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ABSTRACT The power consumption at the receiver side will be dramatically increased in the millimetre-
wave and massive multiple-input-multiple-output (MIMO) communication systems due to the wide
bandwidth and a large number of antennas adopted. A half phase-only MIMO (HPO MIMO) scheme,
in which the base station (BS) acquires π -periodic phase measurements of the complex envelop signals
was proposed very recently to overcome the above problem. Due to the non-linear nature of HPO MIMO,
the valuation of the achievable rate is very challenging. The purpose of the paper is to provide an efficient
method for calculating the achievable rate of the HPO MIMO system. By the mutual information theory,
we transform the achievable rate into a sum of two high-dimensional integrations. However, calculating
those integrations suffers from the enormous computational burden when using the traditional Monte-
Carlo method. In order to increase efficiency, a new method by combining quasi-Monte Carlo with a
variance reduction technique is proposed. Besides, we derive the probability density function (PDF) of the
HPO MIMO system and analyze the uplink achievable rate of the HPO MIMO scheme. Numerical results
show that our proposed method is efficient for calculating the achievable rate of the HPO MIMO system.
With the proposed method we confirm that HPO MIMO is a promising technology in future low-power
communication scenarios.

INDEX TERMS Achievable rate, information capacity, non-linear MIMO, quasi-Monte Carlo, variance
reduction.

I. INTRODUCTION
Multiple-input-multiple-output (MIMO) supports multiple
data streams simultaneously and enhances data transmis-
sion reliability by adopting multiple radio-frequency (RF)
chains at both the transmitter and receiver sides. This tech-
nology provides technical assurance for many modern com-
munication systems such as massive MIMO [1], [2] and
millimetre-wave (mmWave) [3], [4]. Massive MIMO tech-
nology supports more than one hundred antennas at the
base station (BS) [5], and mmWave exploits GHz spectra to
support Giga-bit-per-second (Gbit/s) data transmission [6].

The associate editor coordinating the review of this manuscript and
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However, both of them suffer from high circuit power con-
sumption and insufferable fabrication cost due to their mas-
sive RF chains. This could be a critical problem in massive
MIMO and mmWave applications requiring RF components
(e.g., a high-resolution analog-digital converter (ADC) with
Giga-sampling rate) with high power and high cost [7], [8].

Currently, to solve the above problems, the existing works
can be divided into two potential categories. The first kind
is to replace the high-resolution ADC with a low-resolution
ADC (usually 1-3 bits). The second kind is to redesign
the receiver with low power and low cost non-linear detec-
tor technology [9]–[14]. Non-linear receiver which reserves
only phases or magnitudes of the received complex sig-
nals through phase or envelop detectors at BS can resolve
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the above problems. According to our survey [15]–[17],
non-linear receivership (each RF link has the 4.135 Watt)
have less power consumption and cost than low-resolution
ADCs (each RF link has the 9.62 Watt). This is because
non-linear receivers require only one RF link, while low-
resolution ADCs take advantage of low power consumption.
1-bit ADC also requires two RF links (traditional receivers
require Inphase (I) and Quadrature (Q) signal components
channels to modulate signals separately).

Recently, half phase-only MIMO (HPO MIMO) scheme
as one of the above nonlinear MIMO systems was first
proposed in [12]. This scheme is designed by using low-
precision low-noise-amplifiers (LNAs), π -phase detector,
and only one high-resolution ADC on each RF chain at
BS side. Because cumbersome superheterodyne circuits and
inphase-quadrature (IQ) demodulation have been removed,
the circuit power consumption and fabrication cost of the
HPO MIMO system could be much lower than that of the
conventional MIMO system. Besides, in existing non-linear
MIMO systems, due to the fact that the observed information
is missing half dimension information, the problem of ‘obser-
vation ambiguity’ is encountered in channel estimation part.
However, existing references show that HPO MIMO suffers
less ambiguity than envelop modulation systems (also named
amplitude or magnitude MIMO) [12], [18]. The ambiguity of
HPO-MIMO systems has been solved [13], but the ambiguity
of magnitude MIMO systems have not been solved. There-
fore, it is more meaningful to study HPO MIMO system.
More details about the HPO MIMO can be found in [12].

