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1. Introduction

Minutiae-based methods have been used in many commercial fingerprint matching systems.
Based primarily on a point pattern matching model, these methods rely heavily on the
accuracy of minutiae extraction and the detection of landmarks like core and delta for
pre-alignment. Spurious and missing minutiae can both introduce errors in minutiae
correspondence. Equally problematic is the inability to detect landmarks to guide
pre-alignment. Taken together, these problems lead to sub-optimal matching accuracy.
Fortunately, the contextual information provided by ridge flow and orientation in the
neighborhood of detected minutiae can help eliminate spurious minutiae while compensating
for the absence of genuinely missing minutiae both before and during matching. In addition,
coupled with a core detection algorithm that can robustly handle missing or partially available
landmarks for pre-alignment, significant improvement in matching accuracy can be expected.
In this chapter, we will firstly review fingerprint feature extraction, minutiae representation,
and registration, which are important components of fingerprint matching algorithms.
Following this, we will detail a relevant fingerprint matching algorithm based on the
Shape Context descriptor found in Kwan et al. (2006). Next, we will introduce a novel
hybrid shape and orientation descriptor that is designed to address the above problems.
The hybrid descriptor can effectively filter out spurious or unnatural minutiae pairings
while simultaneously using the additional ridge orientation cues in improving match score
calculation. In addition, the proposed method can handle situations where either the
cores are not well defined for detection or the fingerprints have only partial overlapping.
Lastly, experiments conducted on two publicly available fingerprint databases confirm that
the proposed hybrid method outperforms other methods included in our performance
comparison.

1.1 Fingerprint recognition

An essential component of Automated Fingerprint Recognition Systems (AFRS) is the
matcher module which makes use of fingerprint matching algorithms in order to match a
test fingerprint against template fingerprint(s) for identification/verification (see Figure 1).
Currently, reliable fingerprint matching is a non-trivial problem due to environmental noise
and uniqueness of each impression. The accuracy of fingerprint matching algorithms depends
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on the image quality, image enhancement methods, feature set extraction algorithms, and
feature set pre-processing/post-processing algorithms.
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Fig. 1. Basic models for fingerprint verification and identification processes.

Noisy features introduced from environmental factors such as dust, scars, skin dryness, and
scaring, are strongly desired to be removed or kept to a minimal level. Even highly robust
matching algorithms will suffer from poor matching performance when inaccurate feature
extraction and filtering, high noise, poor image quality, or undesirable effects from image
enhancement occur.
Even without the advent of environmental noise, applied impressions of the same fingerprint
are not guaranteed to be identical due to variability in displacement, rotation, scanned regions,
and non-linear distortion or ’warping’. Displacement, rotation, and disjoint detected regions
are obviously due to the differences in the physical placement of a finger on a scanner. Figure 2
shows different impressions of the same finger and the noticeable variability in the mentioned
areas. One aspect that may be harder to see with the naked eye is non-linear distortion, which
is due to both skin elasticity and angular and force variability in applied pressure.
Fingerprint matching algorithm largely follow 3 different classes: correlation-based,
minutiae-based, and non-minutiae feature based matching. Correlation-based matching (such as
Hatano et al. (2002) and Lindoso et al. (2007)) involves superimposing 2 fingerprint images
together and calculating pixel-wise correlation for different displacement and rotations.
Minutia-based matching uses extracted minutiae from both fingerprints in order to help
perform alignment and retrieve minutiae pairings between both fingerprint minutiae sets.
Minutiae-based matching can be viewed as a point-pattern matching problem with theoretical
roots in pattern recognition and computer vision. Non-minutiae feature based matching (for
example Yang & Park (2008) and Nanni & Lumini (2009)) use non-minutiae features, such as
ridge shape, orientation and frequency images in order to perform alignment and matching.
Amongst all algorithm classes, minutiae-based methods are the most common due to their
strict analogy with the way forensic experts compare fingerprints and legal acceptance as a
proof of identity in many countries (Ratha & Bolle, 2003). Minutiae points are also known to
be extremely unique from finger to finger in terms of spatial distribution, proving to be ideal
features for fingerprint matching. Additionally, minutiae point sets obtain a higher level of
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Fingerprint Matching using A Hybrid Shape and Orientation Descriptor 3

Fig. 2. Eight impressions of the same fingerprint from the FVC2002 database (Maio et al.,
2002) with noticeable differences in region overlap, offset, orientation, and image quality.)

uniqueness versus practicality in comparison to other level types of fingerprint features, such
as ridge orientation/frequency images and skin pores.

2. Base theory

2.1 Minutiae extraction

Since the vast majority of fingerprint matching algorithms rely on minutiae matching,
minutiae information are regarded as highly significant features for AFRS. The two main
methods of minutiae feature extraction either require the gray-scale image to be converted
to a binary image, or work directly on a raw or enhanced gray-scale image.
In the binary image based method, the binarization of the gray-scale image is the initial step.
This requires each gray-scale pixel intensity value to be transformed to a binary intensity of
black (0) or white (1). The simplest approach is to apply a global threshold where each pixel
is mapped according to

I(x, y) =

{

1 if I(x, y) ≥ t,

0 otherwise.
(1)

Although novel, this method is usually not adequate since fingerprint images may have
differing levels of contrast throughout the image. However, the same method can be applied
with locally adaptive thresholds. Other more advanced approaches include ridge/valley edge
detection techniques using Laplacian operators as in Xiao & Raafat (1991), and mathematical
morphology in Gonzalez & Woods (2007).
Once produced, the binary image usually undergoes a morphological thinning operation,
where ridge structures are reduced to 1-pixel thickness, referred to as the skeleton , in order
to aid minutiae detection. The resulting thinned binary image then has each pixel, p, analysed
in order to find minutiae location. This is achieved by having the 8-neighbourhood (pixels
within 3 × 3 window centred at p) circularly traversed in an anti-clockwise manner in order
to produce the Rutovitz crossing number introduced in Rutovitz (1966)

27Fingerprint Matching using A Hybrid Shape and Orientation Descriptor
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cn(p) =
1

2 ∑
i=1...8

|val(p(i mod 8))− val(pi−1)| (2)

where val ∈ {0, 1} (i.e. binary image pixel intensity value). Minutiae pixel locations can now
be identified, as ridge endings will have cn = 1 and ridge bifurcations will have cn = 3.
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Fig. 3. top left: Original gray-scale image. top right: binary image bottom left: inverted
skeleton (thinned) image bottom right: inverted skeleton image with core point (green),
delta/lower core points (gold), bifurcations (blue for θ ∈ [0◦ − 180◦) and purple for
θ ∈ [180◦ − 360◦), and ridge endings (orange for θ ∈ [0◦ − 180◦) and red for
θ ∈ [180◦ − 360◦).

Although binarization in conjunction with morphological thinning provides a simple
framework for minutiae extraction, there are a couple of problematic characteristics. Spurious
minutiae (false minutiae) due to thinning algorithms (such as spurs) or irregular ridge
endings. Additionally, performance is also an issue since binarization and specifically
morphological thinning algorithms are known to be computationally expensive (see Figure
3).
Direct gray-scale minutiae extraction attempts to overcome the problems introduced by image
binarization and thinning. One key gray-scale based method that the algorithm in Maio &
Maltoni (1997) employs is ridge path following, where an initial point (x1, y1) has a k pixel
length path projected toward an initial direction, θ1, and likewise, subsequent iterations have
the base point (xtn , ytn ) project the next ridge sample point (xn+1, yn+1) in the direction θn.
Analysis of the section set Sn, being a 1 dimensional cross section slice centred about (xtn , ytn )
and orthogonal to θn with length 2σ + 1 where σ is the average thickness of a ridge, is used
to retrieve θn, and ultimately, (xn+1, yn+1). The path following algorithm terminates when a
local maxima cannot be found at the current point’s section set, giving clear indication that a
ridge ending or bifurcation is reached.

