
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Survey: Sharding in Blockchains
GUANGSHENG YU1,2, XU WANG1,2, KAN YU3, WEI NI4, J. ANDREW ZHANG1 AND REN PING
LIU.1,2
1The Global Big Data Technologies Centre, University of Technology Sydney, Australia (e-mail: guangsheng.yu@uts.edu.au, Xu.Wang-1@uts.edu.au,
andrew.zhang@uts.edu.au and renping.liu@uts.edu.au)
2Food Agility CRC Ltd, 81 Broadway, Ultimo, NSW, Australia 2007
3The Department of Computer Science and Information Technology, La Trobe University, Australia (e-mail: k.yu@latrobe.edu.au)
4Data61, CSIRO, Australia (e-mail: Wei.Ni@data61.csiro.au)

Corresponding author: Guangsheng Yu (e-mail: guangsheng.yu@uts.edu.au).

This project was partially supported by funding from Food Agility CRC Ltd, funded under the Commonwealth Government CRC Program.
The CRC Program supports industry-led collaborations between industry, researchers and the community. This project was also partially
spported by and UCOT Australia Pty Ltd. UCOT Australia is a full-industry chain anti-counterfeiting traceability solution operator,
dedicated to research and development of technology products based on Blockchain.

ABSTRACT The Blockchain technology, featured with its decentralized tamper-resistance based on a
Peer-to-Peer network, has been widely applied in financial applications, and even further been extended to
industrial applications. However, the weak scalability of traditional Blockchain technology severely affects
the wide adoption due to the well-known trillema of decentralization-security-scalability in Blockchains.
In regards to this issue, a number of solutions have been proposed, targeting to boost the scalability while
preserving the decentralization and security. They range from modifying the on-chain data structure and
consensus algorithms to adding the off-chain technologies. Therein, one of the most practical methods to
achieve horizontal scalability along with the increasing network size is sharding, by partitioning network
into multiple shards so that the overhead of duplicating communication, storage, and computation in each
full node can be avoided. This paper presents a survey focusing on sharding in Blockchains in a systematic
and comprehensive way. We provide detailed comparison and quantitative evaluation of major sharding
mechanisms, along with our insights analyzing the features and restrictions of the existing solutions. We also
provide theoretical upper-bound of the throughput for each considered sharding mechanism. The remaining
challenges and future research directions are also reviewed.

INDEX TERMS Blockchain, Scalability, Throughput, Scale-out mechanism, Sharding, Survey

I. INTRODUCTION

WORKING as distributed, incorruptible, and tamper-
resistant ledgers, Blockchain technology has shown

its great potential to tackle critical security and trust chal-
lenges in various applications, e.g., cryptocurrency, Internet-
of-Things, and edge computing [1]-[3]. Running over a peer-
to-peer network, Blockchain processes application requests
in the form of Blockchain transactions [4]. The transactions
are mined into blocks by Blockchain miners following con-
sensus protocols, e.g., Proof-of-Work (PoW) for permission-
less Blockchains and the Practical Byzantine Fault Tolerance
(PBFT) for permissioned Blockchains [5], and the blocks are
chained with their hash values [1].

The throughput of a Blockchain system, defined as
the number of processed transactions per second of the
Blockchain, is far from practical requirements and has be-
come a crucial limitation stopping Blockchain from being
widely adopted [6]. For example, Bitcoin can only handle
up to approximately 10 transactions per second with its
maximum block size of 1MB and average 10 minutes block
period [7], which severely hinders the use of Blockchains
in the high-frequency trading. To handle a great number of

transactions, Blockchain has been considered as a secure
base-layer (or a settlement center for cryptocurrencies) where
transactions are processed off-chain and then settled in the
Blockchain. For example, Lightning network and Raiden
network (referring to the state-channel technology) support
off-chain payments and broadcast a summary of a batch
of off-chain payments to the Blockchain [8], [9]. Plasma
(referring to the sidechain technology) builds various appli-
cations on the top of Ethereum [10]. These methods, known
as the Layer-2 scaling, minimize the interaction with the
Blockchain to reduce the latency from the users’ perspective
but do not improve the throughput of Blockchains [11].

In contrast, the Layer-1 scaling is designed for improving
the throughput of Blockchains from the systematic perspec-
tive. A Blockchain system can be optimized in the following
ways to handle a growing amount of work.
• reducing the communication and computation overhead;
• adding resources to a single node, i.e., vertical scaling;
• adding more nodes to the Blockchain, i.e., horizontal

scaling [12].
Reducing overhead: New Blockchain consensus proto-

1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

cols have been developed for high Blockchain throughput
by reducing the overhead. For example, every PoW winner
(i.e., a miner) is eligible for several blocks rather than a
single block in Bitcoin-NG [13] and its variations [14], [15].
The traditional PBFT consensus protocol has been developed
and optimized to reduce the communication overhead and
achieve high throughput in large-scale networks [16]-[19].
However, O(n) (n is the number of participating miners) is
the lower bound that this type of technologies can reduce
the overhead at most, as every participating miners have to
exchange and store messages during every consensus round
regardless of the route of transactions.