Equipping π -phase detectors on multiple antennas seems
to be a promising technique for the future low power con-
sumption communication systems [19]. Channel estimation
(CE) problem in HPO MIMO system has been discussed
in [13], [20]. Multiuser detection (MUD) problem in HPO
MIMO system has been discussed in [12], [13], [20]. Besides,
the synchronization problem in which joint time and fre-
quency in HPO MIMO have been discussed in [13], which
exploits the repeatability of a pilot preamble. Despite this
growing interest in the HPO MIMO system, to explore the
low-power and low-cost system from the theory aspect has
received little attention to date. This paper is to fill in this gap.

The purpose of the paper is to provide an efficient method
for calculating the achievable rate of the HPO MIMO sys-
tem. Due to the non-linear nature of HPO MIMO, it has no
closed-form solution, then we can not calculate it in the same
way as traditional MIMO systems. Therefore, we seek the
achievable rate of HPOMIMO from the perspective ofmutual
information theory. However, when we use mutual infor-
mation theory, high-dimensional integration is inevitable,
especially when the number of NR, NT is relatively large.
Therefore, numerical analysis methods play a critical role
here. Unfortunately, Monte Carlo (MC) method has out-
rageous low computational efficiency characteristics, espe-
cially in the HPO MIMO system. Therefore, it is essential to
find an efficient numerical analysis method to calculate high-
dimensional integrals. Based on number theory and abstract

algebra, we propose a quasi-Monte Carlo (QMC) method
to calculate the achievable rate of the HPO MIMO system.
Antithetic variables technology as one of variance reduc-
tion techniques is used to further increase the efficiency of
calculation.

The main contributions of this paper are three-fold. Firstly,
the paper proposes an efficient method to calculate the uplink
achievable rate for HPO MIMO. In addition, the proposed
algorithm can also be used to calculate other problems with
high-dimensional integrals. Secondly, this paper derives the
PDF of the HPOMIMO system. Thirdly, the paper compares
the performance of HPO MIMO and conventional MIMO.

The rest of this paper is organized as follows. Section II
presents the details of the proposed RF chain structure and the
model of HPO MIMO. Section III derives the uplink achiev-
able rate for HPOMIMO. Section IV develops a new method
for calculating achievable rate of HPO MIMO. Section V
reports some simulation results which reveal the efficiency
of our proposed method and performance of HPO MIMO.
Section VI concludes.
Notation: i2 = −1. Hij is the (i, j)-th element of matrix H

and (·)H denotes complex-conjuate transposition. For an inte-
ger N , [N ] = 1, 2, · · · ,N . <(·) and =(·) extract the real and
imaginary parts of their complex-valued arguments, respec-
tively. Bold lower and upper case letters stand for random
vectors and matrices, respectively. ε(·) denote expectation.
I (·), h(·) and p(·) denote mutual information, entropy and
probability density, respectively.

II. SYSTEM MODEL
A single-cell HPOMIMO systemwithNT single-antenna ter-
minals and a BSwithNR antennas in Fig. 1 is considered [13],
where each antenna is equipped with a HPO-detector (con-
taining π -phase detector and combines with only one high
revolution ADC) at the BS side.

FIGURE 1. Generic HPO MIMO system model. The HPO MIMO system
concludes NT single-antenna terminals and a BS with NR antennas. The
signal received at BS after the HPO-detector g(·) is represented as
yNon−linear .

For the uplink, we have three assumptions: 1. all NT users
transmit independent data symbols to the BS simultaneously
through the stationary memory-less flat fading channel H ;
2. the sampled signal constitutes a sufficient statistic data at
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the receiver; 3. in this paper, we assume H is long enough to
be estimated, and changes to an independent realization come
in the next block. A discrete-time baseband is considered in
our model. The signal received at BS after obtaining π -phase
operator gHPO(·) is formulated as

y = gHPO{(Hs+ w)} = gHPO{(z+ w)} = gHPO(r), (1)

where the function gHPO(·) means the operator of obtain-
ing π -phase of the received signal y as shown in equa-
tion (2). We denote Hs by z, and denote Hs + w by r,
and s ∼ CN (0, σ 2

s INT ) is the transmitting signals by each
user. It obeys the complex Gaussian distribution with 0mean
and σ 2

s variance. INT represents the identity matrix with NT
dimension. In our simulation, we fix ε (|s|2) = 1. w ∼
CN (0, σ 2

wINR ) is the NR ∗ 1 additive white Gaussian noise
vector with 0mean and σ 2

w variance.H represents theNR∗NT
channel matrix which remains constant for coherence period.
Therefore, r ∼ CN (0, σ 2

s HHH
+σ 2

wINR ). Due to the character
of our HPO-detector, formula (1) can be extended to

yi,HPO. = gHPO. (ri) = 6 π (ri)

