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ABSTRACT The paper presents a circularly polarized radial line slot array (CP RLSA) antenna with a
nearly optimal monotonic variation of slot length with radius, in order to simultaneously reduce antenna
side-lobe levels and to make the aperture phase distribution nearly uniform. It has additional advantages of
excellent radiation efficiency, high gain and good overall bandwidth. The antenna comprises a single-layer
radial transverse electromagnetic quasi-TEM waveguide with radiating slots on the aperture. The amplitude
tapering is implemented by gradually varying slot lengths on the antenna aperture as a function of radial
distance, utilizing a slot coupling analysis. Several antenna designs were investigated, each having a physical
diameter of 345 mm (23λ0) and a thickness of 4.6 mm (0.3λ0), where λ0 is the free-space wavelength at
the operating frequency of 20 GHz. A prototype was fabricated and measured, showing a good agreement
between the predicted and measured results. The sidelobe levels at the operating frequency are less than -
20 dB due to tapering in the near-field amplitude distribution. Themeasuredmagnitude of the input reflection
coefficient (S11) of the antenna is below -10 dB within the frequency range of 19 GHz to 21 GHz. The
antenna has a measured peak directivity and a peak gain of 34.3 dBic and 33.8 dBic, respectively. Both
the measured 3dB directivity bandwidth and 3dB gain bandwidth are 5.4%. Aperture efficiency is 48% and
radiation efficiency is 94.2% at the operating frequency. The fabricated antenna also successfully fulfilled
the condition of circular polarization with an axial ratio bandwidth exceeding 5%.

INDEX TERMS Circularly polarized, CP, COTM, high gain, high efficiency, radial line slot array, LHCP,
pattern quality, RLSA, RHCP, slot array, Beam steering, antenna, SATCOM, SOTM, slot array, side lobe
level, SLL, 5G, 6G.

I. INTRODUCTION
A n unprecedented growth and dependency on wireless
devices and components have steered a global effort to pro-
vide on-the-move connectivity to onboard mobile platforms
using satellites and other high-altitude platforms. A key
components of this communication model is an highly effi-
cient front-end antenna system capable of steering its beam
in a large angular range. Such beam-steering capability is
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essential when the satellite is not stationary relative to the
communicating ground terminal.

Traditionally,the most widely used and low-cost solution
for receiving satellite services such as satellite television
(TV) is based on parabolic dishes. These parabolic dishes are
affordable and efficient, but have serious constraints due to
large volume when it comes to using on moving platforms
such as a train or an aeroplane [1]–[4]. Furthermore, it is
extremely challenging to swiftly track a satellite or re-align
a parabolic dish to a satellite when the platform is moving.
For these reasons only high-end solutions are available for
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on-the-move connectivity applications and low-cost reflector
dishes are often used for stationary platforms.

RLSA antennas are considered one of the most attractive
and versatile candidates as the base antenna for antenna beam
steering systems based on Near-Field Meta-Steering [4]–[6]
because of their promising features such as high gain,
high efficiency, extremely low profile, and planar configu-
ration [1], [7]–[19]. This paper presents an extremely high-
gain radial-line slot array (RLSA) antenna that is useful as
the base antenna in such systems. In order to address typical
issues of side-lobes, the proposed CP RLSA base antenna has
been designed with an optimal tapered amplitude distribution
and a uniform phase distribution to maintain excellent far-
field pattern quality. The novelty of the paper is the creation
of an optimal amplitude taper in the antenna near field while
maintaining a nearly uniform near-field phase distribution
and by doing so, achieving significantly low side lobe levels
in the far field while maintaining a high antenna gain and a
large 3dB gain bandwidth.