Vertical scaling: Bitcoin tried to improve throughput by
vertical scaling methods. For example, increasing the number
of allowed transactions in a single block and/or reducing
the block period can improve the throughput of Bitcoin but
consume more resources, e.g., storage, computation, and
bandwidth, of Bitcoin nodes [20]-[23]. Beyond this, The
Greedy Heaviest Observed Subtree (GHOST) [24] is imple-
mented by Ethereum to organize blocks in a tree instead
of a chain of blocks and obtain a higher throughput [4].
The GHOST is subsequently extended to the directed acyclic
graph (DAG). The DAG is adopted to organize transactions
where every transaction contains hash values pointing to
existing transactions [25]-[30]. The DAG structure allows
transactions to be confirmed in parallel and thus improves
the network utilization ratio given the resources of a node,
which improves the throughput of the entire distributed sys-
tem. However, the vertical scaling methods cannot infinitely
improve the throughput, as a Blockchain system is designed
to run in a decentralized and homogeneous network where
the security is closely dependent on the consensus across
the entire network. The larger-scale the network is, the more
bandwidth is needed to achieve the network synchronization,
while the bandwidth is the resource that cannot be indef-
initely added [20]. This leads to the vertical scaling being
compromised to the throughput of resources-limited nodes.

Horizontal scaling: Sharding technology, dividing a
whole Blockchain into multiple shards and allowing partici-
pating nodes to process and store transactions of a few shards
(i.e., only parts of the Blockchain), holds the key to horizontal
scaling, also known as the scale-out technology. By taking
advantage of the sharding technology that allows partial
transactions processing and storage on a single node, the
whole Blockchain can achieve a linearly increasing through-
put with the growing number of nodes. This is important
for the adoption of Blockchains providing high quantity and
quality of services to the public in large-scale networks with
infinite growth, which has attracted the interest of researches
regarding the improvement of the Blockchain scalability.

A number of studies have proposed new sharding mech-
anisms. Surveys of Blockchain scalability which used to
only focus on Reducing overhead and Vertical scaling have
been gradually taking the sharding technology into account.
However, none of them was able to focus on sharding and
systematically introduce the challenges of sharding, features

and restrictions of the existing solutions, and the future
trends.

A. OUR CONTRIBUTIONS
We provide a more systematic introduction of sharding mech-
anisms than existing surveys and papers. The key contribu-
tions are highlighted as follows.

1) Our work, for the first time, provides an introduction
of state-of-the-art sharding mechanisms ranged from
BFT-based to Nakamoto-based sharding mechanisms,
while the latter has never been systematized in any of
the existing surveys at the time of writing.

2) We gain our own insights analyzing the features and
restrictions into the existing solutions to the intra-
consensus-safety, atomicity of cross-shard transac-
tions, and general challenges and improvements pro-
posed by the considered sharding mechanisms.

3) We also provide a calculation to obtain the theoretical
upper-bound of throughput for each considered shard-
ing mechanism. Based on the result and the insights of
the features and restrictions of each existing sharding
solution, a comprehensive comparison is proposed.

4) Finally, we point out the current remaining challenges
of sharding mechanisms, followed by suggestions for
the future trend of designing reliable sharding mecha-
nisms.

B. RELATED WORK
The relationship between the existing studies and our work
is discussed. Note that, all the considered previous studies
highlight the trend of scalability in the future of Blockchains,
and intend to accommodate the existing solutions to scale
Blockchain systems. These solutions include but not limited
to upgrading Bitcoin (increasing block size or conducting
Segregated Witness), scalable consensus algorithms, state-
channels, and multiple sidechains structure.

Previous surveys including [31]-[38] discuss the afore-
mentioned solutions, but involve no information about the
sharding which has been realized to be the most practical
solution so far for a scale-out Blockchain system. Thus,
there have been several recent studies presenting their own
sharding mechanisms, as well as surveys that manage to
summarize them and propose new benchmarks [4], [39]-[53].
However, all of these studies compare the sharding with other
kinds of solutions by either presenting a vague introduction
of only one or two sharding mechanisms, or lacking the
insights for evaluation, except [39], [43], [50], [51], [53]
putting more efforts on introducing sharding. [39] makes use
of the scale cube architecture, highlighting that the horizontal
scalability should only be improved by partitioning the data
and consensus. However, it only provides a vague introduc-
tion of Ethereum 2.0, and the same problem exists in [43]
where the consensus layer is decoupled from the ledger
topology layer (which is inappropriate due to the importance
of intra-consensus in a sharding system). [50] presents an

2

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Shard 1

Shard 2

Shard 3

Shard 4

Cross-shard
communication

tx

tx

tx

tx

tx

tx

Interaction.
Transactions are

sent to the
destination for
cross-validation.