= atan (ri) ∈ (−π/2, π/2] , (2)

where ri is the i-th element of the vetctor r, i = 1, 2, . . . ,NR.
The inverse tangent function atan(·) in (2) places the angle in
the correct quadrant. The function 6 π (·) is used to replace the
function atan(·) in the following content. Due to the physical
characteristics of the HPO detecter, the output signal falls
within the interval of (−π/2, π/2].

III. ACHIEVABLE RATE FOR HPO MIMO
We compute the achievable rates instead of capacity since the
capacity of the HPO MIMO system is too cumbersome to
find. The key characteristic in our HPOMIMO system is that
the received signal y at BS side is missing half the dimensions
information after HPO-detector gHPO(·) process. Sincewe are
considering aMIMO system, we need to consider the number
of receiving antennas when calculating the achievable rate of
the system. The probability of the output y conditioned on z
plays a crucial role. Since the noise vector w is white across
the receive antennas and the nonlinear function gHPO(·) acts
on each antenna separately, the conditional distribution of y
given z can be factorized as

f (y|z) =
NR∏
i=1

f (yi|zi), (3)

where NR denotes the number of receiving antennas, yi and zi
denote the i-th elements in the real vector y and the complex
vector z, respectively. r ∼ CN (z, σ 2

wINR ) when z is given.
To compute the achievable rate for HPO MIMO, we first

propose the following result
Theorem 1: The PDF of π -phase MIMO yi,HPO = 6 π (ri)

is as followsfHPO(yi|zi)=

f (yi|zi)+f (yi−π |zi) yi ∈

[
0,
π

2

)
f (yi|zi)+f (yi + π |zi) yi ∈

[
−
π

2
, 0
) (4)

where i = 1, . . . ,NR,

f (yi|zi) =
e−ρi

2π
+

√
ρi

4π
e−ρi·sin

2 φi · cosφi

· erfc
(
−
√
ρi · cosφi

)
, (5)

ρi = |zi|2/σ 2
w and [1φi = (yi − 6 (zi))mod2π ] ∈ (−π, π].

The complementary error function erfc(x) = 2
√
π

∫
∞

x e−t
2
dt .

Proof: According to [9], the PDF of 2π -phase MIMO
f (yi|zi) has the form of (5). After transforming angle, one can
easily obtain the result of Theorem 1.

Since we assumed that the channel H is memoryless,
the capacity is given by the maximum mutual information
between the channel input s and the detector output y. Fur-
thermore, sinceH is known to the receiver, the channel output
is the pair (y,H). The mutual information can be written as

I (s; y,H) = εH [I (s; y,H = H)] . (6)

From (1), we obtain that s andH are statistically independent.
We can observe that s, z and y constitute a Markov chain
s → z → y under a given channel realization H = H.
Because s and y are conditionally independent, (6) can be
upgraded to

I (s; y|H) = εH [I (z; y|H = H )], (7)

where according to the information theory, the mutual infor-
mation of interest I (z; y|H ) is extended to

I (z; y|H) = h(y|H)− h(y|z,H)

= −

∫
f (y|H) log (f (y|H)) dy

+

∫∫
f (z,y) log (f (y|z)) dydz. (8)

From (7) to (8), the fact of h(y|z,H) = h(y|z) is used. In order
to calculate the mutual information of interest I (z; y|H),
the PDFs f (y|H) and f (y|z) are needed. Given f (y|z), f (y|H)
can by rewritten as

f (y|H) =
∫
f (z|H)f (y|z,H)dz

=

∫
f (z|H )f (y|z)dz. (9)