The RLSA antennas are parallel plate waveguide anten-
nas with a radiating slot pattern on the top plate and have
been investigated in the past as an alternative to parabolic
dishes [1], [2], [8], [20]–[26]. It is because of their extremely
low height, they can conveniently be installed or even con-
cealed on moving platforms. Several RLSA designs reported
in literature focused on improving gain, efficiency and return
loss performance [9], [23], [27]–[35]. On the other hand,
a thorough investigation on RLSA side-lobe reduction meth-
ods is yet to be conducted [10], [36]–[44]. This paper
addresses this need by developing a method that substantially
reduces CP-RLSA side-lobe levels and at the same time
enhances phase coherence across the aperture.

The aim of this paper is to develop a highly directive CP
RLSA antenna that not only has extremely low sidelobes
with excellent pattern quality but also has near-field radi-
ation characteristics needed for beam steering applications.
A strong emphasis has been, therefore, placed on achiev-
ing uniform aperture phase distribution along with optimally
tapered amplitude field distribution on a plane parallel to
the antenna aperture. A controlled amplitude distribution is
achieved by manipulating the radiating slot lengths on the
RLSA aperture, using a slot coupling analysis. Phase distribu-
tion is obtained by appropriately selecting the proper in-phase
slot layout on the top radiating plate. The paper is arranged
such that the operating principle and configuration of the
antenna are explained in Section II. The analysis of electric
near-field distributions and design examples are presented in
Section III. Fabrication and measurement results are given in
Section IV to validate the concept.

II. ANTENNA CONFIGURATION
The configuration of the CPRLSA antenna is shown in Fig. 1.
It is made of two parallel conducting plates. The feed point
is at the center of the bottom plate. These plates form a
radial waveguide with radiating slots on its upper plate. The
bottom plate behaves as a ground plane. The antenna is fed

FIGURE 1. Configuration of the CP RLSA antenna (a) Layout of radiating
slots on the top plate, (b) Side view and the cross-sectional view of the
antenna.

at the center by a coaxial probe and it forms a rotationally
symmetric outward travelling quasi-TEM wave in the radial
waveguide. The slots are cut on the upper conductor and the
power gradually radiates from these slots as the wave propa-
gates from the center towards outer edge. The slots consist of
many pairs; each one of which is a unit radiator that radiates
a circular polarized electric field. The slots are arrayed along
a spiral pattern to achieve constructive interference in the
boresight direction. The spacings between adjacent slot pairs
in radial and spiral directions are represented by Sρ and Sφ ,
respectively, as shown in Fig. 1. To suppress the grating lobes,
the waveguide is filled with a combination of dielectric mate-
rial and air. The dielectric material filling the waveguide cre-
ates a slowwave andminimizes reflection towards the coaxial
transmission line [2], [8]. An area of radius λg/2 around the
center on the upper plate is left unslotted to allow the outward
travelling wave to settle before radiating. When the height
of the radial waveguide is limited to be less than one half
guide wavelength, the only possible symmetric waveguide
mode that can propagate within the radial waveguide is the
TEM mode. The coaxial feed excites this mode within the
radial waveguide. Electromagnetic power is fed from a coax-
ial transmission line into the center of the radial slow-wave
waveguide by the feed probe. The feed has a disk head, shown
in Fig. 1 (b), which converts the electromagnetic power from
a TEM coaxial mode into a quasi-TEM radial waveguide.

The radiating plate, depending on aperture size, may have
several hundreds of unit radiators, as shown in Fig. 1. A radi-
ating unit consists of two slots that are placed orthogonally
and have same length (L) andwidth, to radiate two orthogonal
electric-field components with equal magnitude. To radiate
circular polarization, the two slots in a unit radiator are phys-
ically separated by a distance of λg/4 in order to create a
phase shift of 90◦, where λg is the guided wavelength. The
first slot in a radiating unit is oriented to an angle of 45◦ with
respect to the current flow line (a line drawn from the center
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FIGURE 2. Coupling mechanism of radiating slots and attenuation of
outward travelling wave.

of the radiating surface towards the edge), whereas the second
slot in the radiating unit is oriented to an angle of 45◦ + θ ,
where θ is the angle between the two slots in a radiating unit.
The RLSA aperture amplitude distribution is controlled by
the lengths of radiating slots. A more detailed explanation of
slot layout design of CP RLSA antennas is given in [7]. It was
followed in this work.

