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Abstract: US started to implement building energy codes and energy efficiency regulations from 1980s. 
However, the existing pre-code buildings are still a significant fraction of the nation’s housing stock. 
Although various retrofit options and technologies are proposed throughout the years, homeowners are 
still reluctant to renovate due to the high upfront costs. This research focused on pre-code buildings in 
Atlanta and implemented a retrofit cost optimization analysis on a potential mix of improvements and 
technologies to investigate the opportunities for cost-effective energy efficiency and renewable energy 
retrofit options in pre-1980s residential buildings of the region. To this end, a baseline building is 
selected from previous case studies. The building was originally built in the 1920s, as a one story, single-
family detached home with 3,380 square feet of living area located in Atlanta metropolitan. The 
baseline building was modeled using the Energy Performance Calculator (EPC) energy modeling 
software. Additionally, multiple improvement options and associated costs were proposed and 
simulated to investigate the energy efficiency impacts on the baseline model. Finally, an optimization 
model was solved using the EPC-TechOpt to find the most efficient energy improvement options while 
keeping the cost at the lowest possible level. The results showed that the best solutions are achievable 
with approximately 20-40 thousand dollars of investment with the focus on smart lighting management, 
wall and window insulation and heat pump improvements.   
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1. Introduction 

Buildings’ share of the total worldwide energy consumption is approximately one third (UNEP, 2009). 
According to a study in India, in a worldwide scale, 30–40% of all primary energy is used for buildings 
and they are held responsible for 40–50% of GHG emissions. (Ramesh, Prakash and Shukla, 2010). 
Additionally, the United Nations Environment Program (UNEP) predicted that 87% of the US population 
will be living in urban areas by 2030 (United Nations World Water Development Report, 2015). The 
growing energy use has raised various concerns including heavy environmental impacts.  
 



2 A. Shirazi and A. Shirazi  

Studies estimating operational energy consumption primarily use either top-down or bottom-up 
models. The top-down models typically estimate local residential energy consumption from regional 
level estimates using factors, such as gross domestic product (Hirst, 1978; Saha and Stephenson, 1980), 
technology attributes (Haas and Schipper, 1998), price, total population, and evolution of housing stocks 
(Nesbakken, 1999; Zhang, 2004). The bottom-up approach consists two genres of models, including the 
statistical models and the engineering models. The results from statistical models are generally analyzed 
to interpret the correlations of energy consumption with various individual-level characteristics, such as 
the size of housing units, socio-economic and demographic features, local heating and cooling degree 
days (Hirst, Goeltz and White, 1986; Raffio et al., 2007) and behaviors, including financial and cultural 
motivations in energy use (Douthitt, 1989; Fung, Aydinalp and Ugursal, 1999). The aim of statistical 
models is to understand the variation in energy use given changes in various occupant characteristics, so 
that policies can be derived to monitor energy price and provide ethical or financial motivations to 
regulate or curb energy consumptions (Chen, Wang and Steemers, 2013; Jain et al., 2014). Some recent 
model efforts use more advanced machine learning models such as neural networks and support vector 
machine to estimate residential energy consumptions (Aydinalp, Ismet Ugursal and Fung, 2002, 2004; 
Dong, Cao and Lee, 2005). However, these models are also data intensive and are difficult to be applied 
to large study areas.  
 
The engineering models compute energy consumptions based on the energy ratings of various 
appliances, building materials, applied energy saving technology on-site and thermodynamic theorems 
(Zhao and Magoulès, 2012). Specifically, this approach first estimates energy consumption for a series of 
typical prototypes or archetypes of housing stocks in the region, using a small sample of buildings. The 
occupant behaviors are not captured but simplified to various assumptions. Different from the statistical 
models, the objective of engineering models is to extrapolate the results to the entire region so that the 
total residential energy consumption or the changes in consumption under various technology 
penetration scenarios can be obtained. The extrapolation is usually made by assigning weights, 
estimated based on regional housing inventory, to the sampled buildings. several software and 
calculation standards are developed to estimate building energy consumption using this modeling 
approach (Crawley et al., 2008).  
 