Combining (8) and (9), we have

I (z; y|H) = −
∫
f (y|H) log

{∫
f (z|H)f (y|z)dz

}
dy

+

∫∫
f (z,y) log (f (y|z)) dydz. (10)

where f (y|z) is computed by (3) and (4).
Remark: Deriving the expression of f (y|H), f (z, y) and

f (z|H) is nontrivial. Instead of trying to explore the ana-
lytical expression of them, we evaluate (8) by the idea of
stochastic simulation sample mean algorithm such as Monte
Carlo (MC).
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MC approximate h(y|H), f (y|z,H) and f (y|H) by

f (y|H) = w
1
M

M∑
j=1

f (yi|zj), (11)

h (y|H) ' −
1
N

N∑
i=1

log (f (yi)), (12)

h (y|z) w −
1
N

N∑
i=1

log(f (yi|zi)), (13)

respectively, where zj as the MC samples are generated
according to complex Gaussian distribution CN (0, σ 2

s HH
H ).

Combining (3), (10), (11) and (13). We approximate the
achievable rate for HPO MIMO as

I (z; y|H) w −
1
N

N∑
i=1

log
1
M

M∑
j=1

NR∏
k=1

f (yi,k |zi,k )

+
1
N

N∑
i=1

NR∑
k=1

log f (yi,k |zi,k ). (14)

Finally, averaging (11) - (13) over many different channel
response H , we can obtain the mutual information in (6).

IV. ANTITHETIC-QMC METHOD FOR CALCULATING
ACHIEVABLE RATE OF HPO MIMO
In this section, we will answer why we need to use QMC
sampling to calculate multi-dimensional integrals instead of
traditional MC sampling methods. Also we give the details of
QMC and antithetic variates method to calculate the mutual
information of interest I (z; y|H) in HPO MIMO system.

As can be seen from formula (8), to calculate the achiev-
able rate of the HPO MIMO system, we have to make two
sampling approximations for the first term and one sam-
pling approximation for the second term. Also, a subtraction
operation is made after the above sampling approximations.
As we knew, the MC sampling principle is to achieve an
infinitely close to multi-dimensional integral by increasing
the sampling point density, which means the more num-
bers of sampling points, the higher the accuracy of the
multi-dimensional integral approximation. In our simulation,
to obtain a stable achievable rate, the number of sampling
points is at least 10,000. Therefore, our simulation requires
at least 10,000*10,000 times to obtain smooth convergence.
The above summarizes only under the case of the single input
single output (SISO) situation. If the situation is extended to
a multi-dimensional MIMO scenario, the number of simula-
tion will increase drastically as the growth of antenna array
numbers. This will make computational efficiency very low.
Therefore, to increase the efficiency of multi-dimensional
integration calculation becomes very necessary and essential
in the HPO MIMO system.

A. MONTE CARLO
We consider MC method to calculate an integral problem,
such as formula (12), (11) and (13) in Section II. We assume

f (·) is an integral function on the unit cube Cq
= [0, 1)q with

q-dimension. In order to calculate integral I (f ) as follows [21]

{I (f ) =
∫
Cq
f (x)dx, (15)

we first extract random samples Pk = {xk : 1 ≤ k ≤ K }
from Cq which obeies uniform distribution U [0, 1)q. Then
we calculate an estimate ÎK of I (f ) by the following formula:

ÎK (f ,Pk ) =
1
K

K∑
k=1

f (xk ). (16)

The key point of the MC method is that it is neces-
sary to extract an independent, uniformly distributed random
sequence in Cq [22]. Since a certain algorithm generates
such a random sequence, it also can be called the pseudo-
random sequence. According to the law of large numbers, ÎK
converges to I (f ) in probability.
Let σf =

√
Var[f (Pk )], where Var denotes variance.

By the central limit theorem, the integration error produced
by the MC satisfies the following inequality

|I (f )− ÎK (f ,Pk )| ≤ zα/2
σf
√
K

(17)

with probability approximate 1 − α, where zα/2 denotes the
α/2 quantile of Gaussian distribution N (0, 1). Therefore,
the convergency rate of MC method is O(1/

√
K ).

