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ABSTRACT Building extraction with high accuracy using semantic segmentation from high-resolution
remotely sensed imagery has a wide range of applications like urban planning, updating of geospatial
database, and disaster management. However, automatic building extraction with non-noisy segmentation
map and obtaining accurate boundary information is a big challenge for most of the popular deep learning
methods due to the existence of some barriers like cars, vegetation cover and shadow of trees in the
high-resolution remote sensing imagery. Thus, we introduce an end-to-end convolutional neural network
called Generative Adversarial Network (GAN) in this study to tackle these issues. In the generative model,
we utilized SegNet model with Bi-directional Convolutional LSTM (BConvLSTM) to generate the segmen-
tation map from Massachusetts building dataset containing high-resolution aerial imagery. BConvLSTM
combines encoded features (containing of more local information) and decoded features (containing of
more semantic information) to improve the performance of the model even with the presence of complex
backgrounds and barriers. The adversarial training method enforces long-range spatial label vicinity to tackle
with the issue of covering building objects with the existing occlusions such as trees, cars and shadows
and achieve high-quality building segmentation outcomes under the complex areas. The quantitative results
obtained by the proposed technique with an average F1-score of 96.81% show that the suggested approach
could achieve better results through detecting and adjusting the difference between the segmentation model
output and the reference map compared to other state-of-the-art approaches such as autoencoder method
with 91.36%, SegNet+BConvLSTM with 95.96%, FCN-CRFs with 95.36%% SegNet with 94.77%, and
GAN-SCA model with 96.36% accuracy.

INDEX TERMS Building extraction, GAN, remote sensing, SegNet.

I. INTRODUCTION

One of the main stages in geospatial information system
(GIS) applications, such as change detection, urban land
use analysis, geospatial database updating, and infrastructure
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planning, is the automatic extraction of features, like build-
ing objects from high-resolution remote sensing imagery.
Given that remote sensing imagery normally involves data
in the format of incoherent areas with low inter-class and
high intra-class differences, classifying pixels into seman-
tic objects is one of the most significant and challenging
obstacles in the high-resolution satellite and aerial imagery

209517


https://orcid.org/0000-0002-1704-4670
https://orcid.org/0000-0001-9863-2054
https://orcid.org/0000-0002-8174-6167

IEEE Access

A. Abdollahi et al.: Building Footprint Extraction from High Resolution Aerial Images

of urban domains [1]. Other challenges exist in these images,
such as shadows, overlapping, and interlacing sheltering [2].
These challenges are even more pronounced in the extrac-
tion of urban features, like building objects [3]. Most of
the current approaches that usually depend on a collection
of pre-defined characteristics are restricted by such hetero-
geneities in remote sensing imagery [4]. Therefore, designing
a robust approach that could achieve high-precision features
extraction on high-resolution remote sensing imagery is very
difficult [5]. In recent years, effective state-of-the-art pro-
ficiency has been obtained using deep learning models for
semantic classification [6], [7] not only by some methods
that have been suggested in the field of computer vision,
such as integrated convolutional neural network (CNN) mod-
els with segmentation [8], the deep parsing model [9],
patch network [10], the combination of conditional random
fields (CRFs) with CNN [11], DeepLab [12], decoupled net-
works [13], deconvolutional models [14], and SegNet [15],
but also in the field of remote sensing [16], [17].

As remote sensing imagery, such as high-spatial, high-
spectral resolution imagery and multi-spectral images, are
intrinsically and typically big data, deep convolutional neural
networks (DCNN) are considered for leaning hierarchical
features and extracting semantic features and information
from these images [18]-[20].

DCNN:S contain several convolutional and inter-connected
layers that can learn a hierarchical feature representation from
an image and encode spatial and spectral information effi-
ciently on the basis of raw pixel-data input without requiring
any preprocessing [21]. Consequently, DCNNs are rapidly
becoming prominent methods in remote sensing applica-
tions that identify characteristics in various representation
levels [22]. Generally, two major methods are used in the
architectures of CNN models for semantic segmentation:
1) end-to-end methods (pixel based) [22] and 2) patch-based
approaches [23].