FIGURE 1. The sharding technology partitions the network into different groups, while each of the groups maintains its own ledger and processes and stores a
disjoint set of transactions. By implementing a secure cross-shard communication protocol, such disjoint transaction sets that could not have been interacted
become securely verifiable and interactively executable in parallel. Note that, nodes in some sharding mechanisms (e.g., Monoxide) can choose to participate in the
processing of multiple shards and maintain their ledgers, as illustrated by the multicolored circles, while the unicolored circles denote the nodes only participating in
a single shard to which they are assigned in terms of the color.

analytic model in a game-theoretical way that is designed
to benchmark the existing sharding mechanisms, and aim
for design guidance for future solutions. However, sharding
can be thought as the “multiple committees” upon the tra-
ditional Byzantine-Faulty-Tolerance (BFT)-based consensus,
as stated in [47], [50], has been outdated as [54] proposes a
Nakamoto-based sharding mechanism (Monoxide). A unified
comparison between such Nakamoto-based sharding mecha-
nisms and the BFT-based sharding mechanisms is also absent
in [51] and the most closely related survey [53] (where the
BFT-based sharding mechanisms are focused, as well as the
corresponding randomness generators).

To the best of our knowledge, our work outweighs all
the existing surveys in a more systematic way, in regards
to the key concept of various sharding mechanisms, and a
comprehensive comparison for practitioners based on our
insights.

C. PAPER OUTLINE
The rest of the paper is organized as follows. Section II
briefly presents an overview of sharding technology and
introduces the survey methodology. Section III presents an
introduction of the considered sharding mechanisms, upon
which the comparison and discussion are presented in Sec-
tion IV. Section V concludes the survey.

II. SHARDING REVIEW AND SURVEY METHODOLOGY
A. OVERVIEW OF THE SHARDING TECHNOLOGY
Sharding is first proposed by [55] and commonly used in
distributed databases and cloud infrastructure. Based on the
pioneering proposals [56], [57] integrating sharding with per-
missioned and permissionless Blockchain, respectively, the
sharding technology is thought to be able to partition the net-
work into different groups (shards), so that the compulsory
duplication of three resources (i.e., the communication, data
storage, and computation overhead) can be avoided for each
participating node, while these overheads must be incurred
by all full nodes in traditional non-sharded-Blockchains. This
partition is essential because the restriction incurred by the
three resources owned by a single node may make the system
unable to take full advantage of a scalable consensus algo-

rithm. Sharding is so far one of the most practical solutions
to achieve a scale-out system where the processing, storage,
and computing can be conducted in parallel, as illustrated in
Fig. 1. As such, the capacity and throughput being linearly
proportional to the number of participating nodes or the
number of shards become possible, while preserving decen-
tralization and security. However, sharding poses new chal-
lenges to Blockchains, i.e., the intra-consensus-safety, cross-
shard-atomicity, and the general improvements regarding the
storage, latency, etc, where the detail is our concentration and
is described starting from Section III.

There have been a few studies working on these challenges
regarding the sharding in permissionless Blockchains [54],
[57]-[61], prior to which [56] proposes a sharded permis-
sioned Blockchain that will not be discussed in this survey
due to its forfeit of permissionless decentralization. Rather,
the sharding in permissionless Blockchains is focused.

B. SURVEY METHODOLOGY

This survey focuses on sharding in permissionless
Blockchains (as permissioned Blockchains do not take full
advantage of the sharding technology due to the smaller
network size and its forfeit of permissionless decentraliza-
tion), and is based on the published research papers and
other research references of Monoxide [54], Elastico [57],
OmniLedger [58], Rapidchain [59], Chainspace [60], and
Ethereum 2.0 [61]. Our methodology can be characterized
as follows.

1) We clarify the demand for high scalability in Section I,
based on the well-known trillema of decentralization-
security-scalability in Blockchains. We discuss the po-
tential solutions ranged from the Layer-1 scaling (on-
chain scaling) to Layer-2 scaling (off-chain scaling),
with the former being focused in order to address the
throughput issue. Upon this, we elaborate on the impor-
tance of the scale-out technology of Layer-1 scaling,
i.e., sharding, which is thought to be orthogonal to
any other scalable technologies, and so far the most
practical solution to achieve horizontal scalability in
large-scale Blockchain networks.

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

2) We summarize six of the most well-known and typi-
cal sharding mechanisms in large-scale permissionless
Blockchains, i.e., Monoxide, Elastico, OmniLedger,
Rapidchain, Chainspace, and Ethereum 2.0, which are
characterized in intra-consensus-safety, cross-shard-
atomicity, and general improvements, respectively
presented in Section III-A, Section III-B and Sec-
tion III-C.

3) Based on the previous description of the considered
sharding mechanisms, we provide our own insights in
regards to each of the features, 1) what issues in a
sharding system the features have addressed; and 2)
the restrictions of these features. Besides, we provide a
comparison, based on the insights and our calculation,
as shown in Section IV-A, among the considered shard-
ing mechanisms. Finally the result is characterized in
Tables 2 and 3.