28 State of the Art in Biometrics
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Fingerprint Matching using A Hybrid Shape and Orientation Descriptor 5

In Farina et al. (1999), these structures and others were removed from the skeleton image.
Minutiae were also categorised or ranked according to the degree of their meeting defined
topological rules. A similar approach was used in Zhao & Tang (2007), where dot
(isolated pixel) filtering, small holes filling (i.e. possibly from dominant pores) were used,
in combination with other heuristics. The accuracy of a fingerprint matching algorithm was
reported to be decreased by approximately 13.5% when minutiae filtering heuristics were used
in comparison to no filtering.

2.2 Minutiae representation

Minutiae-based matching algorithms are largely dependent on extracted minutiae
information. Robust minutiae-based matching algorithms have to deal with occurrences of
missing and spurious minutiae, where missing minutiae can occur as a result of inaccurate
feature detection, feature post-processing, or image noise obscuring minutiae detail, and
spurious minutiae can be introduced by dry skin, creases, feature detection algorithms,
and other potential noise causing agents. The general processes of a fingerprint matching
algorithm is presented in Figure 4.
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Fig. 4. General processes for minutiae-based fingerprint matching.

In minutiae-based matching, minutiae are commonly represented as minutiae structures
called minutia triplets, where a minutia, mi, is described as mi = {x, y, θ} with x,y representing
the x-y coordinate of the minutia and θ the angular direction of the main ridge (see Figure 5
left).
The main focus of minutiae-based matching is to perform a one-to-one mapping or pairing of
minutiae points from a test image minutiae set

A = {mA1
, mA2

, . . . , mAp
}, where mAi

= {xAi
, yAi

, θAi
} and 1 ≤ i ≤ p (3)

29Fingerprint Matching using A Hybrid Shape and Orientation Descriptor
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to a template image minutiae set

B = {mB1
, mB2

, . . . , mBq
}, where mBj

= {xBj
, yBj

, θBj
} and 1 ≤ j ≤ q, (4)

forming the minutiae pairs (mAk
, mBπ(k)

) with π(k) as the mapping permutation of pairs from

set A to B.
Unfortunately, we cannot proceed to find minutiae pairs from triplets without some
pre-processing for the following critical reasons:

• fingerprint impressions can differ in orientation, deeming the direction field in the triplet
useless,

• fingerprint impressions can differ in offset, deeming the x-y fields in the triplet useless,
and

• skin elasticity creates non-linear distortion or ’warping’ to occur when different directional
pressure is applied causing triplet x-y variations to occur.

In general, the lack of invariant characteristics of the triplet structure prohibits it to aid the
process of finding minutiae pairs.

2.3 Registration

In order to address the issues concerning the lack of invariance of the triplet structure, global
registration is required. Global registration concerns the alignment and overlay of the template
and test fingerprints so that corresponding regions of the fingerprints have minimal geometric
distance to each other. Registration can be achieved geometrically by applying (to either
the test or template fingerprint minutiae set) a heuristically guided affine transform, where
minutiae triplet field values are updated with

[

xnew

ynew

]

=

[

cos(θ∆) −sin(θ∆)
sin(θ∆) cos(θ∆)

] [

x
y

]

+

[

x∆

y∆

]

, (5)

and
θnew = θ − θ∆, (6)

where θ∆ is the orientation difference and (x∆, y∆) is the displacement difference in order
to super-impose one fingerprint impression on top of the other with accurate overlap and
uniform direction.
Even with the advent of high distortion, minutiae points within a fingerprint image are still
expected to keep their general global location in relation to the majority of other minutiae
points and other key landmarks (such as cores and deltas) when alignment is achieved.
Specifically speaking, the spatial distribution or geometric properties of neighbouring
minutiae should have minimal difference even in distorted images. If we consider that
there are clear limitations in terms of minutiae landmark relative to positioning variability
(even with high distortion), while recognising that different fingerprint impressions have
orientation and displacement differences, then the global registration process notably reduces
the search space. This reduces algorithm complexity for finding minutiae pairs, since
matching pairs are formed in smaller local neighbourhoods (i.e. constraints added for
minutiae mappings) once aligned. This allows a naive brute force minutiae pairing process to
be avoided.
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Following the registration process, we can now produce geometric constraints for the
discovery of minutiae matching pairs, including geometric distance:

distr(mAi
, mBj

) =
√

(xAi
− xBj

)2 + (yAi
− yBj

)2 < rδ, (7)

or to account for scale difference (i.e. if we are comparing images collected from different
resolution scanners)

distr(mAi
, mBj

) =
√

(xAi
− kx.xBj

)2 + (yAi
− ky.yBj

)2 < rδ, (8)

and minutiae angle difference,

distθ(mAi
, mBj

) = min(|θAi
− θBj

|, 360◦ − |θAi
− θBj

|) < rθ . (9)

The geometric tolerance rδ is in place to account for distortion that may occur, whereas rθ is
the tolerance for angular differences that may arise due to orientation estimations from the
ridge orientation images. Following global registration, a local search can now be performed,
in order to match minutiae in the δ-neighbourhood that meet the constraints in equations 7-9
(see Figure 5 right).
Once genuine minutiae pairs are produced, a metric of similarity, usually called the similarity
score, can then be calculated. The similarity score must accurately describe how similar two
fingerprints are, taking into account all of the relevant information obtained from earlier
stages, such as number of genuine minutiae pairs and how similar each pair is. One similarity
score given in Liang & Asano (2006) is defined as

sim(A, B) =
n2

match

nAnB
(10)

where nmatch is the number of matching minutiae pairs, and nA, nB are the number of minutiae
in the overlapped regions of the template and test fingerprints following registration.
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Fig. 5. left: minutia triplet structure representation. right: Minutiae points from 2 different
fingerprints being mapped after registration, with gray circles representing pairs with
constraints upheld (equations 7-9).
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In order to effectively match fingerprints, we require that the registration used not only be
computationally sound, but also perform accurate alignment. In order to achieve this, some
methods use additional features (sometimes in combination with minutiae detail) for global
alignment, such as cores and deltas, local or global orientation field / texture analysis, and
ridge feature analysis.
Using core points for registration is known to dramatically improve the performance of a
matching algorithm. In Chikkerur & Ratha (2005), a graph theory based minutiae matching
algorithm reported a 43% improvement in efficiency when including the core point for
registration, without adverse effect toward matching accuracy. In Zhang & Wang (2002) core
points were used as key landmarks for registration. This method proved to be extremely
efficient in comparison to other key registration methods. Structural features of minutiae
close to the core are used to calculate the rotation needed. The core point was also used
in Tian et al. (2007) for registration with the orientation that produced the minutiae pair
with the minimum hilbert scanning distance. These and similar methods heavily rely on the
core point for alignment. Such a dependence is not strictly robust, since not all fingerprint
impressions contain core points and the inclusion of noises may effect the accuracy of core
detection algorithms, possibly resulting in incorrect alignments.
In Yager & Amin (2005), the global orientation image with points divided into hexadecimal
cells (see Figure 6 right) is used for registration. The steepest descent algorithm was used in
order to find the affine transform (x∆, y∆, θ∆) that minimise the cost function

C(P, Q′) =
1

N ∑
p∈P,q′∈Q′

min[(p − q′), (q′ − p + π)], (11)

where P is orientation image of one fingerprint and Q’ is the orientation image of the second
fingerprint following an affine transformation.
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Fig. 6. left: The local orientation descriptor used in Tico & Kuosmanen (2003). right:
Hexagonal orientation cells within the orientation image in Yager & Amin (2005) .