In pixel-based approaches, encoder—decoder or fully con-
volutional network (FCN) architectures are normally utilized
by performing interpolation and up-sampling to identify the
fine detail of the raw input imagery [24]. Meanwhile, patch-
based approaches utilize small patches of image to start the
training process and then utilize the sliding window technique
to forecast every class pixel [23]. This method is normally
utilized for detecting large objects of urban areas [3].

In this study, we also present a pixel-based deep leaning
method named Generative Adversarial Network (GAN) [25]
to extract building features from Massachusetts building
datasets that include high-resolution remote sensing aerial
imagery. The GAN method utilizes two generative and dis-
criminative training models. The data dispensation is cap-
tured by the generative part, while the likelihood that an
example relates to fake (generated) or real one (from the
domain) is estimated by the discriminator part [26].

This research aims not only to obtain a map of segmenta-
tion with many details that explain the boundary information,
but also a non-noisy map of segmentation considering high
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spatial contiguity. Therefore, we utilized an encode—decoder
model (i.e., SegNet with BConvLSTMs) for the generator
part of the proposed GAN model to generate a high-quality
segmentation map with a similar resolution as the input
image. For combining the encoded and decoded features,
we utilized a set of BConvLSTM in the decoding part of the
SegNet model. The decoded features contain semantic infor-
mation about the input data, whereas the encoded features
include more local information and have higher resolution
of the input data. Thus, we used BConvLSTM to mix the
encoded and decoded features rather than using a simple
concatenation. This is because a set of feature maps rich in
both semantic and local information might be resulted by the
influence of these two encoded and decoded features. Every
ConvLSTM case matches to one type of features (encoded
features) is capable to encode related information about the
other type of features (decoded features). This is because a set
of convolutional filters are performed on every type of fea-
tures in the BConvLSTM. The hyperbolic tangent functions
coupled with convolutional filters assist the model to learn
structures of data.

The introduced GAN model obtained more constant build-
ing outcomes while enforcing long-range spatial label vicin-
ity and improved the performance. The rest of this paper is
organized as follows. Section II presents a review of relevant
building extraction studies. Section III describes the method-
ology of the proposed GAN model for building extraction.
The visual and quantitative results obtained by the proposed
GAN method and other comparison approaches are presented
in Section IV. and Section V provides the conclusion.

Il. RELATED WORKS

In this part, the relevant methods of CNNs for building extrac-
tion from high-resolution remotely sensed imagery and their
major contributions are discussed, and the contribution of this
research is also highlighted at the end of this part.

Many studies related to building extraction using deep
convolutional neural networks have been conducted. The
patch-based CNN model was first suggested for building
extraction by [27]. Instead of a batch-based CNN model, [28]
applied an object-based segmentation CNN approach with
a similar architecture for building extraction from orthorec-
tified images with a 12-cm spatial resolution. A single-
architecture CNN model was applied by [29], [30] on the
Massachusetts dataset for road and building extraction. They
depicted the ability of a single CNN architecture in the simul-
taneous semantic segmentation of multiple features, such as
roads, background, and buildings. To improve the perfor-
mance of the CNN method, [29] utilized dropout optimiza-
tion with an extra MAXOUT layer rather than the activation
function of rectified linear unit (RELU), while [30] applied
a function called channel-wise inhibited softmax and utilized
an averaging model with the spatial shift method to repress
the background influence and the semantic segmentation. The
abovementioned studies produced good experimental results
for building features segmentation from high-resolution
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remote sensing imagery. However, the patch-based CNN
model produces output patches with discontinuity bound-
aries. In addition, the CNN model performs well on single
houses extraction but not on complicated urban areas and
complex buildings [31], confirming that only dependent pix-
els inside patches can be classified by the patch-based CNN
architecture and not the independent ones [32]. Furthermore,
this method is difficult to use on remote sensing imagery as
tiny patches cannot obtain the information of entire single
buildings, covering only fragmented buildings [33].