III. DESCRIPTION
As a Layer-1 solution to the scalabilty issue of Blockchain
systems, and the most practical solution to push Blockchain
systems to scale-out in terms of communication bandwidth,
disk storage, and computation (i.e., full-sharded), there are
two significant issues each sharding mechanism needs to
resolve.

intra-consensus-safety: how to secure the consensus algo-
rithm inside a shard away from both the Nakamoto-based and
BFT-based 1% attack [61] in a scalable way, while the latter
can also be corresponding to a secure randomness generation
process, as discussed in Section III-A; note that 1% attack
is an attack strategy in sharded networks where attackers
can dominate a single shard more easily than dominating the
whole network;

cross-shard-atomicity: how to support the cross-
verification, and guarantee the Atomicity [62], [63] of cross-
shard transactions for both unconditional transactions (sim-
ple payment) and conditional contract-oriented transactions
in an efficient way (inefficient if the latency and overhead
for achieving atomic-safe cross-shard transactions are higher
than O(n); n denotes the number of shards being partitioned
or the number of participating nodes), as discussed in Sec-
tion III-B;

general improvements: based on the intra-consensus-
safety and cross-shard-atomicity, we focus on the improving
factorN regarding the multiple of optimized global through-
put for each considered sharding mechanism, while N is
subject to the linear order O(n). On the other hand, the
additional latency and overhead originated from the proposed
solutions also reveal the new problems that sharding brings
to us. In regard to this, some general improvements are
discussed in Section III-C.

A. INTRA-CONSENSUS PROTOCOL
Sharding significantly increases the throughput in O(n), but
sacrificing security in intra-consensus protocols, i.e., the per-
zone security or 1% attack [54], [61]. Concretely, it is cate-

gorized into the Nakamoto-based 1% attack and BFT-based
1% attack.

The total amount of mining power among the network,
i.e., P, guarantees the low probability for a single entity to
dominate over 50% mining power. By purposely dividing the
network into n partitions (shards), we can greatly increase
the throughput inO(n), where rational miners tend to ideally
distribute their mining power in multiple shards (at most n
shards) in order for the maximum rewards. However, this
also decreases the security of PoW in each shard in O(1/n).
Such a system can be more prone to double-spend attack by
a malicious miner that only needs to own the mining power
P > P/n × 50% due to the smaller shard size compared to
the entire network size. This issue deteriorates as n increases
in order for a larger throughput, which becomes the most
serious barrier to PoW being implemented for the intra-
consensus protocol of a sharding mechanism.

On the other hand, BFT-based consensus algorithms are
considered instead of PoW in order to solve the security chal-
lenge, as discussed above. However, such designs introduce
another kind of vulnerabilities other than that of the PoW-
based one, as discussed in the following.
• It is of importance to carefully design a scheme to

generate an unpredictable and unbiasable randomness
without any third-parties in permissionless Blockchains.
The randomness can be used to 1) allocate validators
(an alias for nodes participating in the intra-consensus
process in the context of BFT-based systems) into dif-
ferent shards at the beginning phase and every recon-
figuration phase; 2) select the leader of each shard;
and 3) decide which shards a cross-shard transaction
should broadcast to, etc. Without such a strictly-chosen
randomness, malicious validators may be able to bias
the allocation and control the elections at will, such
as collusion within a shard (with a small number of
validators due to the weak scalability of traditional BFT-
based consensus algorithms [64], e.g., PBFT [5]).

• Then it ends up encountering the dilemma of BFT-based
1% attack that the weak scalability of BFT-based con-
sensus algorithm restricts the shard size, i.e., the number
of members in a shard, while too small a size can
potentially decrease the security of the intra-consensus
with a strict fault-tolerance (FT), as described by the
following cumulative binomial distribution,

s(k,m, p) = P [X ≤ c] =
c∑

k=0

(
m

k

)
pk(1− p)m−k,

f(k,m, p) = 1− s(k,m, p), (1)

where X is the random variable that represents the
number of times a malicious miner is picked [13], [57],
[58], [65]; m denotes the shard size; c denotes the
number of malicious members within a shard; and p
denotes the total FT among the entire network. It is
strongly suggested that s(k,m, p) should be greater than

4

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

99% [65], while only m & 144 can satisfy, of which
the traditional BFT-based consensus algorithm cannot
be capable1. In order to resolve this, highly scalable
BFT-based consensus algorithms with large shard size
require more attractions.

In this section, we compare and discuss the intra-
consensus protocols of the considered sharding mechanisms,
i.e., Monoxide, Elastico, Chainspace, OmniLedger, Rapid-
Chain, and Ethereum 2.0. Note that the Shasper used in
Ethereum 2.0 features its novel and engineering-oriented
design that combines the two major issues (intra-consensus-
safety and cross-shard-atomicity) and kills two birds with one
store. Elastico and Chainspace use PBFT for intra-consensus
that are not discussed in detail in this section, while the
randomness generator of Chainspace is not discussed as the
detail is not provided in [60].