A. SLOT COUPLING ANALYSIS
As the wave travels outwards in the radial waveguide, energy
radiates through slot pairs. The reflections from the two slots
in a unit radiator cancel each other as they are λg/4 distance
apart and the internal field can be expressed as [19],

E = exp(−αρ −
jk0
ζ
ρ) (1)

where α is the coupling coefficient, which represents inter-
nal field attenuation. The slow wave factor ζ indicates the
wavelength reduction of the radially outward traveling wave
due to slot coupling. Under the travelling wave operation,
the incident power can be divided into slot radiation and
transmitted power as pictorially represented in Fig. 2. The
radiation from slots can be modeled as attenuation of internal
power and can be written as (1 - e−2αSρ ), and the transmitted
power as e−2αSρ [19]. If the attenuation due to slot radiation
is higher in the middle of aperture, then the amplitude of the
cylindrical wave and the aperture illumination will be steeply
tapered. Therefore, slot coupling is the most important factor
that controls the aperture field distributions of RLSAs, and
consequently, the gains and far-field radiation patterns of
RLSA antennas.

An RLSA antenna can be designed to produce a particular
field distribution for lower sidelobes or higher aperture direc-
tivity. The field distribution of a circular planar antenna can
be analytically expressed as [45],

An(ρ) = [1− (
ρ

a
)2]n; 0 ≤ ρ ≤ a, n = 0, 1, 2, 3 . . . (2)

where, ρ is the radial distance and a is radius of the circular
aperture.

TABLE 1. Radiation characteristics of a circular aperture planar array [45].

Equation (2) generates a uniform field distribution over the
aperture when n= 0. As the value of n increases the distribu-
tion becomes tapered towards the edge. To achieve a specific
objective, for example, radiation characteristics of the planar
circular arrays with uniform and tapered field distributions
are given in Table 1. From the Table 1, it can be seen that
a uniform aperture distribution (n = 0) theoretically has
highest directivity, whereas a radially taper squared aperture
distribution (n = 2) leads to a lowest side lobe levels (SLLs)
in circular planar arrays.

If all the unit radiators arrayed on the CP RLSA aperture
have equal lengths and widths, then each slot couples almost
a constant proportion of the radial power. As the power is fed
at the centre of the CP RLSA, more energy will radiate from
the slots close to the center and less energy will radiate from
those closer to the edges. This will reduce the power intensity
of the outward travelling quasi-TEM wave by a factor of
1/
√
ρ through the coupling of the radiating slots, which is

not favourable in terms of boresight gain. Hence a proper slot
coupling analysis is necessary to control illumination over the
CP RLSA antenna aperture. One possible method is to keep
the slot density constant (Sρ×Sφ = constant) on the aperture
and control the energy coupled by the unit radiators from the
internal waveguide field to the radiating field.

This investigation is focused on creating a tapered ampli-
tude distribution with proper slot coupling analysis for
improving the radiation pattern quality by reducing the side
lobe levels. The distribution is obtained by manipulating the
slot lengths on the antenna aperture. The slot length can be
written as a function of radial distance according to

Lslot = δ + (ρ × α) (3)

where δ is a constant factor that depends on the operating
frequency, ρ is the radial distance, and α is the coupling
coefficient, which is the rate at which the slot length increases
with radius, i.e. ∂Lslot/∂ρ. δ is optimised before creating the
slot patterns. The term (ρ × α) acts as a coupling factor. For
a particular distribution, the coupling coefficient α needs to
be optimised. As the radial distance increases, the coupling
factor increases, leading to increasing slot lengths. By varying
the slot lengths, we can control the proportion of energy
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TABLE 2. Parameters of the antenna design.

coupled from the internal field to the radiating field, and
hence the aperture taper.