ImageNet framework was applied by [34] for super-
vised building extraction to address the limitations of the
patch-based CNN model. However, the spatial information
at a finer resolution that is vital for dense anticipation was
discarded using a fully convolutional layer at the end. More-
over, [34] used a patch-based sliding window for training and
testing procedures, which is time-consuming [31]. A pixel-
based FCN was proposed by [32] to produce a dense antic-
ipation. The original size of the input image was upsampled
by adding a deconvolutional layer. The discontinuity problem
was solved by the process, and the accuracy was improved
because of the short time required and the uncomplicated
learning procedure. An encode—decoder convolutional neural
network was applied by [31] on multisource remote sensing
datasets. They used a Massachusetts dataset for pre-training
and combined the NRG and RGB bands together for accu-
rate building extraction. By adding a deconvolutional layer,
the memory requirement and complexity of the model for
training increased excessively, but the results achieved by the
proposed DeCNN model improved. Bittner e al. [35] applied
atechnique based on the digital surface model and the FCN on
different datasets for building extraction. The proposed FCN
model was fine-tuned and constructed based on the VGG-16
model [36]. Eventually, the CRFs were used to achieve a
binary mask of buildings. However, the fully connected CRFs
used at the end of the original FCN model did not provide
a satisfying outcome. The VGG-Net [36] and Alex-Net [6]
models have been used to extract the local and global contexts
of building features, respectively. The Alex-Net model can
detect global information due to its large filter size, while the
VGG-Net model, which has a small filter size, can detect local
information. Therefore, this model is very complex because
of the combination of two single CNN models.

The deep learning methods have been used recently for
semantic segmentation in extracting building features which
can be regarded as a semantic segmentation issue [37]. The
problem of pixel-wise labelling can be addressed by seman-
tic segmentation techniques like FCN suggested by [38],
which are utilized through computer vision association.
Chen et al. [39] applied a DCNN model for semantic seg-
mentation based on either the ResNet-101 [40] or VGG-16
model. In the proposed network, atreus convolutional lay-
ers were used to increase the feature resolution, and the
CRFs method was used to purify the segmentation outcomes.
However, the delicate object borders were not obtained by
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the proposed network. Noh et al. [14] introduced a new
method captured from the VGG-16 architecture for semantic
segmentation. To address the issue of pixel-wise labelling, the
deconvolutional model consisted of unspooling and decon-
volutional layers. Shrestha and Vanneschi [37] proposed a
method named improved fully convolutional framework for
building semantic segmentation. To improve the efficiency
of the proposed model, they used CRFs method to sharpen
the building borders. Xu et al. [41] applied the Res-U-Net
model for building extraction from the Potsdam and Vaihin-
gen datasets. They used a guided filter in the post-processing
step to remove salt-and-paper noise and improve the results.
However, the model could not classify some irregular and
blurry boundaries and could not detect buildings surrounded
by trees accurately. Aung et al. [42] applied conditional
generative adversarial network (CGAN) to extract building
footprint from GeoEye images of Yangon city, Myanmar.
Evaluation metrics such as completeness, correctness and
fl are calculated and based on the outcomes, the proposed
method indicated promising performance in building detec-
tion. Shao et al. [43] implemented a new deep-based network
for building extraction from Massachusetts building images
based on Building Residual Refine Network (BRRNet),
which includes two sections as prediction and the residual
refinement modules. During training, they used dice loss
function to reduce the data imbalance issue, and the results
showed the superiority of the proposed model in building
extraction.