Also note that, a threat model where the attackers can
refuse to participate or collude others (behave arbitrarily)
takes effect in all discussed sharding mechanisms in this
survey. Also, Elastico [57], OmniLedger [58], and Rapid-
Chain [59] assume the slowly adaptive attackers (who can
only succeed to attack in a long time), while Monox-
ide [54], Ethereum 2.0 [61], and Chainspace [60] assume
a model of uncoordinated majority where all participators
are game-theoretically rational, i.e., egoism (with an upper-
bounded fraction that can coordinate the majority). Therein
Chainspace [60] also introduces an audit scheme to prevent
attacks from dishonest shards.

1) Nakamoto-based - Monoxide - Chu-ko-nu mining
Monoxide is the first sharding mechanism that eliminates the
need for generating randomness, and implements Nakamoto
consensus algorithm for its intra-consensus. It introduces
a one-off bootstrapping in the beginning, to allocate each
node (including miners and non-miners) into different shards
based on their identity addresses. By using the proposed Chu-
ko-nu mining, Monoxide can achieve a large-scale network
with a huge number of shards and a flexible shard size. It
involves a Merkle Patricia Tree (MPT) [66] root consisting
of all proposed blocks among multiple shards, thus the P/n
can be multiplied by a factor k (k denotes the number of
shards a particular miner manage to mine on). Consequently,
dispersing mining power can be re-aggregated to solve the
1% attack.

Chu-ko-nu mining is inspired by the merged mining first
proposed in [67] and discussed in [68]. Merged mining shares
the mining power among a parent chain and multiple auxil-
iary chains based on the same kind of PoW algorithms being
run. As such, those auxiliary chains with relatively smaller
mining power can be protected by the total mining power of

1A few sharding mechanisms are incurring a total 25% FT based on the
33% FT in each shard, e.g., Elastico, OmniLedger, and Chainspace. This
can be a BFT-based 1% attack, by dispersing validators into as many shards
as possible to maximize the possibility to control some shards. Elastico and
Chainspace suffer from this security issue, while OmniLedger implements a
scalable BFT-based consensus algorithm to address this issue.

the parent chain. Likewise, Monoxide shares a similar idea
but conducting the mining process across multiple parallel
shards without any hierarchy. By involving an MPT root
consisting of all proposed blocks among the shards that a
specific miner cares about, the effective mining power can
be amplified by a factor of k. Defined in [54], the effective
mining power differs from the physical mining power, in the
sense that the physical mining power is calculated in hashrate
(the number of hash values that a miner can probe the nonce
per second) which directly corresponds to the total mining
power P, and the hardware performance (e.g, CPU or GPU),
while the effective mining power is indirectly obtained by
observing the block period and difficulty. They are expected
to be equaled in a non-sharded system, while with Chu-ko-
nu mining, the normal block can be replaced by a batch-
chaining-block (containing the information of the involved
shards, e.g., 1) the identity of each shard; 2) from/to which
shard the proposed block is received/sent; and 3) the MPT
proof of the proposed new block of the local shard associated
with the given MPT root, etc), so that a one-off physical
mining can be done to meet the different (or identical)
difficulties associated with its shard. Thus, the similar block
periods among the shards contribute to an effective mining
power of Pk/n ' P as k → n, hence addressing the 1%
attack.

To be specific, the PoW expression for a miner conducting
Chu-ko-nu mining is described as (2),

H(η ‖ H(x ‖MPTM)) ≤ γ, (2)

where γ denotes the PoW target corresponding to a certain
difficulty; H denotes the hash function; η denotes the nonce
that fulfills (2); x denotes the header content, including the
aforementioned information of the involved shards and the
other fields defined in the normal PoW, as well as the inbound
and outbound relay transactions in regards to the cross-
shard communication (discussed in Section III-B1); MPTM
denotes the MPT root consisting of all proposed blocks of
each involved shard, i.e., [B0,B1, ...,Bn−1] if k = n, where
each proposed block excludes its η, and contains its identity
and the list of relay transactions.

Thus, the miner can subsequently send the finalized block
to its corresponding shard with a satisfied η, as well as a
proof,

[MPTM , η,Bi, πi], (3)

where πi denotes the MPT proof of Bi in the given MPT
with a root of MPTM . Any node can verify Bi with πi, and
malicious miners have to revert the history in all involved
shards, i.e., from 0 to n − 1 in this case, to double-spend
the transactions because of MPTM being already updated
with the change of leaves. Thus, the effective mining power
is amplified by a factor of n.

Note that, Chu-ko-nu mining can handle both the mixed
and identical PoW targets of shards in one batch.
• In the case of mixed PoW targets, a miner is allowed

to finalize blocks and send them to any shards i to j

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

whose PoW targets have been fulfilled by the current
given η, with the rest of shards whose targets have yet
to be satisfied. After that, the mining process resumes,
while MPTM is updated because of the just finalized
blocks from shards i to j.

• In the case of identical PoW targets, a miner can also
finalize blocks and send them to all shards regardless
of whether the given η fulfills the PoW targets or not
(assume the PoW targets are asymptotically equal2, and
there must be some shards accepting its block and some
rejecting). In addition to this, a global subnet main-
taining and broadcasting headers from all shards where
all miners must participate can significantly reduce the
communication overhead, by eliminating the need of πi.