In this paper, the authors used an engineering method to model a residential building, located in the 
Atlanta metropolitan area. Additionally, multiple improvement options and associated costs were 
proposed and simulated accordingly to investigate the energy efficiency impacts on the baseline model. 
The paper finally conducted an optimization methodology to find the most efficient energy 
improvement options while keeping the cost at the lowest possible level.  
 

2. Baseline case study  

The Case study of this project is a one story, single-family detached house located in Atlanta 
Metropolitan area. The house was originally built in 1920s, with 3380 square feet living area (314 square 
meters) and 11 feet (3.35 meter) height. The initial information and characteristics of the building were 
extracted from the Oak Ridge National Lab (ORNL) report (Jackson, E. Kim, et al., 2012). Based on the 
extracted information, a family of two adults and one child has rented this home for more than three 
years. Figure 1 represents the house.  
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The house has a traditional vented attic and a vented crawlspace. Regarding the energy conservation 
measure, the residents set the thermostat to 58°F (around 15°C) at night and a typical range of 62-68°F 
(around 17-20°C) in the day. The envelope is bounded by an insulated framed floor above the vented 
crawlspace and an insulated ceiling plane above the first floor (Attic ceiling = R-11). The R-13 batts (rock 
wool) is the most common material of the attic knee walls.  In addition to the knee walls, there were 
also attic bypasses into interior wall cavities.  No exterior wall insulation was observed for the house.  In 
the ceiling of the crawlspace (i.e. subfloor), there were R-13 fiberglass batts that were recently installed. 
The windows in this home are all single pane windows with wood frames. The total air leakage rate was 
9,840 CFM50.  With a conditioned volume of 39,853 cubic feet, the air exchange rate for the house was 
approximately 14.8 ACH50. 

 

 

Figure 1.  The one story, single-family detached house of the case study 

 

2.1. Case study energy simulation  

After extracting the initial characteristics of the case study from the ORNL report, required information 
were gathered for modeling the building into a building energy simulation tool. Based on the residents’ 
feedback on the usual thermostat sets, the setpoints were identified as shown in Table 1 and used to 
model the building. Additionally, several assumptions were made as listed as listed in Table 2 for the 
unknown variables based on the characteristics of a generic building in the region.  

Table 1.  Temperature setpoints on weekends and weekdays 

Day/Time 12-8 am 8 am – 6 pm 6 pm - midnight 

Weekday (Heating) 15 °C 20 °C 16 °C 
Weekend (Heating) 15 °C 18 °C 16 °C 
Weekday (Cooling) 27 °C 25.6 °C 27 °C 
Weekend (Cooling) 27 °C 27 °C 27 °C 
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Table 2.  Additional assumptions made to cover the unknown variables for modeling  

Assumption Number Assumption Description 

1 The house is facing South 
2 It is a 37.5 * 90 sqft (27.432 * 11.43 m^2) rectangular house  
3 0.4 window/wall ratio in south side 
4 0.2 window/wall ratio in other 3 sides 
5 All windows with white curtain inside with 0.8 Shading Reduction Factor (SRF) 

 
The case study was then modeled using a building energy simulator called Energy Performance 
Calculator (EPC) developed by the High Performance Building Lab at Georgia Tech (Quan et al., 2015). 
The monthly heating and cooling results are shown in Figure 2 and the total delivered heating and 
cooling energy is presented in Figure 3.  

 

Figure 2. Heating and cooling per month through the year for the baseline building  

 

 

Figure 3. Total delivered energy (heating & cooling) of baseline building per month through the year 
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Based on the EPC models, the building used 13 kWh/m^2/year more heating in comparison to cooling 
which is acceptable based on the location of the building in south east of the US. Moreover, the total 
heating and cooling load of the building is calculated as 102 kWh/m^2/year which is close enough to 
reference number of the energy consumption of a house in that area.  

3. Improvement options  

Improvement technology options of the region and the associated costs were extracted from both the 
ORNL case study and the actual options which were used to retrofit the residential buildings in the study 
(Jackson, E.-J. Kim, et al., 2012) as well as the US National Renewable Energy Laboratory (NREL) 
repository of retrofit audits and cost estimations (Eisenberg, Shapiro and Fleischer, 2012). These 
numbers then were adjusted for the baseline case study of section 2.  
 