Although the abovementioned techniques have achieved
certain accomplishments in addressing the issue of build-
ing extraction, they have certain deficiencies [31]. For
example, in heterogeneous parts with some obstacles,
such as shadow, trees, and cars, most of these methods
exhibit poor performance in building segmentation [34].
Therefore, a new approach based on GAN model that induces
long-range spatial label cognitive is applied in this study
for building detection to mitigate the aforementioned weak-
nesses. Furthermore, a homogenous building outcome can
be obtained by the suggested technique, even under the
obstacles of shadows and trees or in the heterogeneous
parts.

lll. METHODOLOGY

The concept of the GAN model is first explained in this part.
Then, the application of GAN for semantic segmentation is
discussed. To apply the proposed model in building extrac-
tion, training and test images were prepared from the original
Massachusetts building dataset. Then, the training images
with corresponding labels were used to train the GAN model.
Subsequently, the trained GAN model was implemented on
test images for detecting building features and generating a
segmentation map. Finally, evaluation metrics were utilized
to assess the effectiveness of the GAN model, and visual and
quantitative outcomes are presented. Figure 1 presents the
overall methodology of the current work.
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FIGURE 1. The overall architecture of the suggested GAN network.

A. GAN ARCHITECTURE

The GAN network comprises two main parts, namely, the
generative and discriminator terms [44]. The data possibil-
ity dispensation was stimulated by the generative model,
while the discriminator term was utilized to distinguish
whether a specimen is obtained from the true map or the
generative model. An adversarial train was formed from the
generative and discriminator models to obtain the final out-
comes (Figure 2). The possibility of data dispensation p, over
dataset x can be learnt by the generative model. A previous
noise parameter (p;(z)) was first defined, and G(z; 6;) was
used to represent a mapping from p,(z) to the output data,
where output data y was produced by the G function, which
was a recognizable function with 6, variable. The possibility
that x comes from the ground truth image instead of being
stimulated by G is represented by the discriminator model
defined as D(x; 6;), where 6, is the variable in the discrimi-
nator term [45].

min max L.gan (G, D)
G D

= Ey'\/[’dam(y) [log D(}’)]
+ Ex~pura).z~p(2) [10g(1 — D(G(x, 2))] (1

log (1 - D(G(x; z)) was minimized by training G through the
second term, while an accurate forecast of output represen-
tation y was produced by maximizing the possibility through
the first term. Although the neighborhood representation on
the image contributes a similar label to a specific extent, the
output samples were considered conditionally autonomous
from each other by the GAN. Hence, the local area represen-
tation can be regarded as dependent. For learning the mapping
from random noise parameters (p;(z)) and recognized image
x to output y, the conditional GAN defined by G(x; z; 6,)
and traditional loss like L2 distance [26] was suggested.
Equation 2 shows the conditional GAN as

G* = L12(G) + arg min max Legan (G, D) 2
B. SEMANTIC SEGMENTATION BY GAN MODEL

The GAN model was adapted for semantic segmentation. The
output map of the proposed model for building segmentation
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preparation

k.
A

Segmentation
map

can be denoted as y of size H x W x C if we consider the
input image as a RGB image of size H x W x 3, where C is the
number of classes, W is the weight, and H is the height of the
image. To magnify the likelihood of assigning the true label
for every pixel in the image using the segmentation model,
the first term in the GAN model was utilized, and the right
label was discriminated from the output of the segmentation
model by the second term. Furthermore, this term penalizes
the inconformity in the statistics of the higher-order label
between the right and anticipated labels [46].

Particularly in the encoder—decoder architecture of the
segmentation model, the hierarchical layer of encoders
and decoders indicates that the decoder layers pursue the
encoders, and every decoder layer has a corresponding
encoder. Figure 3 presents the suggested segmentation model
workflow. For this purpose, an encoder—decoder SegNet
architecture with BConvLSTM was used for the generative
section to make the segmentation map with a similar input
image resolution and the RELU function was used as an
activation function. In addition, max-pooling indices were
used to combine semantically comparable features into one
as well as carry out spatial subsampling [41]. The trained
max-pooling indices from the encoder layers were used by
the corresponding decoder layers. The adversarial framework
is described in detail below.