Having known these two modes, it is observed that ac-
cepting/rejecting a block of a single shard is independent
of the decisions from other shards, i.e., asynchronization.
Such a feature greatly promotes the throughput of Monoxide
in a secure way, and also allows the cross-shard-atomicity
in Monoxide, i.e., Relay transactions, as discussed in Sec-
tion III-B1.

However, in order to meet the requirement of Pk/n ' P,
Monoxide needs most of miners to conduct Chu-ko-nu
mining across as many shards as possible, i.e., k = n in
the best case. However, this implies the fact that if miners
only mine on k out of n shards, i.e., Pk/n, where k � n, the
factor expected to amplify the effective mining power will
be too small to secure the mining process, hence reducing
the attack cost. On the other hand, rational miners tend to
mine on all n shards to reap the maximum profit, which may
also result in the power centralization due to the huge cost of
bandwidth, disk storage, and computing processors that only
the professional mining facilities can afford.

Insight 1. The amplification to the effective mining power
relies on an incentive scheme that should encourage miners
to mine across k → n shards in Chu-ko-nu mining. This
also poses the issue of power centralization and additional
overhead to Monoxide.

2) BFT-based - Elastico

Using BFT-based algorithms for the intra-consensus is an
alternative to bypass the vulnerability of Nakamoto-based
algorithm (Insight 1). Thus, including but not limited to Elas-
tico, OmniLedger, RapidChain, Chainspace, and Ethereum
2.0 choose to implement BFT-based algorithm. Therein,
Elastico uniformly (re)allocates potential validators in terms
of the different least-significant bits of the unpredictable
PoW solutions at the beginning of each epoch, followed by
running PBFT for the intra-consensus. The randomness used
during the mining is generated by a proposed distributed
commit-and-xor scheme.

2Rational miners tend to mine on as many shards as possible so that the
PoW difficulties will be self-adapted to be identical.

Consensus Algorithm - PBFT’s restrictions in sharding
Due to the weak scalaibilty of PBFT, Elastico incurs an

unacceptable failure probability of 8% with f(k,m, p) =
f(6, 16, 0.25) based on the result of [64], while it still incurs
2.76% with f(k,m, p) = f(34, 100, 0.25) even extending
to a larger-scale network of m = 100 (which can be the
bottleneck [58]) by running powerful servers in cloud. This
security issue has been hindering Elastico to be practically
used, which are greatly resolved and improved by Om-
niLedger and RapidChain.

Insight 2. The traditional non-scalable PBFT incurs unac-
ceptably high failure probability with total FT of only 25%,
unless increasing the size of the consensus group, which leads
to a chicken-and-egg problem due to huge communication
overhead.

Generating Randomness - Distributed commit-and-xor
scheme

The distributed commit-and-xor scheme is implemented
for the randomness generation in Elastico. It can be catego-
rized into the commit-and-then-reveal scheme [69], with an
exception that the final result (randomness) varies depending
on the different combinations of seeds λi every validator
chooses. Concretely, the randomness generation is conducted
by a global subset, i.e., the final committee, and it follows the
procedures shown as below.

1) Each member of the final committee chooses a ran-
dom seed λi in secret, and broadcasts Hash(λi) to
any other members in the final committee. After that,
members in the final committee agree on a single set of
hash values S [70], with numbers ofHash(λi) ranging
from [2m/3, 3m/2] (m denotes the size of the final
committee)3.

2) Only if S collects at least 2m/3 signatures, every val-
idator in the final committee reveals their own seed λi
to the public. By collecting and verifying all 2m/3 (or
m/2+1) pairs of (λi, Hash(λi)), the final randomness
can be finalized by taking an XOR operation among
them. Note that, in the case of 3m/2 pairs are received,
the chosen λi values need to be attached with the
PoW solution in order to verify if the randomness is
matched. This is because the combination of the seeds
chosen by a validator can vary (m/2 + 1 out of 3m/2).

This design, however, is not perfectly unbiased. It is exponen-
tial biased and bounded by the size of λi, i.e., |λi|, and m. In
order to prevent the attacks from biasing the randomness by
deliberately choosing a specific set of m/2 + 1 values of λi
in his favor, |λi| should be large enough as m also increases.

3In fact, Elastico takes the discrepancies into account, where there can be
3m/2 messages received by a validator while there are only m validators in
the shard due to the network delay. In this case, other validators can choose
only (3m/2)×(1/3)+1 = m/2+1 values ofHash(λi) to generate their
own randomness. In contrast, validators receiving only 2m/3 values need to
choose all 2m/3 values of Hash(λi) to generate their own randomness

6

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

···

···

ByzCoin ByzCoinX

··· ··· ···

··· ··· ··· ··· ···

FIGURE 2. (Left) ByzCoin implements a tree with a fixed branching factor and
an increasing depth. (Right) ByzCoinX implements a shadow tree with a fixed
depth and an increasing branching factor.

This incurs large communication overhead, in addition to the
overhead of the extra verification during PoW process. In the
case of only 2m/3 values of (λi, Hash(λi)) being received,
the lack of Verifiable Secret Sharing (VSS) [71]-[75] forces
all senders of these 2m/3 values to be online all the time with
no network outage or delay.