III. INVESTIGATION ON NEAR-FIELD DISTRIBUTION
To investigate the influence of aperture field distribution
on far-field performance, several CP RLSA antennas were
designed. Different distributions were obtained by varying
the slot length on the antenna aperture. Equation 3was used to
vary the slot lengths. The antennas were designed at 20 GHz
following the design procedure explained in Section II and all
of them have an aperture size of 23λ0 (345mm). The common
design parameters of the antennas are summarized in Table 2.
All were designed to provide right hand circular polarization
(RHCP). The spiral geometry is made with 13 rings of radi-
ating slots. The waveguide was filled with Taconic TLY-5
dielectric material (εr = 2.2) and air (εr = 1). A 50 � disk
ended feed probe was used to feed EM power at the center of
the waveguide. The design parameters were kept constant for
all the designs except the slot distribution on the top radiating
plate. The slot layouts on the surface were created using a
custom Visual Basic interface with CST Microwave Studio.

The plot of slot length (Lslot ) as a function of radius is
shown in Fig. 3 for five values of α. The value of δ is
constant and set to an optimal value of 4.3. α is varied
from 0.002 to 0.01 with a step size of 0.002. As it can
be seen from the figure that as the value of α increases,
the slot lengths increase. The near-field amplitude distri-
butions and the far-field radiation patterns at 20 GHz for
different values of α are shown in Fig. 4 (a) and Fig. 4 (b),
respectively.

The electric near-field amplitudes of Ex are taken on a
plane that is parallel to the XZ plane and located 1λ0 (15 mm)
above the top radiating plate. As it can be seen from Fig. 4 (a),
for α = 0.002, the amplitude distribution is strongly tapered.
As the value of α increases, the amplitude tapering weakens.
Values of α in the range of 0.004 and 0.006 provide nearly
a radial taper squared distributions, whereas α in the range

FIGURE 3. Variation of slot length (Lslot ) with radius, for several value of
coupling coefficient, α.

FIGURE 4. (a) Normalised electric near-field amplitude distribution for
different values of α, (b) far-field radiation patterns for different values of
α at 20 GHz.

of 0.008 and 0.01 provide nearly a radial taper amplitude
distributions.

Table 3 summarises antenna performance figures for dif-
ferent values of α. The design with α = 0.002 provides the
lowest SLL of -21.3 dB. The SLL increases with the increase
in α. On the other hand, far-field directivity increases with
the increase in α. The electric near-field phase distributions
for different values of α at 20 GHz are shown in Fig. 5. As it
can be seen, α with a value of 0.004 makes a more uniform
phase distribution than other values. For the selected value of
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TABLE 3. Antenna performance for different rates at which slot length is
increased with radius.

FIGURE 5. Electric near-field phase distribution for different values of α

at 20 GHz.

α (= 0.004), the phase fluctuation throughout the aperture is
only 45 degrees. Such a small phase variation is very much
acceptable over the aperture and does not significantly affect
radiation performance. Later, we have chosen this value of α
for prototyped antenna design explained in the next section,
as it provides a nearly uniform phase distribution and low side
lobes.

IV. FABRICATION AND MEASUREMENTS
A. FABRICATED PROTOTYPE
One of the designs discussed above was fabricated to vali-
date the concept. The parameters of the prototype are given
in Table 2. The antenna was simulated using the time-domain
solver of CST Microwave Studio to predict the near and far-
field radiation characteristics. The front and back views of the
fabricated prototype are illustrated in Fig. 6. The printed slot
pattern was etched on a Taconic TLY-5 (εr = 2.2) laminate.
The slots were etched from a 0.035 mm thick copper cladding
attached to the laminate. All slots have a width of 1 mm. Slot
lengths vary as described above from 4.324 mm (inner slot)
to 4.98 mm (outer slot). The ground plane is made with Alu-
minum. The Taconic TLY-5 laminate and bottom aluminum
plate have holes around the edges. Nylon screws and spacers
were used to hold the laminate with the Aluminium plate.
The aluminum plate has a hole in the center for the 50 �
coaxial connector. The connector has a disk-ended feed probe
as shown in Fig. 6 (b). The disk head is 2 mm thick and
2.8 mm wide, made with Aluminum and glued on the top of
the feed pin.

