria 11 55 
Belgium 65 75 
Bulgaria 65 75 
Croatia 73 33 
Cyprusa – – 
Czech Republic 57 58 
Denmark 18 74 
Estonia 40 60 
Finland 33 63 
France 68 71 
Germany 35 67 
Greece 60 35 
Hungary 46 80 
Ireland 28 70 
Italy 50 76 
Latvia 44 70 

(continued on next page) 

L. Niamir et al.                                                                                                                                                                                                                                  



Environmental Modelling and Software 134 (2020) 104839

21

Table A3.1 (continued ) 

Country PDI INV 

Lithuania 42 60 
Luxembourg 40 60 
Malta 56 59 
Netherlands 38 80 
Poland 68 60 
Portugal 63 27 
Romania 90 30 
Slovakia 104 52 
Slovenia 71 27 
Spain 57 51 
Sweden 31 71 
UK 35 89 

PDI – Power Distance Index, INV – Individualism. 
a Complete data for Cyprus are not available. 

Appendix 4. Results and discussions 

Step 2: Scaling-up behavioral scenarios to national and EU level 

Using the population projection scenarios for the EU28, we scale the dynamics in household energy behavioral changes in two provinces over time 
up to national and EU levels (Table A4.1).  

Table A4.1 
Share of actions in two countries over time. Source: scaled-up BENCH-v.3 results. 

Step 3: From regional to the national and EU28 economy 

To estimate the macroeconomic and cross-sectoral impacts of individual energy behavioral changes, we link the up-scaled ABM output to the CGE 
EU-EMS model. The BENCH-v.3 behavioral patterns in each of the 12 age-education groups – changes in heterogeneous households’ electricity and gas 
consumption – exogenously modify the minimum subsistence level of households’ consumption of the respective services in EU-EMS. 

The analysis of EU-EMS results indicates that most of the EU28 regions benefit from the behavioral changes and lead to the decrease in energy 
consumption, with a small number of regions being affected negatively. Importantly, regions with larger population as well as the regions with higher 
share of highly-educated people benefit more from the behavioral changes since they save more electricity and gas. 
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Fig. A4.1. Diffusion of households investments per capita and per action (insulation, PVs installation, energy-efficient appliances) among 12 sociodemographic 
groups under the informative dynamics scenario in two province. Source: EU-EMS and BENCH-v.3 

As expected, PVs get more of a share of the investments in both countries (Figure A4.1). Households in groups 6–8 invest 110–160 and 160–180 
Euros per capita on PVs in Netherlands and Spain respectively, while insulation in Spain (82 Euros per capita) and EE appliances in Netherlands (37 
Euros per capita) are second in household investments.

Fig. A4.2. Percentage changes in the levels of regional real GDP relative to the Baseline under the FD scenario in 2050 as an aggregated effect of households’ 
behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v03. 

The EU-EMS model operates at the level of NUTS2 regions of the EU28, and hence enables the calculation of the regional impacts of various 
behavioral scenarios on changes in the GDP and income. The changes in income presents similar patterns as changes in real GDP (see Fig. 6). However, 
it is interesting that different pattern in percentage changes in regional GDP levels from the absolute monetary changes in regional GDP is captured 
(see Figure A4.2). The majority of relatively large changes in GDP are located in Great Britain, Italy and Central Europe. This might be related to the 
assumed population and education level developments which influence the upscaling of the results of the BENCH ABM model. 
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Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., 
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