Insight 3. The distributed commit-and-xor scheme of Elas-
tico has weak availability and robustness, and it is not a
perfectly unbiased randomness generator unless paying more
for the communication overhead.

3) BFT-based - Chainspace
Chainspace uses an optimal implementation of PBFT, Mod-
SMaRt [76], which accounts for the intra-part of the S-BAC
protocol proposed by Chainspace. However, Mod-SMaRt
does not scale PBFT to address the issue of 1% attack.
It decouples the communication and consensus primitives,
while it only reduces the overhead of the latter with an
unchanged overhead of O(n2) by replacing the process with
the Validated and Provable Consensus (VP-Consensus). In
addition, the high failure probability of the intra-consensus
in Elastico also takes effects in Chainspace, which restricts
the use of Chainspace in a large-scale network. Note that,
the stages of Propose and View change take as input the
elected leader, while the detail of randomness generator is
not provided in [60].

4) BFT-based - OmniLedger
OmniLedger combines RandHound [77] and Algorand-based
Verifiable Random Function (VRF) [78] to produce an
unpredictable and unbiasable randomness under a 25% FT
for re-allocation and leader-election of each shard and sub-
group. Also, a new scalable BFT-based consensus algorithm,
ByzCoinX, is proposed by optimizing ByzCoin [65], which
resolves the dilemma of BFT-based 1% attack in sharding, by
increasing the shard size to hundreds and up to a thousand.

Consensus Algorithm - ByzCoinX
Initially, ByzCoin [65] was the first scalable consensus

protocol that combines PoW and BFT algorithms in a tree-
based structure, by means of scalable collective signing
(CoSi) [79], [80].

ByzCoinX4 optimizes ByzCoin in terms of the better
latency and more robust FT for a shard with hundreds of
validators. Concretely, ByzCoinX implements a shallow tree

4https://github.com/dedis/cothority/tree/master/byzcoinx

with a fixed depth-3 and an increasing branching factor; see
Fig. 2. Based on the shard size, each group leader is respon-
sible for a group forming a sub-tree with a fixed number
of group members. Note that, unlike ByzCoin implementing
PoW to elect the group leader within a shifting window,
ByzCoinX elects each group leader by the randomness gen-
erated at the beginning of the current epoch, followed by
evenly allocating the rest of the validators into each group
(thus the validators account for the leaves of each sub-tree).
Also, the group leaders maintain their roles until a view
change phase occurs, which eliminates the shifting window,
as well as the difference of keyblocks and microblocks, as
defined in ByzCoin. The leaders of each sub-tree aggregate
at least 2/3 signatures from its children (leaves), followed
by the signature regarding each group being sent to the root
(protocol leader). The decision can be finalized whenever the
root receives at least 2/3 signatures from its children (group
leaders).

By using such a new tree-based structure, ByzCoinX can
outperform ByzCoin by a better latency for a shard with hun-
dreds of validators due to the shorter path from leaves to the
root with a fixed depth, and a robust fault-tolerance due to the
increasing branching factor. When the number of validators
goes above a threshold, the latency of ByzCoin outperforms
that of ByzCoinX due to the increasing branching factor. On
the other hand, ByzCoinX can achieve a failure probability
around 1.5% with f(k,m, p) = f(48, 144, 0.25), and even
1% with f(342, 1024, 0.3) at the cost of latency, as shown in
Fig. 10 of [58].

Insight 4. ByzCoinX improves the scalability with a lower
failure probability for the intra-consensus of OmniLedger, by
sacrificing the transaction latency in large-scale networks.

Generating Randomness - Combination of RandHound
and VRF

In order to address the issue of Insight 3, OmniLedger
implements a scalable bias-resistant distributed randomness
generator, RandHound [77], combined with a VRF-based
leader election algorithm proposed by Algorand [78].

RandHound takes advantage of the following technologies
to achieve an unbiasable and unpredictable randomness gen-
erator,
• Publicly VSS (PVSS) [73] that allows participating val-

idators to be offline during the reveal phase (as opposed
to the traditional commit-and-then-reveal scheme used
in Elastico), by broadcasting the secret shares of the
original λi in advanced;

• Schnorr Signature [81] that is the foundation of
CoSi [79], [80] used in ByzCoinX and the threshold
signatures [82]-[86],

so that the communication complexity can be reduced to
O(cm2) from O(m3) (m denotes the total number of par-
ticipating validators; c denotes the size of sub-group).

Several sub-groups are created by dividing the entire group
of the participating validators, with c validators conducting

7

Guangsheng Yu et al.: Survey: Sharding in Blockchains

PVSS within their sub-groups, respectively. Thus, a client
(the leader randomly elected by the VRF) can receive the
secret shares based on his choice from the corresponding sub-
groups in a global run of CoSi. Consequently, the client can
construct collective randomness by recovering the received
secret shards. Meanwhile, a proof to verify the produced
randomness is also recorded for third-party verifications.