FIGURE 6. Fabricated prototype of the CP RLSA antenna; (a) Front view,
(b) Back view.

B. INPUT MATCHING
The magnitude of the input refection coefficient |S11|, mea-
sured using an Agilent PNA-X N5242A vector network
analyzer, is plotted in Fig. 7. The magnitude of reflection
coefficient is less than -10 dB in the measured frequency
range from 19 GHz to 21 GHz. This CP RLSA antenna has a
return loss bandwidth greater than 10%.

C. NEAR-FIELD DISTRIBUTION
The numerical simulation data was post processed to extract
relevant amplitude and the phase distributions of the elec-
tric field at the operating frequency of 20 GHz, which are
shown in Figure 8. The electric near-field patterns of Ex
and Ey are taken in the XZ plane extending from the top
surface of the antenna to a distance of 1λ0 (15 mm above the
radiating plate). The figure shows a radial taper amplitude
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FIGURE 7. Measured reflection coefficient magnitude |S11| of the
antenna prototype.

FIGURE 8. Near-field amplitude distribution of the antenna at a distance
of 1λ0.

FIGURE 9. Antenna near-field phase distribution at 20 GHz on a plane
that is 1λ0 above the radiating aperture; (a) Ex component, (b) Ey
component.

distribution. 2D and 1D views of the near-field phase dis-
tribution of the antenna at 20 GHz are shown in Figure 9
and Figure 10, respectively. It is evident from the phase
distribution that antenna radiates nearly planar and symmetric
phase fronts, demonstrating the uniformity in the aperture
phase distribution.

D. GAIN, AXIAL RATIO AND EFFICIENCY
The far-field patterns were measrued in an NSI near-field
spherical antenna range. The gain was measured using the
gain comparison method with a WR-51 standard gain horn.
The antenna beam peak is in the boresight direction. The

FIGURE 10. Near-field phase distribution of the antenna at a distance
of 1λ0 above the radiating plate. 90◦ phase difference between Ex and Ey
is noted.

FIGURE 11. Predicted and measured boresight directivity and gain.

measured peak gain and directivity in the frequency range
from 19 GHz to 21 GHz are plotted in Fig. 11. The predicted
gain and directivity are also included in the same figure. The
predicted peak directivity is 33.8 dBic and predicted peak
gain is 33 dBic at 20 GHz. The predicted 3dB gain bandwidth
is 6%, from 19.4 GHz to 20.6 GHz. The measured peak
directivity is 34.3 dBic and measured peak gain is 33.8 dBic
at 19.4 GHz. Here, one can observe a 3% frequency shift
toward lower frequencies in the measured results. This shift
can be attributed to manufacturing tolerances of the parts and
components used in assembling the prototype. The antenna
has a measured 3dB gain bandwidth of 5.4%, which extends
from 18.95 GHz to 20 GHz.

The predicted and measured axial ratio of the antenna is
shown in Figure 12. The axial ratio is less than 3dB, satisfying
the standard circular polarization condition, and the 3dB axial
ratio bandwidth is more than 5%. Better than expected results
obtained in axial ratio measurements are due to fabrication
tolerances. The measured aperture efficiency of the prototype
is 48%. The radiation efficiency is 94.2% at 20GHz.Note that
in this design no absorber is used, therefore the losses are very
low, and efficiency is excellent. The overall efficiency varies
between 82% to 92% in the frequency band from 19 GHz to
21 GHz.