B. QUASI-MONTE CARLO
Different from MC, QMC methods draw on number theory
and abstract algebra [23]. The basic idea of QMC methods
is to replace the pseudo-random sequences in MC with low
discrepancy sequences (LDS) or quasi-random sequences
which are more uniform than random sequences. To measure
the uniformity of a sequence, we introduce the following
definition [24], [25]
Definition 1: Let B be a collection of all rectangles in

[0, 1]q with the form
∏q

j=1[uj, vj), 0 ≤ uj ≤ vj ≤ 1 and
letm(B) be the volume of B. The discrepancyDK of the piont
set {x1, x2, . . . , xK } relative to B is defined as

DK = sup
B∈B

∣∣∣∣#{xi ∈ B}K
− m(B)

∣∣∣∣ , (18)

where #{xi ∈ B} denotes the number of xi contained in B.
According to the law of iterated logarithms, if a sequence

is random, the expectation of the discrepancy of the sequence
is bounded by log logK/

√
K . In contrast, the discrepancy of

many low discrepancy sequences such as Halton sequence is
bounded by constant times (logK )q/K .

1) HALTON’ LDS
Any non-negative integer k can be constituted as the follow-
ing form based on the prime number b:

k = djbj + dj−1bj−1 + . . .+ d1b+ d0, (19)

where di ∈ {0, 1, . . . , b− 1} , i = 0, 1, . . . , j, bj ≤ k < bj+1.
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We define the radical inverse function ϕb(k) based on b as
follows:

ϕb(k) =
d0
b1
+
d1
b2
+ . . .+

dj
bj+1

, (20)

it’s easy to find for any integer k > 0, ϕb(k) ∈ [0, 1].
To obtain Halton’ LDS {x1, . . . , xm} of length m with d-

dimensional, we take d different prime numbers b1, . . . , bd
as base. Then let xk =

[
ϕb1 (k − 1), . . . , ϕbd (k − 1)

]T , where
k = 1, . . . ,m. In fact, it is no need to generate the Halton
sequence starting from k = 0. That is to say, for d non-
negative integers n1, . . . , nd , the above sequence can be taken
as xk =

[
ϕb1 (n1 + k − 1), . . . , ϕbd (nd + k − 1)

]T . We can
generate Halton’ LDS by the following algorithm

Algorithm 1 An Algorithm for Generating Halton’ LDS
Input: base b1, b2, . . . , bd , k

1 for i = 1 to d do
2 bki = 0;
3 j = 0;
4 for k 6= 0 do
5 bki = bki + mod(k, bi)/b

j+1
i ;

6 k = floor(k/bj);
7 j = j+ 1 end;

8 Output bki;

Niederreiter [26] states that the discrepancy of Halton
sequence satisfies that

DK ≤ cq
(logK )q

K
+O

(
(logK )q−1

K

)
, (21)

where cq is a constant which only depends on dimension q.
(18) implies that the Halton sequence is significantly more
uniform than a random sequence.

2) ERROR BOUND OF QMC
The integration error produced by QMC satisfies the follow-
ing Koksma-Halwka inequality.

|I (f )− ÎK (f ,Pk )| 6 V (f )DK , (22)

where DK is the discrepancy of the sequence PK . The varia-
tion V (f ) in (22) of f (x) in the sense of Hardy and Krause is
defined as:

V (f ) =
s∑

k=1

∑
1≤i1<i2<...<ik≤s

V (k) (f ; i1, . . . , ik) . (23)

If f (x1, . . . , xs) is sufficiently differentiable, for all positive
k ≤ s and k integers 1 ≤ i1 < i2 < . . . < ik ≤ s, define the
quantity as follows:

V (k) (f ; i1, . . . , ik)=
∫
lk

∣∣∣∣ ∂k f
∂ti1 . . . ∂tik

∣∣∣∣
tj=1,j 6=il ,...ik

dti1 . . . dtik .

(24)

(23) and (24) imply that once f (· ) is given, V (f ) would
be a constant. Therefore, the integration error produced by
QMC only depends on DK . From (18), the convergency rate
of QMC method based on Halton sequence isO

(
(logK )q−1

K

)
.

Since (logK )q−1 can be absorbed into any power of K ,
the convergency rate of QMC method can be thought as near
O(1/K ). Therefore, QMC methods accelerate convergence
from O(1/

√
K ) of MC methods to nearly O(1/K ).

Statisticians focus on how to construct the best low dis-
crepancy (quasi-random) point sets [27]–[30]. At the same
time, variance reduction techniques [31], [32] are widely
studied from another side for improving the efficiency of such
sampling methods. In our work, we combine the flexibility of
variance reduction techniques with the characteristic of effec-
tiveness and fast convergence of low discrepancy sequences.
We not only use the Halton sequences as our low discrepancy
point sets, but also combine antithetic variates technique as
the variance reduction techniques, and the detail can be found
in the following part.