In our framework, classifier D was represented by binary-
cross entropy [47], assuming N training images in dataset
X, and matching mask images y,. The scalar possibility was
presented by a(x, y)in[0, 1] that y is the right label of x
(Equation 3).

G, = L12(G) + arg m(%n mDax L.gan (G, D)

N
= Z Imce($(Xn), Yn) — Mipee(a(xn, yn), 1)
n=1

+ Ipce(alxn, $(xa)), 0)] 3

The binary-cross entropy loss function is denoted by
Ipce(z%,27) = —[zInz* + (1 — z)In(1 — z*)] in the second
term and utilized to train the discriminator to execute the right
choices, while Iy, (y*, y) = — ZlH:fW ¢ YieyL in the first

c=1
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FIGURE 2. General architecture of GAN network that consist of generative and discriminative models.
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FIGURE 3. Generating label for RGB image by training GAN model. Segmentation map is produced by the generative model, while the discriminative
model attempts to predict the possibility that the label map comes from the created map or the true map by taking the reference or segmentation map
as an input and combining it with the RGB image.

term indicates the loss of entropy between ground truth image the ground truth images. We maximized the variables in the
v, and predicted label s(x,) and utilized for segmentation adversarial model while minimizing the loss in the segmenta-
model optimization to produce representations relative to tion model parameters. For optimizing the objective function,
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FIGURE 4. Illustration of BConvLSTM with forward and backward
directions.

the alternative optimization was utilized. By fixing the gener-
ator part, the optimization of the discriminator part was first
performed as just the second term consists of the adversarial
procedure. Therefore, one step optimization was performed
on the generative term after optimizing the discriminator term
with one step using the gradient descent step. In the current
work, one of the most prevalent optimizers (Adam) with
learning rate of 0.0001 was utilized to decrease the losses and
update the parameters, such as weights and biases. When the
discriminator term is optimized [24] that is listed below:

N
min Z lpce(a(Xn,yn), 1) + lpce(a(xn, s(xn)), 0)  (4)
n=1
this objective function was utilized for the above binary
classification loss minimization. This term could be opti-
mized as a CNN network in which the CNN network input
includes the RGB image and the corresponding reference
map. For the reference map, two possible options can be
taken: one is identified label s(x;) and the other is true label
vn. Given that the two different resources of inputs present
various low-level representations, two branches were utilized
in the adversarial framework for processing the RGB image
and the corresponding reference map. Both were convolved
to 32 channels to balance the influence of these two types of
signals. Sigmoid activation function was utilized at the final
layer of the adversarial network to produce 1 or 0. Then, the
generator term was optimized after fixing the parameter in
the adversarial term and optimizing this term [42].

C. BI-DIRECTIONAL CONVOLUTIONAL LSTM

Bi-directional convolutional LSTM process the input image
into two forward and backward directions using two Con-
vLSTMs. Then, it decides for the current input by tackling
the dependencies of data in both paths. The dependencies
of the forward path are only processed in a standard Con-
vLSTM. Thus, it might be efficient to consider backward
dependencies and all the information in a sequence as well. It
has been confirmed that the performance of model enhances
by investigating the temporal aspects of both forward and
backward paths [48]. Therefore, in the decoding part of the
proposed SegNet network, we employed BConvLSTM [49]
to mix encoded and decoded features (Figure 4). For back-
ward and forward states, we have two sets of parameters. This
is because every forward and backward state of ConvLSTM
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can be taken into account as a standard one. The BConvLSTM
output [49] was calculated as follows:

Y; = tanh(wi! « H; +wil % H; +b) 5

where Y, € RF>WixHi demonstrates the last output consid-
—

<«
ering bidirectional information, b is the bias and H and H
denote the concealed tensors for backward and forward paths,
respectively.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We first describe the dataset and then explain the measure-
ment factors for calculating the performance of the compari-
son approaches and the proposed method. Finally, the visual
building extraction outcomes and the quantitative compar-
isons of the suggested technique and other state-of-the-art
comparison techniques in building extraction are presented.