Another example which uses the global orientation image for registration can be found in Liu
et al. (2006). For all possible transforms of the test fingerprint onto the template fingerprint
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which has significant region overlap, the normalised mutual information (NMI) defined as

NMI(X, Y) =
H(X) + H(Y)

H(X, Y)
(12)

is calculated, where
H(X) = −EX [log P(X)], (13)

H(Y) = −EY [log P(Y)], (14)

and
H(X, Y) = −EX [EY [log P(X, Y)]], (15)

where X and Y are discrete random variables representing the orientation fields, Ox and
Oy, of the template and test fingerprints, respectively, which are divided into b blocks. The
probabilities can be calculated as

PXY(x, y) =
n(x, y)

∑
n−1
i=0 ∑

n−1
j=0 n(i, j)

, (16)

PX(x) =
b−1

∑
j=0

P(x, j), (17)

PY(y) =
b−1

∑
i=0

P(i, y), (18)

and

n(x, y) =

{

1 if |Ox(x)− Ox(y)| ≤ λ,

0 otherwise
(19)

with λ as a small threshold, indicating that orientation corresponding image blocks have very
similar orientations. We can now find the transform which produces the maximum NMI as
the global registration.
Global landmarks and features are not only used for aiding registration. Local structure sets
or descriptors can also be used for registration. For instance, in Tico & Kuosmanen (2003), the
rotation and translation invariant minutia orientation descriptor (see Figure 6 Left) is used to
find minutiae pair with the maximum probabilistic value

[r, s] = arg max
i,j

P(mAi
, mBj

) (20)

with

P(mAi
, mBj

) =
S(mAi

, mBj
)2

(

∑
p
k=1 S(mAk

, mBj
) + ∑

q
l=1 S(mAi

, mBl
)
) (21)

and S(mAi
, mBj

) is the similarity function defined as

S(mAi
, mBj

) = (1/K)
L

∑
c

Kc

∑
d

exp

⎛

⎝−
2
(

min(|θAi

c,d − θ
Bj

c,d|, π − |θAi

c,d − θ
Bj

c,d|)
)

πμ

⎞

⎠ (22)

where the orientation descriptor has a total of K sample points distributed as L concentric
circles having Kc points (i.e. possibly differing number per circle) with equidistant angular

33Fingerprint Matching using A Hybrid Shape and Orientation Descriptor
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distribution (i.e. 2π
Kc

step size), θAi

c,d is minimum angle required to rotate the dth sample

orientation on cth circle to the orientation of minutia mAi
(likewise for θ

Bj

c,d), and μ is an

empirically chosen parameter. After finding the maximum pair index, [r, s], the affine
transform is performed on the set B = {mB1

, mB2
, . . . , mBq

}, with θ∆ = θAr
− θBs

and

[x∆ y∆]
T = [xAr

− xBs
yAr

− yBs
]T as the transformation parameters. The additional local

texture information contained in the orientation-based descriptor is then used in the similarity
score to give

sim(A, B) =

(

∑(i,j)∈C S(mAi
, mBj

)
)2

nAnB
(23)

where S(mAi
, mBi

) is the function defined in equation 22, C is the set of minutiae pairs, and
Ai, Bj are the template/test minutiae list indexes, respectively.

Unlike most algorithms that have global registration preceding local registration or minutiae
pairing, the proposed method in Bazen & Gerez (2003) finds a list of minutiae pairs
prior to performing global registration. Each minutia in the template and test fingerprints
have an extended triplet structure defined as a 2-neighbourhood structure in the form of
{x, y, θ, r1, θ1, r2, θ2}, where r1 and θ1 are the polar co-ordinates of the closest minutia, and
likewise for the second closest minutia, r2 and θ2. The list is then built by finding pairs
from after aligning each minutiae structure and then comparing the similarity. This initial
minutiae list may contain false pairs. Using the largest group of pairs that use approximately
the same transform parameters for alignment, a least squares approach is then used to find the
optimal registration. To aid highly distorted fingerprints the non-affine transformation model
based on the Thin Plate Spline (T.P.S) (defined in section 3.1.1) is applied to model distortion,
with minutiae pair correspondences as anchor points. Such a model allows the minutiae pair
restrictions of equations 7-9 to be more rigorously set, helping reduce an algorithms FAR
(False Accentance Rate).
There exist algorithms that bypass global registration all together. In Chikkerur &
Govindaraju (2006), a proposed local neighbourhood minutia structure called K-plet uses a
graph theory based consolidation process in combination with dynamic programming for
local matching (i.e. minutiae pairing). Another example of a matching algorithm that does
not require registration can be found in Kisel et al. (2008), which opts to use translation
invariant minutia structures with neighbourhood information for finding genuine minutiae
correspondences.
For the majority of algorithms that use global registration, local minutiae matching is then
performed. In order to aid local matching, structures based on triplets and other shape
descriptors, which are shape descriptive data sets employed for the geometric analysis of
shapes (that may have been previously utilised in the registration process), can be used to
measure minutiae similarity. For instance, a greedy algorithm is used in Tico & Kuosmanen
(2003), where subsequent pairs are selected in order of descending probability values (i.e.
equation 21) in conjunction with equations 7-9. A similar methodology can be found in Qi
et al. (2004), where a greedy algorithm and textural minutia-based descriptor is similarly used.

3. Hybrid shape and orientation descriptor

In this section, a brief theoretical foundation concerning the Thin Plate Spline (T.P.S) and shape
context will initially be established. Following this, a fingerprint matching algorithm using
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Fingerprint Matching using A Hybrid Shape and Orientation Descriptor 11

the enhanced shape context descriptor introduced in Kwan et al. (2006) is reviewed. Next,
the proposed hybrid descriptor method which uses the enhanced shape context descriptor in
conjunction with the orientation-based descriptor described in Tico & Kuosmanen (2003) will
be introduced. Experimental results will be reported in Section 3.2.3.

3.1 Enhanced shape context

Shape matching algorithms that use contour based descriptors based on point samples (or
point pattern matching algorithms) are analogous to minutiae-based fingerprint matching
algorithms, as they usually combine the use of descriptors with dynamic programming,
greedy, simulated annealing, and energy minimization based algorithms, in order to register
shapes and compute a similarity measure. Hence, like fingerprint matching algorithms,
desirable characteristics of shape matching methods are invariance to rotation and scale, while
achieving robustness toward small amounts of distortion and outlier point samples.
The Shape Context descriptor in Belongie et al. (2000) and Belongie et al. (2002) is a robust
contour based shape descriptor used for calculating shape similarity and the recovering
of point correspondences. Recently, Kwan et al. (2006) proposed a fingerprint matching
based variant of the shape context, the Enhanced Shape Context, utilising additional contextual
information from minutiae sets.
Initially, we are given n and m minutiae from test and template fingerprints, P and Q,
respectively. For each minutia, pi ∈ P, we are to find the best matching minutia, qj ∈ Q.
When the shape context descriptor is constructed for a particular minutia, a coarse histogram

hpi (k) = #
{

pj �= pi : (pj − pi) ∈ bin(k)
}

. (24)

involving the remaining n − 1 minutiae of P is built as the shape context of minutia pi. Each
bin corresponds to the tally of minutiae in a particular spatial region with distance rl ≤ d ≤ rh
and direction θ.

 !"#$!%&'()$&*+(,-(./0)(1

(%!"('(&02(34(./0)(1!'(  5

Fig. 7. Log-polar histogram bins used to create shape context histogram for a minutia point.
Bifurcations and ridge endings are denoted by ’+’ and ’o’, respectively.

The spatial geometric regions are divided to be uniform in log-polar space, where the
log-polar transformation is defined as the mapping from the Cartesian plane (x,y) to the
log-polar plane (ξ, η) with

35Fingerprint Matching using A Hybrid Shape and Orientation Descriptor

www.intechopen.com



12 Will-be-set-by-IN-TECH

[

ξ
η

]

=

[

log r
θ

]

=

[

log
√

x2 + y2

arctan
y
x

]

. (25)

The shape context descriptor is then constructed for each minutiae pi ∈ P, and likewise, each
qj ∈ Q, providing a localised spatial survey of the minutiae distributions for each fingerprint.
We can now consider the cost of matching two minutiae, which we can later use to find the
optimal mapping of minutiae. Let Cij = C(pi, qj) denote the cost of matching minutia pi ∈ P
with qj ∈ Q.