VOLUME 8, 2020 208537



M. N. Y. Koli et al.: RLSA Antenna With Low Side Lobes and a Uniform-Phase, Tapered-Amplitude Aperture Field Distribution

FIGURE 12. Boresight axial ratio of the fabricated prototype.

FIGURE 13. 3D view of the radiation pattern at 20 GHz.

E. RADIATION PATTERNS
The antenna has stable radiation patterns in the measured
frequency band. The radiation pattern measurements were
carried out in a NSI spherical near-field range at AusAMF.
The predicted 3D radiation pattern at 20 GHz is shown
in Fig. 13. The cross-polar level at 20 GHz is 20.5 dB below
the co-polar level in the boresight direction. The predicted
radiation patterns of the antenna, on φ = 0◦ plane and
φ = 90◦ plane, are plotted in Fig. 14 at six frequencies within
the gain bandwidth. These patterns clearly show directive
beams pointing towards boresight with significantly low side
lobe levels. It can be seen that the SLLs in both φ = 0◦

and φ = 90◦ planes remain below -20 dB. Antenna perfor-
mance figures for the given six frequencies are summarized
in Table 4.

The measured radiation patterns at four different frequen-
cies, on φ = 90◦ plane and φ = 0◦ plane, respectively, are
shown in Fig. 15 and Fig. 16 along with the radiation pattern
envelopes (RPE) of Class-1 and Class-2 antennas, as speci-
fied by ETSI. It is evident from the figures that the prototype
has good radiation pattern qualities with significantly lower
SLLs and havemet the requirements of the envelope specified
for ETSI Class-1 and Class-2 antennas except for the angles
over 75◦ on φ = 0◦ plane, where the measured pattern
exceeded Class-2 RPE.

FIGURE 14. Radiation patterns of the antenna on φ = 0◦ and φ = 90◦
planes; (a) 19.7 GHz, (b) 19.8 GHz, (c) 19.9 GHz, (d) 20 GHz, (e) 20.2 GHz,
(f) 20.4 GHz.

TABLE 4. Performance figures of the CP RLSA at six different frequencies.

F. DISCUSSION
Table 5 lists the performance figures of the prototyped CP
RLSA and compares with some previously published RLSA
antennas. As it can be seen from the table that the pro-
posed CP RLSA antenna has the lowest side lobe levels
and highest antenna efficiency compared to the previously
reported RLSAs. Antenna efficiency is high because no
absorber was used in this design. The new antenna also has
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TABLE 5. Comparison of the proposed CP RLSA with conventional RLSAs.

FIGURE 15. Measured radiation patterns of the antenna at φ = 90◦ plane.
ETSI Class-1 and Class-2 RPEs are also shown.

FIGURE 16. Measured radiation patterns of the antenna at φ = 0◦ plane.
ETSI Class-1 and Class-2 RPEs are also shown.

a larger measured 3dB gain bandwidth compared to the pre-
vious RLSAs. Furthermore, the height of the new CP RLSA
antenna is the second lowest in terms of wavelengths at the
center frequency.

V. CONCLUSION
In this paper, we demonstrated a method to control the near-
field amplitude distribution of CP RLSA antennas to improve
far-field performance while making the near-field phase dis-
tribution nearly uniform. The tapered amplitude distribution
was achieved using a slot coupling analysis. This method
relies on the fact that the energy coupled by a radiating slot to
space depends on slot length and internal field strength, and
by changing slot lengths on the radiating surface, different
near-field amplitude distributions can be achieved. The mea-
sured prototype, which is 4.6 mm (0.3λ0) thick, has a peak
gain of 33.8 dBic, an improved 3dB gain bandwidth of 5.4%,
a return loss bandwidth of more than 10% and total antenna
efficiency of 84.4%. Measurement results have shown that
by using the proposed strategy, amplitude distribution can
be controlled, which leads to significant reduction in side
lobe levels. At 20 GHz, the side lobe levels of the measured
prototypes are less than -20 dB.
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