Based on the identified improvement options, the options were then categorized into static or 
continuous variables. Hence, the input variables were added to the model to be accounted for the 
optimization problem. The advanced version of EPC-TechOpt were used for adding the retrofit options 
and the cost constraints into the originally developed simulation model of the building. The final 
selected static retrofit options, their characteristic and the associated costs were discussed clearly in 
Tables 3, 4, 5 and 6. 

Table 3.  Identified improvement options for roof and opaque insulation of the building.  

 
Improvement 
Options 

U-value Emissivity 
Absorption 
Coefficient 

Cost 
(USD) 

Cost Reference 

Roof Insulation 
2 0.276 (W/(m^2 K)) 0.6 0.7 3,400 ORNL Report 
3 0.162 (W/(m^2 K)) 0.5 0.6 7,330 ORNL Report 

Opaque Insulation  
2 0.34 (W/(m^2 K)) 0.7 0.6 3,500 ORNL Report 
3 0.29 (W/(m^2 K)) 0.8 0.6 6,800 ORNL Report 

Table 4.  Identified improvement options for the Heating and Cooling Plants Efficiencies (COP). 

 Improvement 
Options 

Heating COP Cooling 
COP 

Cost 
(USD) 

Cost Reference 

Heating and Cooling Plants 
Efficiencies (COP) 

2 0.91 3.9 7,000 ORNL Report 
3 0.95 4.32 9,000 ORNL Report 
4 0.95 4.86 12,000 ORNL Report 

Table 5.  Identified improvement options for window insulation of the building.  

 Improvement 
Options 

U-value SHGC Emissivity Cost 
(USD) 

Cost Reference 

Window 
2 2.46 W/(m^2) 0.35 0.7 6,145 NREL 
3 1.25 W/(m^2) 0.475 0.24 14,410 NREL 
4 1.16 W/(m^2) 0.53 0.25 25,786 NREL 
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Table 6.  Other identified improvement options for the building.  

 Improvement Options  Cost Cost Reference 

Appliances  Energy star 1.68 watt/m^2 3,337 ORNL Report 
Lighting 2 4.1 watt/m^2 825 ORNL Report 
Lighting Occupancy Factor Fully automated - 250 NREL 
DHW Generation System Heat pump (1.4) - 2,760 ORNL+NREL 

 
On the other hand, the only technology option identified as the continuous variable was the building 
leakage level. To correctly implement this variable into the model, the following regression analysis 
conducted as shown in Figure 4 and the extracted continuous equation was used instead for this 
variable in the model.  

 

 

Figure 4. Regression analysis conducted to find the continuous equation for this variable.  

4. Optimization results analysis  

The objectives of the optimization in this research was to minimize total delivered energy while 
restricting improvement cost to a certain amount. As mentioned previously, EPC-TechOpt tool was used 
to conduct the optimization process throughout the building energy modeling. Tech-Opt is an added 
feature to the original EPC calculator which is also developed by the High-Performance Building Lab at 
Georgia Tech. It actually brings a template in the EPC ‘input’ spreadsheet to be populated with data 
related to the optimization problem (Simmons et al., 2015). 
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Table 7.  The result of economic estimation with NPC method 

Improvement 
Options 

Technology Cost 
Restriction 

Minimized Delivered Energy 
(kwh/m^2/year) 

Energy 
Improvement 
Percentage 

NPC 
(USD) 

Total Saving 
(USD)  

Baseline - 305  - 142,525.85 - 
Solution 1 70k 99.09 67.5 116,095.10  26,431 
Solution 2 60k 99.85 67.26 105,076.55  37,449 
Solution 3 50k 105.32 65.47 99,010.63  43,515 
Solution 4 40k 119.76 60.7 95,939.15  46,587 
Solution 5 30k 136.86 55.1 93,919.91  48,606 
Solution 6 20k 164.30 46.1 96,736.87  45,789 
Solution 7 10k 228.16 25.2 116,578.88  25,947 

 
The results of the optimization analysis are shown in Table 7, considering various cost restrictions. As we 
can see from the results, by decreasing the retrofit cost restrictions, the minimized delivered energy 
increased. From the authors’ point of view, the solutions number 4, 5 and 6 are the best options which 
save the highest amount over years and also still decrease the energy consumption by 55-65%. Details 
about some of the aforementioned solutions are provided in the following paragraphs.  