Since the shape context are distributed as histograms, we can use a modification of the χ2

statistic:

Cij ≡ C(pi, qj) =
1

2

K

∑
k=1

[

hpi (k)− hqj (k)
]2

hpi (k) + hqj (k)
(26)

where hpi and hqj denote the K-bin histograms of points pi and qj, respectively. This cost can
be modified to include application specific weighting and additional costs, in order to add
extra relevant information, and hence, improve accuracy.
In order to improve overall accuracy, the enhanced shape context cost value was modified to
include contextual information, such as minutia type (i.e., bifurcation and ridge endings, as
shown in Figure 7) and minutia angle. This produced the modified log-polar histogram cost
as

C∗
ij ≡ C∗(pi, qj) =

(

1 − γC
type
ij C

angle
ij

)

.

⎛

⎜

⎝

1

2

K

∑
k=1

[

hpi (k)− hqj (k)
]2

hpi (k) + hqj (k)

⎞

⎟

⎠
(27)

with 0 ≤ γ ≤ 1,

C
type
ij =

{

−1 if type(pi) = type(qj),

0 if type(pi) �= type(qj)
(28)

and

C
angle
ij = −1

2

(

1 + cos((∠initial−warped))
)

(29)

where ∠initial−warped is the absolute value of the angle difference in the ridge orientation
tangent at pi and qj in the beginning and after each iterative warping (see section 3.1.1). If
∠initial−warped is greater than π, it is adjusted as 2π −∠initial−warped so it will less than or equal
to π.
After computing the cost C∗

ij for all possible n × m pairs, the mapping permutation

(one-to-one), π, that minimises the total matching cost

H(π) = ∑
i

C(pi, qπ(i)) (30)

which can be computed via the Hungarian algorithm as in Jonker & Volgenant (1987). To
conform to a one-to-one mapping, |n − m| dummy points can be added to the smaller
fingerprint minutiae set. Minutiae that are mapped to these dummy points can be considered
to be outliers. For more robust handling, dummy point mappings can be extended to minutiae
that have a minimum cost greater than a desired threshold ǫd.
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3.1.1 Registration using the Thin Plate Spline

After finding the minutiae correspondences, the Thin Plate Spline (T.P.S) can be used to
register the point correspondences together, accounting for a rigid global transformation and
local non-linear transformation.
T.P.S is a mathematical model based on algebraically expressing the physical bending energy
of a thin metal plate on point constraints. T.P.S is both a simple and sufficient model for
non-rigid surface registration with notable applications in medical imaging. T.P.S was first
introduced in Bookstein (1989) for the accurate modelling of surfaces that undergo natural
warping, where no significant folds or twists occur (i.e., where a diffeomorphism exists).
Two sets of landmark points (i.e. minutiae) from two R

2 surfaces are paired in order
to provide an interpolation map on R

2 → R
2. T.P.S decomposes the interpolation into

a linear component with an affine transformation for a global coarse registration and a
non-linear component with smaller non-affine transformations. In other words, the linear
component or affine transform can be considered as the transformation that expresses the
global geometric dependence of the point sets, whereas the non-affine transform component
identifies individual transform components in order to fine tune the interpolation of the point
sets. In addition, the affine transform component allows T.P.S to be invariant under both
rotation and scale.
In the general two dimensional T.P.S case, we have n control points

{p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} (31)

from an input R
2 image and target control points

{

p′
1 = (x′1, y′1), p′

2 = (x′2, y′2), . . . , p′
n = (x′n, y′n)

}

(32)

from a target R
2 image. To set up the required algebra of the general T.P.S case, we define the

following matrices

K =

⎡

⎢

⎢

⎣

0 U(r12) . . . U(r1n)
U(r21) 0 . . . U(r2n)

. . . . . . . . . . . .
U(rn1) U(rn2) . . . 0

⎤

⎥

⎥

⎦

, n × n; (33)

where U(r) = r2 log r2 with r as the Euclidean distance, rij = ‖pi − pj‖,

P =

⎡

⎢

⎢

⎣

1 x1 y1

1 x2 y2

. . . . . . . . .
1 xn yn

⎤

⎥

⎥

⎦

, 3 × n; (34)

V =

[

x′1 x′2 . . . x′n
y′1 y′2 . . . y′n

]

, 2 × n; (35)

Y =
[

V 02×3

]T
, (n + 3)× 2; (36)

and

L =

[

K P

PT 03×3

]

, (n + 3)× (n + 3); (37)

We can now find the vector W = (w1, w2, . . . , wn) and the coefficients a1, ax, ay, by the
equation
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L−1Y = (W| a1 ax ay)
T (38)

which can then have its elements used to define the T.P.S interpolation function

f (x, y) =
[

fx(x, y), fy(x, y)
]

, (39)

returning the coordinates [xres, yres] compiled from the first column of L−1Y giving

fx(x, y) = a1,x + ax,xx + ay,xy +
n

∑
i=1

wi,xU(‖pi − (x, y)‖). (40)

where
[

a1,x ax,x ay,x
]T

is the affine transform component for x, and likewise for the second
column, where

fy(x, y) = a1,y + ax,yx + ay,yy +
n

∑
i=1

wi,yU(‖pi − (x, y)‖). (41)

with
[

a1,y ax,y ay,y
]T

as the affine component for y. Each point (or minutia location) can now
be updated as

xnew = fx(x, y) = xres (42)

ynew = fy(x, y) = yres. (43)

It can be shown that the function f (x, y) is the interpolation that minimises

I f ∝ WKWT = V(L−1
n KL−1

n )V
T

, (44)

where I f is the bending energy measure

I f =
∫ ∫

R2

(

∂2z

∂x2

)2

+ 2

(

∂2z

∂x∂y

)2

+

(

∂2z

∂y2

)2

dxdy (45)

and Ln is the n × n sub-matrix of L.
Since ill-posed mappings of control points which violate mapping existence, uniqueness, or
continuity, can readily exist in real world examples, the use of a Regularization term like
Wahba (1990), λ.I f , can be included in order to smooth the performed interpolation. Thus,
the minimization of the error term

H[ f ] =
n

∑
i=1

(vi − f (xi, yi))
2 + λ.I f (46)

is performed, where the matrix K is replaced with K + λ.I. One should note that λ = 0 results
in exact interpolation.
Using the regularized T.P.S transformation method, n iterations are applied, where each
iteration has minutiae mappings reassigned and transformation re-estimated using the
previous minutiae set transformed state of the test fingerprint (note: the template remains
static).
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3.1.2 Similarity score

Once the n iterations are performed, the final pairs have now been established. From this, the
shape similarity distance measure can be calculated as

Dsc(P, Q) =
1

n ∑
p∈P

arg min
q∈Q

C(p, T(q)) +
1

m ∑
q∈Q

arg min
p∈P

C(p, T(q)) (47)

where T(.) denotes the T.P.S transformed representative of the contour point q. In addition, an
appearance term, Dac(P, Q), measuring pixel intensity similarity and a bending energy term,
Dbe(P, Q) = I f , can be added to the similarity score.
Afterward, the similarity measure was modified as

D∗
sc = Dsc + βDbe. (48)

Although this measure does not take into account the strict one-to-one mapping of minutiae;
through experimentation, this method proved to be sound, providing acceptable performance
in fingerprint similarity assessment. However, the resulting minutiae mapping from the
application of the Hungarian algorithm on the contextually based cost histograms produced
some un-natural pairs, as illustrated in Figure 8 (top). This is due to the lack of a minutiae
pair pruning procedure. The existence of un-natural pairs could potentially skew the Thin
Plate Spline (T.P.S) linear transform performed. In addition, such pairs generally increase
the bending energy substantially, thus leading to invalid matching results, particularly for
genuine matches.