A. DATASET EXPLANATION

The GAN model for building extraction was applied
on the Massachusetts building dataset [27]. The dataset
includes 137 training images and 4 validation and 10 test
images with a spatial dimension of 1500 x 1500 with the
spatial resolution of 0.5 m. In this study, the main images
were split into 384 x 384 dimension because of compu-
tational issues. Then, 1545 good quality images with com-
plete information and corresponding labels were selected
that 1527 images are used for training and validation
and 18 images are used for testing. We used different data
augmentation techniques such as rotation, zooming, vertical
flip and horizontal flip to expand the size of the dataset [21].
Moreover, to overcome the over-fitting issue, a dropout of
0.5 was added to deeper convolutional layers. The proposed
model was trained with a batch size 1 for 100 epochs, and
the entire process of the suggested approach for building
extraction from remote sensing imagery was performed on a
GPU Nvidia Quadro RTX 6000 with a memory of 24 GB and
a computing capability of 7.5 under the framework of Keras
with a Tensorflow back-end. Figure 5 depicts some samples
in the building dataset of different scenes.

B. PERFORMANCE EVALUATION

For calculating the performance of the suggested model
in building extraction from high-resolution remote sensing
images, we used four main evaluation factors, namely, recall,
precision, fl score, overall accuracy and intersection over
union (IOU) [50]. Recall (6) is expressed as the proportion
of building pixels that are anticipated correctly among all the
real building pixels. The precision (7) metric is explained
as the percentage of pixels determined precisely among the
predicted building pixels. The Fl-score (8) is described as a
trade-off metric that is a mixed of recall and precision [51].
IOU (9) refers to the amount of common pixels between the
target and prediction masks divided by the entire amount
of existing pixels across both masks [21]. The metrics were
calculated based on false negative (FN), true negative (TN),
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FIGURE 5. Some example images in our building dataset. The original
images and corresponding reference maps are shown in the first and
second columns, respectively.

false positive (FP), and true positive (TP) as follows:

TP . TP
Recall = ———— Precision= ———
TP + FN TP + FP
Fle 2 x Precision x Recall TP

Precision + Recall - TP + FP + FN

C. COMPARISON OF BUILDING SEGMENTATION
ALGORITHMS

We compared the suggested GAN model with other state-
of-the-art approaches to verify the performance of the sug-
gested technique in building segmentation. We selected
classification-based and CNN-based approaches such as
Sameen and Pradhan [52] and SegNet model with-
out BConvLSTM [15] for comparison, as the proposed
model is a pixel-wise segmentation method. The proposed
SegNet+BConvLSTM model was also used for the generator
part in our proposed GAN model. Therefore, the difference
between the GAN model (adversarial training) and the Seg-
Net model (non-adversarial training) for building extraction
could be observed.

D. QUANTITATIVE AND QUALITATIVE RESULTS
For evaluating the effectiveness of the suggested GAN
model for building extraction, we present the visual building
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TABLE 1. Quantitative outcomes achieved by the proposed GAN model
and other comparative approaches.