4.1. Nominated Solution #4 

The objective of the optimization in this scenario was to minimize total delivered energy while keeping 
the retrofit cost lower than 40k. The final solution for this optimization problem is listed in Table 8.  

Table 8.  Cost details in case of solution #4 

Variable Technology Result Cost (USD)  

Roof Insulation  2 3400 
Heating and Cooling Plants Efficiencies (COP) 2 7000 
Window  3 14,409 
Appliances Baseline 0 
Lighting  Baseline 0 
Lighting Occupancy Factor  Fully automated 250 
Opaque Insulation 2 3500 
DHW Generation System  Heat pump (1.4) 2760 
Building Air Leakage Level 1.43 8680.21 

 

 
In this solution, the delivered energy will reduce to 119.75 (kwh/m^2/year) from the original number of 
305 (kwh/m^2/year) for the base case scenario. On the other hand, by saving around 60% on the 
operational energy consumption over the next 20 years of the operation of the building, this solution 
will save the total amount of $46,586.3 (considering 3% interest rate) for the building.  

4.2. Nominated Solution #5 

The objective of the optimization in this scenario was to minimize total delivered energy while keeping 
the retrofit cost lower than 30k. The final solution for this optimization problem is listed in Table 9.  
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Table 9.  Cost details in case of solution #5 

Variable Technology Result Cost (USD)  

Roof Insulation  Baseline 0 
Heating and Cooling Plants Efficiencies (COP) 3 9000 
Window  2 6145 
Appliances Baseline 0 
Lighting  Baseline 0 
Lighting Occupancy Factor  Fully automated 250 
Opaque Insulation 2 3500 
DHW Generation System  Heat pump (1.4) 2760 
Building Air Leakage Level 1.51 8344.93 

 
In this solution, the delivered energy will reduce to 136.83 (kwh/m^2/year) from the original number of 
305 (kwh/m^2/year) for the base case scenario. On the other hand, by saving around 55% on the 
operational energy consumption over the next 20 years of the operation of the building, this solution 
will save the total amount of $48,605.46 (considering 3% interest rate) for the building.  

4.3. Nominated Solution #6 

The objective of the optimization in this scenario was to minimize total delivered energy while keeping 
the retrofit cost lower than 20k. The final solution for this optimization problem is listed in Table 10.  

Table 10.  Cost details in case of solution #6 

Variable Technology Result Cost (USD)  

Roof Insulation  Baseline 0 
Heating and Cooling Plants Efficiencies (COP) Baseline 0 
Window  2 6145 
Appliances Baseline 0 
Lighting  Baseline 0 
Lighting Occupancy Factor  Fully automated 250 
Opaque Insulation 2 3500 
DHW Generation System  Heat pump (1.4) 2760 
Building Air Leakage Level 1.78 7328.11 

 
In this solution, the delivered energy will reduce to 164.30 (kwh/m^2/year) from the original number of 
305 (kwh/m^2/year) for the base case scenario. On the other hand, by saving around 46% on the 
operational energy consumption over the next 20 years of the operation of the building, this solution 
will save the total amount of $45,788.98 (considering 3% interest rate) for the building.  

5. Conclusion 

In this paper, a 1920s one story, single-family detached home located in Atlanta Metropolitan area was 
modeled and analyzed using a reduced order building energy simulation model created in the EPC which 
originated from the ISO 2008 energy performance of buildings and was later adapted for specific 
research use (Lee, Zhao and Augenbroe, 2013). The optimal improvement option is tested with different 
existing technologies. The ultimate optimization goal is to minimize the energy consumption rate over 
an investment time horizon of 20 years. 
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The results of the optimization analysis showed that the best solutions are achievable with 
approximately 20-40 thousand dollars of investment with the focus on smart lighting management, wall 
and window insulation and heat pump improvements.  The results were also compared with the real 
retrofit solutions used in the ORNL report to retrofit the same building (Jackson, E. Kim, et al., 2012). In 
this case, the report showed the attic and knee wall insulation as well as heating and cooling system 
improvements among the retrofit solutions used for the building. The actual retrofit solutions resulted 
in an approximation of 27% energy saving over a year of building operation.  
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