3.2 Proposed matching method

Recently, hybrid matching algorithms have been used for fingerprint matching. Although
minutiae detail alone can produce a highly discriminant set of information, the combination
of level 1 feature, such as orientation and frequency, and other level features, can
increase discriminant information, and hence, increase matching accuracy, as illustrated in
Benhammadi et al. (2007), Youssif et al. (2007), Reisman et al. (2002), and Qi et al. (2004).
The detailing of the proposed hybrid matching algorithm based on a modified version of
the enhanced shape context method in Kwan et al. (2006), along with the integration of
the orientation-based descriptor of Tico & Kuosmanen (2003) is given here, illustrating a
significant performance improvement over the enhanced shape context method of Kwan et al.
(2006). The main objective of the integration is two-fold, firstly to prune outlier minutiae pairs,
and secondly to provide more information to use in similarity assessment.
As briefly described earlier in section 2.3, the orientation-based descriptor in Tico &
Kuosmanen (2003) utilises the orientation image to provided local samples of orientation
around minutiae in a concentric layout. Each orientation sample point is calculated as

θAi

c,d = min(|θsA

c,d − θAi
|, π − |θsA

c,d − θAi
|) (49)

being the dth sample on the cth concentric circle with distance rc away from the minutiae
point mAi

, where θAi
and θsA

c,d are the minutia and sample point orientation estimations,

respectively. The orientation distance of equation 22 is used to prune outlier pairs resulting
from the Hungarian algorithm which produced the mapping permutation of equation 30.
Although the shape context defines the similarity measure in equation 47-48 with no strict
one-to-one correspondence, minutiae should have a more strict assessment based on the
optimal mapping, since minutiae are key landmarks as opposed to randomly sampled contour
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Fig. 8. top: The Enhanced Shape Context method producing initial minutiae pair
correspondences. The next two images are for the following iterations. One should note that
there are some clear un-natural pairs produced, where plate foldings are evident (i.e. pair
correspondences that cross other pair correspondences). bottom: The proposed hybrid
method initial minutiae pair correspondences along with following iterations of produced
correspondences.

points. Thus, equation 48 can be modified to only score the pairs with the optimal one-to-one
mapping as

D∗∗
sc (P, Q) =

1

n ∑
pi∈P|Do(pi ,qπ(i))<δ

C(pi, qπ(i)) + ΛDo(pi, qπ(i)) + βDbe (50)

with an addition term in the summation to account for orientation distance scaled by the
tunable parameter, Λ with range [0, 1].
In terms of what concentric circle radii and sample configuration should be used, the method
explained in Tico & Kuosmanen (2003) prescribes that the radius for circle Kl be rl = 2l × τ,
where τ denotes the average ridge period, and for the sample configuration, the circle Kl
should have roughly ⌈πrl

τ ⌉. As the average ridge period was recorded to be 0.463 mm in
Stoney (1988), for a fingerprint image with dots per inch (dpi) equal to R, the previous formula

for the configuration can be expressed as Kl = ⌈ 172.rl
R ⌉. However, this was really only used

as a rough guide for the configuration used in the experimentation of Tico & Kuosmanen
(2003). This was also used as a rough guide for our implementation of the orientation-based
descriptor.
Although the log-polar space adequately provides extra importance toward neighbouring
sample points, additional emphasis on local points may be desirable, since minutiae sets are
largely incomplete and do not entirely overlap. For a given minutia, non-local bin regions may
be partially or largely outside the segmented region of interest for one fingerprint and not the
other. In addition, the non-local bins are spatially larger, and hence, have a higher probability
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Fingerprint Matching using A Hybrid Shape and Orientation Descriptor 17

of containing false minutia caused by noises. Such issues can potentially result in incorrect
minutiae pairs. Thus, the enhanced shape context’s log-polar histogram cost in equation 27 is
adjusted to contain a tunable Gaussian weighting of histogram bin totals, depending on their
distances away from the centre (reference minutia), with

C∗∗(pi, qj) =
(

1 − γC
type
ij C

angle
ij

)

.

⎛

⎜

⎝

1

2

K

∑
k=1

[

hpi (k)− hqj (k)
]2

hpi (k) + hqj (k)
× exp

(

− (rk − rmin)
2

2σ2

)

⎞

⎟

⎠
(51)

where rmin is the outer boundary of the closest bin, rk is the current bin outer boundary
distance, and σ2 is a tunable parameter (see Figure 9).

 !"#$!%&'()$&*+,(-.)/!"'&0(1.2)
*!23!%3+,(4./-(5&6)).&2
4+."-/.2"

7.26/.&(,.'+*/.!2&%(!88)+/

Fig. 9. The log-polar sample space convolved with a two dimensional Gaussian kernel,
resulting in each bin to be weighted according to its distance from the origin (minutia). The
histogram cost calculation uses the direction of the reference minutia as the directional offset
for the bin order, making the descriptor invariant to rotation.

3.2.1 Adaptive greedy registration

If we re-examine the registration of the enhanced shape context method of Kwan et al. (2006)
discussed in section 3.1, we can summarise the iterative process as updating minutiae pairs
with the enhanced shape context descriptor, followed by using T.P.S to perform a global
alignment with the linear transform component, and then performing non-linear transform
to model warping caused by skin elasticity. This method does not utilise any singularities
for the registration process, solely relying on the T.P.S framework for registration. Hence,
registration is largely reliant on the accuracy of the spatial distribution of minutiae relative to
a given reference minutia, which is often inadequate.
The proposed method does not use the T.P.S transform to perform the initial affine transform.
Instead, a greedy method similar to Tico & Kuosmanen (2003) (of equations 20-23) is used.
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Using the minutiae set representation of equations 3 and 4, each possible pair (mAi
, mBj

) of

the affine transform, T, is calculated by using the orientation differences of each minutiae
direction as the rotation component, and the difference in x-y coordinates as the offset
component (as illustrated in equations 7-9). The heuristic that requires maximising is

H(A, B) = arg max
ψ

∑i S(mAi
, mBT(i)

)

n(Φψ)
(52)

where S(.) is previously defined in equation 22 as the similarity function based on the
orientation-based descriptor, ψ is the index pair reference for the transform T (i.e. (i, j) with
mAi

= mBT(j)
), Φψ is the anchor point set (with size n(Φψ)) of minutiae pairs (mAp

, mBq
) ∈ Φψ

which have each other as closest points from the opposite minutiae sets with distance less
than an empirically set limit, δM, after applying the given transform. In addition, all anchor
point minutiae pairs must have similar orientation, hence meeting the constraint

min
(

|θAi
− θBj

|, π − |θAi
− θBj

|
)

< δθ (53)

(see Figure 5 left). From the given definition, we can easily verify that (i, j) ∈ Φψ.
If the primary core point exists in both the test and template feature sets, provided that the
core point detection is highly accurate with a given test dataset, then we have good reason to
ignore affine transforms that cause the core points to be greater than a fixed distance, δD, away
from each other. Additional pruning can be achieved by only allowing transforms where the
reference minutiae pair has a orientation-based descriptor similarity score to meet

S
(

pi, qπ(i)

)

< δS (54)

where δS is empirically set. Such restrictions will not only improve performance, but also
make the registration process much more accurate, since we are not just blindly maximising
the heuristic of equation 52.
Many registration algorithms use singularities, texture, and minutiae pair information as
tools for finding the most likely alignment. However, the overlapped region shape similarity
retrieved from minutiae spatial distribution information provides an additional important
criteria. After finding the bounding box (overlapping region) of a possible affine transform
meeting all prior restrictions, we can then measure shape dissimilarity via the application of
the shape context to all interior points P ⊆ A and Q ⊆ B with equation 50, giving additional
criteria for affine transforms to meet Dsc(P, Q) < δsc for an empirically set threshold, δsc.