C. ANTITHETIC VARIATES TECHNIQUE
Antithetic variates is one of variance reduction tech-
niques [33] for MC sample [34], [35]. It attempts to reduce
variance by introducing negative dependence between pairs
of sampling points [36]. If U is uniformly distributed over
[0, 1], then 1−U obeys uniform distribution, too. According
to this principle, if we generate U1, . . . ,Un as the first path,
then we still can generate 1− U1, . . . , 1− Un as the second
path without changing the law of this simulation process.
Antithetic variates technique reduce the variance based on the
following fact

Cov[U , (1− U )] = E[U (1− U )]− E[U ]E[1− U ]

= E[U − U2]− E[U ](1− E[U ])

= E2[U ]− E[U2]

= −D[U ] < 0, (25)

where Cov[·, ·] denotes the covariance. In particular, for
Gaussian distributions commonly used in telecommunica-
tions, antithetic variates can be implemented by pairing
the sequences Y1,Y2, . . . of independently and identically
distributed (i.i.d.) CN (0, 1) variables. The key characteris-
tics of the antithetic variates technologies is that for each
i, Yi and Ỹi have the same distribution, and all the pairs
(Y1, Ỹ1), (Y2, Ỹ2), . . . , (Yn, Ỹn) are i.i.d.
The antithetic variates estimator ŶAV is the average of all

2n observations from the common distribution of Yi and Ỹi,

ŶAV =
1
2n

(
n∑
i=1

Yi +
n∑
i=1

Ỹi

)
=

1
n

n∑
i=1

(
Yi + Ỹi

2

)
, (26)

the variance can be written as

Var[Yi + Ỹi] = Var [Yi]+ Var [Yi]+ 2Cov[Yi, Ỹi]

= 2Var [Yi]+ 2Cov[Yi, Ỹi]

< 2Var[Yi], (27)
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because Yi and Ỹi have the same distribution, the variance of
Yi and Ỹi are the same. The condition for antithetic sampling
to reduce variance becomes

Cov[Yi, Ỹi] < 0, (28)

therefore,

Var[ŶAV ] < Var

[
1
2n

2n∑
i=1

Yi

]
. (29)

(26) implies that the efficiency of the MC method is
increased after introducing an antithetic variate. This tech-
nique can also be applied in the QMC method.

D. ANTITHETIC-QMC METHOD
We combine antithetic variates technique and QMC method
and propose the Antithetic-QMC method to calculate uplink
achievable rate for HPO MIMO systems. We develop
Antithetic-QMC algorithm as follows:

Algorithm 2 Antithetic-QMC Algorithm for Calculating
the Uplink Achievable Rate for HPO MIMO System
Input: NT ,NR,N1,N2,H ,W , φk , ρk , (k = 1, . . . ,NR);
Sum11 = 0, Sum12 = 0, Sum2 = 0, Sum31 = 0, Sum32 = 0

1 for i = 1 to N2 do
2 Draw Halton sequence yi,2 by Algorithm 1;
3 for j = 1 to N1 do
4 Draw Halton sequence yi,j,1 by Algorithm 1;
5 Compute f (yi,j,1|zi,j) and f (yi,j,2|zi,j) by (3);
6 Sum11 = Sum11 + f (yi,j,1|zi,j);
7 Sum12 = Sum12 + f (yi,j,2|zi,j);
8 until the last simulation;

9 Sum2 = Sum2 + log Sum11+Sum12
2N1

;
10 Sum31 = Sum31 + log f (yi1|zi);
11 Sum32 = Sum32 + log f (yi2|zi);
12 until the last simulation;

13 Compute h(y|H ) by − Sum2
N2

;
14 Compute h(y|z) by − Sum31+Sum32

2N2
;