Sameen and | SegNet SegNet Prop-

Pradhan|52] [15] +BConvLSTM | GAN
_ Recall 0.8941 0.9635 0.9647 0.9728
gg Precision 0.9307 0.9395 0.9488 0.9569
£ | Fl-score 0.9120 0.9514 0.9567 0.9648
- 10U 0.8382 0.9072 0.9169 0.9319
~ Recall 0.8482 0.9332 0.9628 0.9652
% Precision 0.9468 0.9688 0.9500 0.9637
£ | Fl-score 0.8948 0.9507 0.9563 0.9644
- 10U 0.8095 0.9060 0.9163 0.9313
. Recall 0.8977 0.9613 0.9475 0.9679
gg Precision 0.9045 0.9149 0.9462 0.9519
£ | Fl-score 0.9011 0.9375 0.9469 0.9598
- 10U 0.8200 0.8824 0.8990 0.9227
<+ Recall 0.9060 0.9481 0.9670 0.9718
% Precision 0.9512 0.9596 0.9469 0.9663
£ | Fl-score 0.9281 0.9538 0.9568 0.9690
- 10U 0.8658 09116 09172 0.9398
“ Recall 0.9431 0.9401 0.9485 0.9770
%, Precision 0.9212 0.9507 0.9488 0.9574
£ | Fl-score 0.9320 0.9454 0.9487 0.9671
- 10U 0.8726 0.8964 0.9023 0.9362
° Recall 0.8978 0.9492 0.9581 0.9709
%D Precision 0.9308 0.9467 0.9481 0.9592
£ | Fl-score 0.9136 0.9477 0.9530 0.9650
< j(0)8) 0.8412 0.9007 0.9103 0.9323

extraction results of the proposed model and other approaches
in Figure 6. The results show that all the extraction
approaches could alleviate the effect of obstacles to a certain
degree on the basis of the spatial information consideration.
However, the outcomes of the Sameen and Pradhan’s
approach [52] presented less FNs and more FPs that are
illustrated by the yellow and blue colors, respectively. In con-
trast, a segmentation map with a similar resolution as the
input image could be generated using SegNet model and
proposed SegNet+BConvLSTM model that uses deconvolu-
tional layers. Therefore, the accuracy of boundary informa-
tion obtained by these models is higher than that of [52]. The
proposed SegNet model with BConvLSTM were used in the
generative part of the GAN model for adversarial training.
Therefore, the segmentation map obtained by the GAN model
is smoother than that of the SegNet model, with fewer FPs.

The quantitative outcomes of the proposed GAN model
and other comparison approaches are shown in Table 1 to
highlight the effectiveness of the proposed GAN model in
building extraction. The segmentation precision of the com-
parison methods for the five test images is shown in the first
four rows of the Table 1 and the average performance is
shown in the last row of the Table 1.

Table 1 shows that the accuracy of all defined metrics
of the Sameen and Pradhan’s method is less than those of
the other methods for whole images. This is because the
method predicted less FNs and more FPs, especially where
the buildings are covered by other obstacles that led to a
less accuracy. The SegNet model [15] could achieve higher
accuracy than the Sameen and Pradhan’s and a non-noisy seg-
mentation map, while the proposed SegNet+BConvLSTM
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Sameen and

Ground Truth  pradhan[52]

SegNet

SegNet[15] +BConvLSTM

Prop-GAN

FIGURE 6. Building extraction outcomes achieved by GAN model and other state-of-the-art methods. First and second rows show the original
images and corresponding labels. The third, fourth, fifth and sixth rows depict the results achieved by the Sameen and Pradhan’s method [52],
SegNet [15], proposed SegNet+BConvLSTM, and proposed GAN, respectively. The black (background), white, yellow, and blue colors represent TNs,

TPs, FPs, and FNs, respectively.

model even could achieve better results than both Sameen
and Pradhan’s and SegNet models, making it the second-best
method. The proposed GAN model could achieve the high-
est precision for whole images among the approaches. The
average precision obtained by the GAN model for 10U is
nearly 9.11%, 3.16% and 2.2% higher than those by the
Sameen and Pradhan’s method, SegNet method and the
proposed SegNet+BConvLSTM model, respectively, indi-
cating that the proposed GAN model (adversarial training)
could improve the outcomes and verifying the superiority of
the proposed model for building extraction over the other
methods.