For a candidate transform, we have the corresponding anchor point set Φψ. We will now
define two additional nearest neighbour sets of the interior points in the overlap region (as
depicted in Figure 10) as

Φα =
{

i |
√

(xAi
− xBj

)2 + (yAi
− yBj

)2 < δN

}

(55)

where Φα contains all interior nearest neighbour indices from fingerprint A, and likewise, Φβ,
containing interior nearest neighbour indices for fingerprint B. Thus, we have

Φψ ⊆
{

(i, j) | i ∈ Φα and j ∈ Φβ

}

. (56)

with 1 ≤ i ≤ p and 1 ≤ j ≤ q. The affine transform method is detailed in algorithm 1.
If a candidate affine transform meets the heuristic of equation 52 with the given constraints,
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Algorithm 1 Proposed registration algorithm (Affine component)

Require: minutiae set P and Q (representing fingerprints A and B, respectively).
H ← 0
ψ ←NIL
Φψ ←NIL
QT ←NIL

for all possible minutiae pairs
(

pi, qj

)

do

S
(

pi, qj

)

← (1/K)∑
L
c ∑

Kc

d exp

(

−
2
(

min(|θpi
c,d−θ

qj
c,d |,π−|θpi

c,d−θ
qj
c,d |)

)

πμ

)

if S
(

pi, qj

)

< δS then

continue
end if
{Perform transform from minutiae pair with offset and orientation parameters from
minutiae x-y and θ differences}
Q′ ← T(Q)
{Make sure core points are roughly around the same region, provided both cores exist}
if BothCoresExist(P, Q′) and CoreDist(P, Q′) > δD then

continue
end if
{Get T.P.S cost matrix (see algorithm 2)}
C∗∗ ← TPScost(P, Q′)
Dsc ← 1

n ∑p∈P arg minq∈Q′ C∗∗(p, q) + 1
m ∑q∈Q′ arg minp∈P C∗∗(p, q)

if Dsc > δsc then
continue

end if

ΦψP ←
{

(a, b) | arg mina∈P

√

(xAa
− xBb

)2 + (yAa
− yBb

)2
}

ΦψQ
←
{

(a, b) | arg minb∈Q

√

(xAa
− xBb

)2 + (yAa
− yBb

)2
}

Φ′
ψ ←

{

(a, b) | (a, b) ∈ ΦψP ∩ ΦψQ
and

√

(xAi
− xBj

)2 + (yAi
− yBj

)2 < δM

}

Htest ←
∑(a,b)∈Φ′

ψ
S(pa ,T(q′b))

n(Φ′
ψ)

if Htest > H then
H ← Htest

ψ ← (i, j)
Φψ ← Φ′

ψ

QT ← Q′

end if
end for
Φα ←

{

i |
√

(xAi
− xBj

)2 + (yAi
− yBj

)2 < δN

}

Φβ ←
{

j |
√

(xAi
− xBj

)2 + (yAi
− yBj

)2 < δN

}

return Φψ, Φα, Φβ, QT
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Algorithm 2 TPScost: Calculate TPS cost matrix

Require: minutiae set P and Q (representing fingerprints A and B, respectively).
for all minutiae qj ∈ Q do

for k = 1 to K do
hqj (k) ← #

{

qj �= qi : (qj − qi) ∈ bin(k)
}

end for
end for
for all minutiae pi ∈ P do

for k = 1 to K do
hpi (k) ← #

{

pj �= pi : (pj − pi) ∈ bin(k)
}

end for
end for
for all minutiae pi ∈ P and qj ∈ Q do

C
type
ij ←

{

−1 if type(pi) = type(qj),

0 if type(pi) �= type(qj)

C
angle
ij ← − 1

2

(

1 + cos((∠initial−warped))
)

C∗∗(pi, qj) ←
(

1 − γC
type
ij C

angle
ij

)

.

(

1
2 ∑

K
k=1

[

hpi
(k)−hqj

(k)
]2

hpi
(k)+hqj

(k)
× exp

(

− (rk−rmin)
2

2σ2

)

)

end for
return C∗∗

we can then focus on the non-affine aspect of registration. The T.P.S non-affine component
adequately modeled the warping caused by skin elasticity in the previously proposed method.
With this in mind, it will be desirable to utilise the non-linear component.
The T.P.S has its point correspondence method modified through having anchor point
correspondences remain static throughout the iterative process, thus attempting to restrict
the affine transform component of T.P.S while finding new correspondences from Φα on to
Φβ that do not exist in Φψ. The shape context’s log-polar histogram cost is modified from
equation 51 as

Cγ(pi, qj) = γdγθC∗∗(pi, qj) (57)

where γd is defined as

γd =

{

1 if dist(pi, qj) < δmax,

∞ otherwise
(58)

with δmax set as the maximum feasible distance caused by warping after applying the
candidate affine transform, and similarly, γθ , is defined as

γθ =

{

1 if min(|θAi
− θBj

|, π − |θAi
− θBj

|) < θmax,

∞ otherwise
(59)

with θmax set as the maximum feasible orientation difference caused by orientation estimation
error in the extraction process.
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Fig. 10. An example affine transform candidate search sequence with final state and
corresponding bounding box for the overlapped region.

>From the new cost function, the Hungarian algorithm is then used to find additional
one-to-one correspondences to what already existed in the anchor point set. The candidate
affine transform in comparison to the affine component of T.P.S,

AT =

⎡

⎣

ax,x ax,y a1,x

ay,x ay,y a1,y

0 0 1

⎤

⎦ , (60)

is used to assess the accuracy of the additional correspondences found. The T.P.S affine
component would not have prominent translation, rotation, and shear parameters since
the candidate transform should have already adequately dealt with the affine registration
task as the Euclidean constraints on the anchor point worked to keep the global transform
rigid. In addition, the inclusion of additional natural minutiae correspondences should not
significantly alter the affine registration required. Thus, the lack of prominent translation,
rotation, and shear parameters for the T.P.S affine transform indicates an existing agreement
between both affine transforms. Evaluation of the translation distance is given by

ra f f ine =
√

a2
1,x + a2

1,y < rmax. (61)

Using the Singular Value Decomposition (SVD) of the non-translation components of AT:

SVD

([

ax,x ax,y

ay,x ay,y

])

= UDVT (62)

where U, VT ∈ SO(2, R) (i.e. 2x2 dimension rotation matrices with angles θα and θβ,
respectively) and D is a 2x2 diagonal matrix representing scaling along the rotated coordinate
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Algorithm 3 Proposed registration algorithm (Non-affine component)

Require: minutiae set P and QT (for fingerprints A and transform B), anchor set Φψ, nearest
neighbourhood sets Φα and Φβ.

P′ ← {pi | i ∈ Φα} , QT ←
{

qj | j ∈ Φβ

}

, ωa f f ine ← 0, Dbe ← 0

for all minutiae qj ∈ QT do
for k = 1 to K do

hqj (k) ← #
{

qj �= qi : (qj − qi) ∈ bin(k)
}

end for
end for
for iter = 1 to n do

for all minutiae pi ∈ P do
for k = 1 to K do

hpi (k) ← #
{

pj �= pi : (pj − pi) ∈ bin(k)
}

end for
end for
for all minutiae pi ∈ Φα and qj ∈ Φβ do

C
type
ij ←

{

−1 if type(pi) = type(qj),

0 if type(pi) �= type(qj)

C
angle
ij ← − 1

2

(

1 + cos((∠initial−warped))
)

C∗∗(pi, qj) ←
(

1 − γC
type
ij C

angle
ij

)

.

(

1
2 ∑

K
k=1

[

hpi
(k)−hqj

(k)
]2

hpi
(k)+hqj

(k)
× exp

(

− (rk−rmin)
2

2σ2

)

)

Cγ(pi, qj) ← γdγθC∗∗(pi, qj)
end for
{calculate and add minutiae pairs additional to the anchor set pairs.}
Φπ ← Hungarian(Cγ, Φα, Φβ, f ixedMap = Φψ)
f (x, y) ←T.P.S (P, QT , Φπ , Regularized = true)
Dbe ← Dbe + WKWT

ra f f ine ←
√

a2
1,x + a2

1,y

[U, D, VT , θα, θβ] ← SVD

([

ax,x ax,y

ay,x ay,y

])

ωa f f ine ← ωa f f ine + |θα + θβ|
τa f f ine ← log

(

D1,1

D2,2

)

if Dbe > Emax or ra f f ine ≥ δmax or ωa f f ine ≥ θmax or τa f f ine ≥ τmax then
return Φψ

end if
for all minutiae pi ∈ P do

[x, y] ← [pi(x), pi(y)]
[pi(x), pi(y)] ← [ fx(x, y), fy(x, y)]

end for
end for
return return Φπ
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axes of VT with nonnegative diagonal elements in decreasing order, the evaluation of rotation

ωa f f ine = |θα + θβ|< ωmax, (63)

and shear

τa f f ine = log

(

D1,1

D2,2

)

< τmax, (64)

is performed for empirically set values ωmax and τmax. If the above affine transform criteria
of equations 61, 63, and 64 are not met, no extra minutiae pairs are produced. Unlike the
previous method, this helps uphold spatial consistency by not creating un-natural pairs (see
Figure 8 (bottom)). Essentially, the candidate affine transform is used as the ground truth
registration over the T.P.S affine component.
A final integrity check of the validity of the additional minutiae pairs produced from the
non-affine transform is the measured bending energy, previously defined in equation 45. If
the non-affine transform produces a bending energy distance Dbe > Emax, then all additional
minutiae pairs are also rejected, in order to avoid un-natural warping to occur. The non-affine
transform component is detailed in algorithm 3.