15 Compute achievable rate by (8).

V. NUMERICAL RESULTS
In this section, we present some numerical experiments to
confirm the analysis in the previous parts. To verify the
correctness of the PDF of HPO MIMO system which we
derived, we first compare the histogram of HPO MIMO
distribution and the PDF of HPO MIMO. In the following
numerical simulations, the input s of transmitter follows by
ComplexGaussian distribution s ∼ CN (0, σ 2

s INT ). The chan-
nel matrix entries H are modeled as i.i.d. zero-mean unit-
variance circularly symmetric Gaussian random variables.
Where we assume σ 2

s = 1 and σ 2
h = 1. The received vector z

is perturbed by a zero-mean circularly symmetric Gaussian
noise vector w, with autocorrelation function E[wkwl] =
σ 2
wINRδ(k − l), where k and l are symbol instants, and we

FIGURE 2. 3D joint probability density function of HPO MIMO and
corresponding 2D histogram of probability density function yπ−phase.
(a) shows the 3D joint probability density function of HPO MIMO f (yi , zi ).
(b)(c)(d) show the 2D histogram of probability density function yπ−phase
under the different variance of Gaussian noise σ2

w = 0.001, σ2
w = 0.01

and σ2
w = 0.1, respectively.

let σ 2
w =

NT σ 2s
SNR . We assume all users have the same level of

SNR in our experiments.
Fig. 2 (a) shows our derived 3D joint PDF f (yi, zi) of HPO

MIMO, imaginary part and real part of zi are used to illustrate
f (yi, zi). In order to describe our derived PDF f (yi, zi) of HPO
MIMOmore clearly, we plot the corresponding 2D histogram
of PDF yπ−phase under the different variance σ 2

w of Gaussian
noise in Fig. 2 (b), (c) and (d), respectively. We randomly
generate the HPO MIMO distributions yHPO according to
the phase-obtaining operation gπ {(Hs + w)}, and draw their
normalized histograms as shown in the blue columns. At the
same time, we plot the HPOMIMOPDF fHPO(yi|zi) as shown
in the red line which we derived from (3). It can be seen that
these blue columns and the red line are closely matched under
the different noise σ 2

w. Those results confirm the correctness
of our derived PDF fHPO(yi|zi) in (3).

To test the uniformity of Halton’ LDS, we implement
algorithm 1 and compare distributions of N1 = 4 (Fig. 3) and
N2 = 16 (Fig. 4) points on a unit square n = 2 given by two
different sampling techniques: MC and Halton’ LDS. This
provides a qualitative picture of the uniformity properties of
these sampling techniques. In the first case, the unit square
is divided into 4 and 42 squares of measure 1/4 and 1/42,
respectively. In the second case, the unit square is divided into
16 and 162 squares of measure 1/16 and 1/162, respectively.
Fig. 3/ Fig. 4 (c), (d) show 2-dimensional distributions of
Halton’ points, and each of the 4 small squares contains
exactly one Halton’ point. Random sampling MC (Fig. 3/
Fig. 4 (a), (b)) do not possess either of these properties.

Fig. 5 shows distributions of 64 points in two dimensions.
From Fig. 5 (c), it is clear that each of the 642 subsquares
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FIGURE 3. Distributions of 4 points in two dimensions. The unit square is
divided into 4 parts as shown on the left and 16 parts as shown on the
right.

FIGURE 4. Distributions of 16 points from two dimensions. The unit
square is divided into 16 parts, as shown on the left and 256 parts,
as shown on the right.

contains exactly 1 Halton’ point (Fig. 5 (d)). And this phe-
nomenon is existing in all types of MC (Fig. 5 (a)) samplings:
clustering and empty subsquares are clearly visible from
these plots (Fig. 5 (b)). From Fig. 3 to Fig. 5, in summary it

FIGURE 5. Distributions of 64 points in two dimensions. The unit square
is divided into 64 parts, as shown on the left and 4096 parts, as shown on
the right.

FIGURE 6. Monte-Carlo (MC) v.s. the Halton’ LDS under same simulation
duration. In our simulation, the number of simulation is 10*10000*10000.

would appear that Halton’ LDS sampling gives a better way
of arranging N points in n dimensions than MC method.

Furthermore, we extracted 2000 points from the
two-dimensional unit square using the MC method and the
Halton’ LDS, respectively. From Fig. 6, we can see that
the points using the Halton’ LDSmethod are more uniformly,
whereas the points using the MC sampling method are denser
in some places and sparse in others. Fig. 6 shows that Halton’
LDS has smaller standard error than MC.