E. DISCUSSION
We also compared the quantitative and qualitative outcomes
attained by the proposed GAN model with more pre-existing

state-of-the-art classifiers such as improved fully convolu-
tional model with conditional random fields (FCN-CRFs)

209524

[37] and generative adversarial framework with mechanism
of spatial and channel attention (GAN-SCA) [53] to prove the
superiority of the method in producing high-quality building
segmentation map. Note that the outcomes for the other meth-
ods were adopted from the main published papers, whereas
the suggested GAN model has been performed on an exper-
imental building data. The qualitative results obtained by
the proposed GAN network and other deep learning-based
models are shown in Table 2. It is observed from the table that
the proposed SegNet+BConvLSTM and GAN models could
generally obtain high accuracy for F1-score. The table shows
that the GAN-SCA [53] could obtain higher F1-score than
the proposed SegNet model by a margin of only 0.4% and it is
ranked in the second best model for building extraction. How-
ever, the proposed GAN model in this study could improve
the results to 0.45% and achieve higher F1-score. Moreover,
the proposed GAN model could yield higher F1-score than
those of [37]. Besides, the qualitative results obtained by the
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FIGURE 7. Visualization results of the proposed GAN approach and other
state-of-the-art pre-existing classifiers. FPs and FNs are illustrated in blue
and yellow colors.

TABLE 2. Results obtained by the proposed GAN network and other
pre-existing classifiers based on f1-score.

FCN-
Model FCN ZCLTJ ELU- (;’éz' SegNet+ Prop-
[37] CRFs BConvLSTM  GAN
[37] [53]
[37]
Fl- 0.9522 09533 0.9536  0.9636 0.9596 0.9681

score

comparative algorithms are shown in Figure 7. As it can be
seen, the FCN model could not detect the edges of buildings
and predicted more FPs in the edges that lead to achieving
lower accuracy than the proposed model; and consequently
produced a low-quality building segmentation map. In con-
trast, it is clear that the proposed GAN model could generate
a non-noisy building segmentation map with preserving the
boundary information compared to other methods that pre-
dicted more FP and less FN pixels even under occlusions of
trees and cars. This is because the adversarial training method
obtained more consistent building segmentation results than
other approaches by enforcing long-range spatial label conti-
guity. Also, by adding BConvLSTM modules to the decoding
path of SegNet model that was used for generator part of GAN
model mixes the feature maps exploited from the correspond-
ing contracting part and the prior expanding up-sampling
layer in a non-linear way which could remove salt-and-pepper
noise and improve the performance of the network.

V. CONCLUSION

In the current study, we proposed a novel end-to-end con-
volutional neural architecture based on the GAN model
to extract buildings from high-resolution remote sensing
images. We used adversarial training to improve the accu-
racy of the segmentation map. Additionally, this paper aimed
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to design an encoder—decoder model called SegNet with
BCovLSTM function for the generative part of the proposed
GAN model to produce the pixel-wise classification map
and improve the accuracy of building extraction. BCovLSTM
module was added to the expansive part of the SegNet
model to mix encoded features with higher resolution and
local information and decoded features with more seman-
tic information, which eliminate the noises and improve
the performance of the model in building detection under
complicated backgrounds. Another reason that the proposed
GAN model could even extract buildings in the complex
areas, where the buildings surrounded by trees, cars, shadows,
and other occlusions is that the adversarial training tech-
nique execute long-range spatial label adjacency to obtain
the high-quality results of building detection under complex
situations and occlusions. We applied the common measure-
ment factors called precision, recall, Fl-score and IOU to
show the effectiveness of the proposed method for building
extraction, obtaining an average of 96.81% for Fl-score,
indicating that the suggested model could perform accurate
building extraction and non-noisy segmentation map acquisi-
tion. In addition, we compared the proposed GAN model with
some of the state-of-the-art approaches (the results shown in
Figure 6 and 7) to highlight the advantages of the suggested
technique in building extraction. The outcomes confirm the
superiority of the proposed technique for building extraction
over other methods and the capability of the GAN model to
achieve the best visualization and quantitative performance.
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