3.2.2 Matching algorithm

Once the minutiae pairs have been established, pruning is performed to remove unnatural
pairings. However, if we closely analyse the orientation-based descriptor used for pruning,
we can see that a fundamental flaw arises with partial fingerprint coverage, specifically for
minutiae pairs near fingerprint image edges. In such a case, the typical formula for distance
calculation cannot count orientation samples that lie outside the region of interest, and
therefore, unnecessarily reduces the orientation distance measure (see Figure 11). Moreover,
regions that have high noise also cannot have their orientation reliably estimated due to
information to be missing (if regions with high noise are masked), and likewise, reduces the
orientation-based descriptor common region coverage.
A proposed modification to the orientation-based descriptor is applied so that the amount of
common region coverage that each descriptor has is reflected in the similarity score. This is
achieved by a simple Gaussian weighting of equation 22 with

S∗(mAi
, mBj

) = S(mAi
, mBj

)× exp(−max(0, ∆cuto f f − ∆g_count).μs) (65)

where ∆cuto f f is the cutoff point where all good sample totals below this value are weighed,
∆g_count is the total number of good samples (i.e. where a good sample is defined to be in a
coherent fingerprint region), and μs is a tunable parameter. However, for a more exhaustive
approach, one could empirically review the estimated distribution of orientation-based
similarity scores for true and false cases, with specific attention towards the effect of coverage
completeness on the accuracy of the similarity measure.
Equation 65 relies on the intersection set of valid samples for each minutiae, defined as

I(Ai, Bj) =
{

s | s ∈ {L, Kc} and valid(A(sx, sy))
}

∩
{

t | t ∈ {L, Kc} and valid(B(tx, ty))
}

(66)
where L is the sample position set and Kc is the concentric circle set. Thus, we can also define
a variant of the function S∗(mAi

, mBj
, I) where a predefined sample index set , I, is given to

indicate which samples are only to be used for the similarity calculation, ignoring i /∈ I even
if corresponding orientation samples are legitimately defined for both fingerprints (note: this
variant is used later for similarity scoring in the matching algorithm).
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Fig. 11. An example where the orientation-based descriptor for corresponding minutiae in
two different impressions of the same fingerprint have no coverage in a substantial portion
of the orientation sample.

After the filtered minutiae pair set is produced, we can now assess the similarity of the
pairs. Minutiae δ-neighbourhood structure families, where particular spatial and minutiae
information of the δ closest minutiae to a reference minutiae are extracted as features, have
been used before in minutiae based matching algorithms (such as Chikkerur & Govindaraju
(2006) and Kwon et al. (2006)) for both alignment and similarity measure (see Figure 12). The
δ-neighbourhood structure proposed has the following fields:

• Distance di: the distance a neighbourhood minutia is away from the reference minutia.

• Angle ∠i: the angle a neighbourhood minutia is from the reference minutia direction.

• Orientation θi: the orientation difference between a neighbourhood minutia direction and
the reference minutia direction.

• Texture Γi: the orientation-based descriptor sample set for a neighbourhood minutia used
to measure the region orientation similarity with the reference minutia for a given sample
index.

giving us the sorted set structure

nδ(mAi
) = {{dAi(1),∠Ai(1), θAi(1), {ΓAi(1)}}, . . . , {dAi(δ),∠Ai(δ), θAi(δ), {ΓAi(δ)}}} (67)

being sorted by the distance field in ascending order. The first two fields are considered as the
polar co-ordinates of the neighbourhood minutiae with the referencing minutia as the origin,
and along with the third field, they are commonly used in local neighbourhood minutiae
based structures ( Kwon et al. (2006) and Jiang & Yau (2000)). Using the modified weighted
orientation-based descriptor, the texture field provides additional information on how each
local orientation information surrounding the δ-neighbourhood minutiae set vary from that
of the reference minutia, with the measure rated using equation 65. These structures can now
be used to further assess and score the candidate minutiae pairs.
When comparing the δ-neighbourhood elements of a candidate minutiae pair, the first three
fields are straight forward to compute the differences with
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Fig. 12. The δ-neighbourhood (δ = 4) for a given minutia (ignoring false crease minutiae).

rdi f f (mAi
,mBj

)(x, y) = |dAi(x) − dBj(y)|, (68)

∠di f f (mAi
,mBj

)(x, y) = min(|∠Ai(x) −∠Bj(y)|, 2π − |∠Ai(x) −∠Bj(y)|), (69)

θdi f f (mAi
,mBj

)(x, y) = min(|θAi(x) − θBj(y)|, π − |θAi(x) − θBj(y)|), (70)

However, to make an accurate comparison of a minutiae pair’s δ-neighbourhood orientation
similarity information, we must find the intersection of sample positions that are within valid
and coherent regions for both images (see Figure 13). Thus, the fourth field is composed of the
set of all orientation samples and is used to dynamically calculate the orientation difference
of neighbouring minutiae for a minutiae pair’s respective δ-neighbourhoods, using

Γdi f f (mAi
,mBj

)(x, y) = |ΓAi(x) − ΓBj(y)| (71)

where ΓAi(x) = S∗(mAi
, mAi(x), Io), ΓBj(y) = S∗(mBj

, mBj(y), Io), and overlap index set Io =

I(Ai, Ai(x)) ∩ I(Bj, Bj(y)).
We now require a systematic method for scoring a minutiae pair given their corresponding
δ-neighbourhoods. Since there is no guarantee that each δ-neighbourhood has the same
minutiae set, optimal mapping methods, such as the Hungarian algorithm, may not be
desirable. Instead, we use a novel greedy algorithm, where we iterate through one
neighbourhood and find the best match from another, provided that they meet pre-defined
affine constraints of equations 61-63. Removal of the matching elements from the
δ-neighbourhood lists ensures one-to-one mappings of δ-neighbourhood minutiae.
A δ-neighbourhood similarity score is tallied for the candidate minutiae pair (mAi

, mBj
) for

each matched δ-neighbourhood minutiae pair having respective neighbourhood sorted set
indexes (xs, yt), found to also match, using

simδ(mAi
, mBj

) = ∑
s,t

(α(xs, yt) + γβ(xs, yt)) (72)

where

α(x, y) = exp(−rdi f f (mAi
,mBj

)(x, y)− θdi f f (mAi
,mBj

)(x, y)−∠di f f (mAi
,mBj

)(x, y)) (73)
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Fig. 13. An example where the orientation-based descriptor for corresponding minutiae in
two different impressions of the same fingerprint have no coverage in a substantial portion
of the orientation sample.

and
β(x, y) = exp(−Γdi f f (mAi

,mBj
)(x, y)) (74)

with a tunable parameter γ defined in [0, 1].
After all candidate minutiae pair δ-neighbourhoods have been scored, we can now find a
fingerprint matching similarity score as

sim(A, B) =
nM

(

∑(i,j) simδ(mAi
, mBj

)
)

.
(√

Smax
)

nA.nB
− νD∗∗

sc (75)

where
Smax = arg max

(i,j)
S∗(mAi

, mBj
, I(Ai, Bj)) (76)

with S∗(mAi
, mBj

, I(Ai, Bj)) defined in equation 65 as the orientation-based descriptor

similarity measure, D∗∗
sc is the modified shape context distance in equation 50, nM is the

number of matching filtered minutiae pairs, nA and nB are the number of minutiae in the
overlap region from fingerprint A and B, respectively, i and j are the index of the filtered
minutiae pair elements in fingerprint A and B, respectively, and ν a tunable parameter in
[0, 1]. Additionally, we can add the type similarity of each pair to equation 71 by adding a
small constant, ζt, when the minutiae types agree. The matching method is summarised in
algorithm 4.
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Algorithm 4 Proposed matching algorithm