To test the efficiency of the Antithetic-QMC method,
we implement algorithm 2 and compare Antithetic-QMC
with MC and QMC. MC and QMC for computing achiev-
able rate of HPO MIMO can be implemented by modify-
ing algorithm 2. The MC estimate Î converges to the true
value of I as sample points N approaches to infinity by
the law of large numbers. Therefore we calculate the accu-
rate value of I by MC method. A comparison of methods
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requires a figure of merit. For sampling-based methods, stan-
dard error is an appropriate figure of merit [37]. As our
figure of merit, we take log 2 of standard error δ, where

δ =

√∑N
i=1(f (xi)−I (N ))
√
N

. The smaller log 2δ, the higher effi-
ciency of calculating.

FIGURE 7. Comparison of the convergency rate among MC, QMC and
Antithetic-QMC for calculating the achievable rate for HPO MIMO
systems.

Fig. 7 compares the log 2 of standard error among MC,
QMC and Antithetic-QMC for calculating the achievable
rate for HPO MIMO systems with simulation trials N =
100, 1000, 5000 and 10000, respectively. The reason for the
choice of 10000 as the limit is that in the variance reduction
technique, the standard error δ = 0.02 marks the result of
the sampling method close to the multi-dimensional integral
result. Fig. 7 shows that QMC converges fast, and the stan-
dard error is significantly smaller than MC. Antithetic-QMC
further increases the convergency rate compared to QMC.

The performance of Antithetic-QMC is slightly better than
QMC at a high number of samples. However, these two
methods have much better performance than traditional MC
methods, especially at higher sampling numbers. This is pre-
cise because both of these QMCmethods use a more uniform
LDS sequence instead of a random sequence in calculating
the multi-dimensional integration in the HPOMIMO system.
We can conclude that Antithetic-QMC is superior to QMC
andMC in calculating uplink achievable rate for HPOMIMO
system.

With the proposed method we compare the achievable
rate between the HPO MIMO and the conventional MIMO
under the SISO and MIMO scenario. Fig. 8 reports the main
outcomes.

Fig. 8 presents two key phenomena. Firstly, with the
increase of the signal-to-noise ratio (SNR) from −10dB
to 30dB, achievable rate keeps increasing. Secondly, HPO
MIMO always achieves more than half the performance
of its corresponding conventional MIMO. Although the

FIGURE 8. Linear detection v.s. non-Linear (HPO) detection under
different scenarios, including 8*4 MIMO, 3*3 MIMO and SISO. Rayleigh
fading channel used in this simulation. The solid lines stand for linear
MIMO detection, and line with triangle, star and circle stand for half
phase only (HPO-) MIMO detection under 8*4 MIMO, 3*3 MIMO and
SISO, respectively.

performance of HPOMIMO is inferior to that of conventional
MIMO, we do prefer π -phase detection. This is because
cumbersome demodulation is removed, and no analog com-
bination of IQ signals is required as conventional MIMO, its
circuit power and costs are much lower than its corresponding
MIMO [11]. This result indirectly indicates that HPOMIMO
can achieve the rates of conventionalMIMOby increasing the
number of antennas at the receiver. The results show that the
HPO MIMO system can obtain 50% − 67% of the capacity
of traditional MIMO with only little power consumption
compare to the conventional MIMO system. This conclusion
proves that HPO MIMO is a promising technology in future
low-power communication scenarios.

VI. CONCLUSION AND FUTURE
We derive a semi-analytical expression of the achievable rate
for HPOMIMO system, in which high-dimensional integrals
are approximated numerically by quasi-Monte Carlo and
antithetic variates technique. Our proposed method speeds up
the computational efficiency of the achievable rate for the
HPO MIMO system compared to Monte Carlo and quasi-
Monte Carlo methods. The high accuracy can be obtained by
increasing sampling points numbers. Therefore, our method
can be used as a benchmark for testing efficiency of other
analytical approximation or numerical methods to calculate
the achievable rate.

With our proposed method, we provide a comparison on
the achievable rates of HPOMIMO and conventional MIMO
systems. Our comparison results show that although the per-
formance of HPO MIMO is not as good as its corresponding
linear detection (which can be achieved more than half),
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these low-power consumption techniques unexpectedly uti-
lize additional receive antennas to achieve higher spatial mul-
tiplexing gain. This result seems promising since it could save
more power and cost to use more HPO-receiver RF chains
than the conventional ones.
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