Require: P, QT , candidate minutiae pair index set Φπ , and nδA =
{

nδ(mAi
) | i ∈ Φπ(1)

}

and

nδB =
{

nδ(mBj
) | j ∈ Φπ(2)

}

as the neighbourhood sets

simδ ← Nil
for all minutiae pair indexes(i, j) ∈ Φπ do

simδ(mAi
, mBj

) ← 0

Oscore ← S(mAi
, mBj

)
if Oscore < Omin then

remove (i, j) ∈ Φπ

continue
end if
for all s ∈ nδAi

do
for all t ∈ nδBj

do

rdi f f (mAi
,mBj

)(s, t) ← |dAi(s) − dBj(t)|
∠di f f (mAi

,mBj
)(s, t) ← min(|∠Ai(s) −∠Bj(t)|, 2π − |∠Ai(s) −∠Bj(t)|)

θdi f f (mAi
,mBj

)(s, t) ← min(|θAi(s) − θBj(t)|, π − |θAi(s) − θBj(t)|)
if rdi f f (mAi

,mBj
)(s, t) > rmax or ∠di f f (mAi

,mBj
)(s, t) > ∠max or

θdi f f (mAi
,mBj

)(s, t) > θmax then

continue
end if
remove s ∈ nδAi

remove t ∈ nδBj

α(s, t) ← exp(−rdi f f (mAi
,mBj

)(s, t)− θdi f f (mAi
,mBj

)(s, t))−∠di f f (mAi
,mBj

)(s, t))

β(s, t) ← exp(−Γdi f f (mAi
,mBj

)(s, t))

simδ(mAi
, mBj

) ← simδ(mAi
, mBj

) + α(s, t) + γβ(s, t)
end for

end for
end for
{calculate shape context from the minutiae sets P (which has been non-affinely transformed)
and QT (which has been affinely transformed)}
C∗∗ ← TPScost(P, QT)
D∗∗

sc (P, Q) ← 1
n ∑pi∈P|Do(pi ,qπ(i))<δ C(pi, qπ(i)) + ΛDo(pi, qπ(i)) + βDbe

Smax ← arg max(i,j) S∗(mAi
, mBj

, I(Ai, Bj))

simscore ←
nM

(

∑(i,j) simδ(mAi
,mBj

)
)

.(
√

Smax)
nA .nB

− νD∗∗
sc

return simscore
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4. Experimental results

The experiment was performed on two databases, the FVC2002 database Db1 set A ( Maio
et al. (2002)) which contains 800 fingerprint images with 100 fingers having 8 impressions
each, and fingerprint database from the University of Bologna ( Bologna (2000)), consisting
of 168 fingerprint images formed by 21 fingers with 8 impressions each. The parameters of
the algorithm (see Table 1) were tuned with the FVC2002 database Db1 set B, which contains
80 fingerprints (10 fingers with 8 impressions each). The program was written in Matlab and
run on a 1.66GHz Linux PC with 2Gb memory. The FVC2002 protocol ( Maio et al. (2002)) was
used in experimentation, comprising of n× 8× 7/2 = 2800 genuine and n× (n− 1)/2 = 4950
imposter attempts for the FVC2002 database, and n × 8 × 7/2 = 588 genuine and n × (n −
1)/2 = 210 imposter attempts for the smaller database.
Image enhancement for the FVC2002 database was performed via the STFT method
( Chikkerur et al. (2004)), while the binarization/thinning based minutiae extraction method
and smoothed orientation image creation proposed in Hong et al. (1998) were used for feature
extraction, along with the core point detection algorithm based on the method described
in Julasayvake & Choomchuay (2007). Spurious minutiae had very crude filtering applied,
with only short spurs and minutiae near segmented border regions removed. All other false
minutia structures remained in the feature set. In addition, the thinning algorithm is known
to produce a higher number of spurious minutia in comparison to ridge following methods.
Moreover, the STFT method was noted in Jirachaweng et al. (2009) to produce a high rate of
spurious minutiae, while the extraction method encountered a substantial amount of minutia
type interchange (approx. 30%). Thus, we can expect our feature set to have at least a
moderate amount of noise.
Table 2 summarises the performance of our algorithm against numerous well known
algorithms on the FVC2002 database, as does Table 3 with the University of Bologna database.
One should note that the parameters were not tuned for this second database, but still
managed to perform quite well. Figures 14 and 15 show the FMR vs. FNMR graphs. The
proposed method managed to finish in a top 8 position for the FVC2002 database. Figure 16
illustrates the genuine and imposter distributions of the similarity score for both databases.
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Fig. 14. left: Proposed method FNMR and FMR vs matching threshold t on FVC2002 Db1 Set
A right: Close up illustrating the EER (0.75%).

5. Conclusions

The proposed fingerprint matching method using a hybrid shape and orientation descriptor
outperforms many well-known methods on the FVC2002 database (in the top 8th place) in the
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Parameter Name Hybrid Component Relevance Value

iterations shape context T.P.S 5
annealing rate shape context T.P.S 0.35
regularization shape context T.P.S 0.8
inner/outer radii shape context log-polar 1/64, 2
radii/theta bins shape context log-polar 8, 10
σ2 shape context log-polar 4.5
circle radii rl orientation minutia 7, 14, 21, 28, 35, 42, 49
circle samples orientation minutia 12, 16, 22, 28, 32, 36, 36
ν scoring shape context 0.3
Omin matching orientation 0.25
δmax registration T.P.S 0.1
δS registration orientation 0.25
δD registration core 30 pixels
δsc registration shape context 4.9
rmax registration T.P.S 0.1
ωmax registration T.P.S π/6
τmax registration T.P.S 0.3
Emax registration T.P.S 12
∆cuto f f matching filtering 70

∠max matching T.P.S π/8
rmax matching T.P.S 0.05
θmax matching T.P.S π/8
δ matching neighbourhood 4

Table 1. Parameters setup for experimentation
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Fig. 15. left: Proposed method FNMR and FMR vs matching threshold t on University of
Bologna database right: Close up illustrating the EER (0.96%).

FVC2002 competition, considering that the feature set was not in pristine condition due to the
chosen extraction and filtering methods, highlighting the overall robustness of the proposed
algorithm.
In addition, we improved the performance of the algorithm substantially over the enhanced
shape context on both public datasets, despite using parameters only tuned for the FVC2002
database. Finally, all known competing matching algorithms tested on the University of
Bologna database were beaten by the proposed fingerprint matching method.
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Fig. 16. Genuine (blue) and imposter (red) distributions for the left: FVC2002 Db1 set A
database, and right: University of Bologna database.

Matching Algorithm EER (%)

CBFS Chikkerur & Govindaraju (2006) 1.50

TPS based Kwon et al. (2006) 0.92

Meshgrid based Kwon et al. (2007) 0.82

Hybrid Spiral based Shi & Govindaraju (2009) 1.98

PA08 Maio et al. (2002) (8th place) 0.98

PB35 Maio et al. (2002) (5th place) 0.61

PA15 Maio et al. (2002) (1st place) 0.1

Proposed method 0.75

Table 2. Performance comparison of matching algorithms on FVC2002 Db1 Set A

Matching Algorithm EER (%)

WGHT/Orientation-based Tico (2001) Tico et al. (2002) 1.07-1.97

Mutual Information Liu et al. (2006) 1.5

Delaunay Triangulation Wang & Gavrilova (2006) 5.1

Enhanced Shape Context Kwan et al. (2006) 12.79

Proposed method 0.96

Table 3. Performance comparison of matching algorithms on University of Bologna database

The matlab source code for the proposed fingerprint matching algorithm can be found at the
Matlab Central ( Abraham (2010)) website.
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