OmniLedger implements a VRF-based election in order
to randomly choose such a leader as the client among these
participating validators. To be specific,

RE,view,i, πE,view,i = V RF (configE ||view, ski), (4)

where configE denotes the settings pre-defined by a third-
party; ski denotes the private key of a validator-i; view
denotes a view number related to a timeout ∆; RE,view,i

and πE,view,i denote the final randomness and its proof with
specific epoch E and view for validator-i. By default, the
validator with the smallest RE,view,i is selected to be the
leader, and view increases if this round of RandHound is
timeout. In the case of view > 5 (proven < 1% by [58]), the
RandHound is replaced by a coin-tossing scheme inspired
by [87] that only implements a typical PVSS [74] in a poor
complexity of order O(m3). On the other hand, this protocol
still relies on third-party settings configE pre-defined in the
genesis block to prevent the attackers from biasing the result
by secretly rerunning the protocol.

Insight 5. The combination of RandHound and VRF suffers
from the reliance on a third-party initial randomness pre-
defined in the genesis block. A falling-back to an inefficient
scheme occurs in the context of asynchronous networks,
which limits the salability that RandHound could have guar-
anteed.

5) BFT-based - RapidChain
RapidChain [59] implements a VSS-based [71] distributed
random generation (DRG) protocol to agree on an unbiased
randomness. On top of the DRG protocol, RapidChain
addresses Insight 5 by introducing a deterministic random
graph where a certain fraction (50% with high probabil-
ity [59]) of the number of malicious validators can be
guaranteed in the initial set (the reference committee, similar
to the final committee in Elastico), which will be discussed
in Section III-C4. Inspired by [88], in addition, RapidChain
resolves the dilemma of BFT-based consensus algorithm
in sharding, by increasing the FT of the intra-consensus
protocol up to 50%.

Consensus Algorithm - 50% BFT with pipelining
RapidChain aims for higher FT (50% BFT) of the intra-

consensus protocol to address the dilemma of BFT-based
1% attack for sharding mechanisms with a small shard
size. To be specific, RapidChain runs an autonomous pre-
scheduled scheme within a shard to agree on a timeout ∆,
based on which the consensus speed can be adjusted by
the system to prevent the asynchronization. This ensures

PROPOSE ECHO ACCEPT PROPOSE ECHO ACCEPTPENDING

PROPOSE ECHO ACCEPT

Pending on Hi+1

Iteration i
(Hi)

Iteration i+1
(Hi+1)

Iteration i+2
(Hi+1, Hi+2)

Node 0

Node 1

Node 2

Node 3

PROPOSE ECHO ACCEPT PROPOSE ECHO ACCEPT ACCEPTECHOPROPOSEPENDING

Hi+1, H'i+1, H''i+1, ...

Iteration i
(Leader: Node 0)

Iteration i+1
(Leader: Node 3)

Iteration i+2
(Leader: Node 2)

FIGURE 3. RapidChain implements a synchronous BFT-based consensus
protocol by pre-scheduling the timeout, based on which the consensus speed
can be adjusted by the system, hence achieving FT of 50%. In addition,
RapidChain significantly improves the throughput by pipelining the conseusus
process, i.e., re-proposing the previous pending blocks while agreeing on the
current proposed block. The dark red arrows denote that the leader gossips
more than one version of Hi+1, while the yellow arrows denote pending
associated with the proposed header of iteration i + 1.

a synchronous network in the long-term, in which a non-
responsive synchronous (with constant rounds) BFT-based
consensus protocol with FT of 50% can be used.

However, re-proposing the pending block by the new
leader in the next iteration greatly reduces the throughput
by roughly half, while the current leader that is corrupted
equivocates the consensus (if based on the original version
of [88]). In order to address this issue, the pipelining is used
where pending blocks can be re-proposed along with the new
block that is considered safe; see Fig. 3, (Hi+1, Hi+2) are
proposed during iteration i + 2. Note that, a new proposed
block is considered safe so long as it points to a pending
block that has been collected m/2 + 1 votes. Also note that,
a valid vote can be either,
• temporary vote: an echo associated with the proposed

header, Hi of iteration i; or,
• permanent vote: an accept associated with the pro-

posed header, Hi of iteration i (if and only if there is
only one version of header Hi received from the leader,
and at least m/2 + 1 echoes of the same Hi received
from others, tagging the header as pending otherwise).

As there exist multiple versions of headers associated with a
specific iteration, e.g., [Hi+1, H

′
i+1, H

′′
i+1...] of iteration i +

1, only one version is selected by the leader of iteration i+ 2
to be re-proposed along withHi+2. Here,Hi+2 is considered
safe as Hi+1 has been collected m/2 + 1 echoes serving as
a proof in iteration i + 1. Consequently, (Hi+1, Hi+2) are
accepted if any nodes have received at least m/2 + 1 echoes
associated with both Hi+1 and Hi+2.

Referring to (1), the design of 50% BFT achieves a failure
probability around 1.5% with f(k,m, p) = f(17, 32, 0.33),
and even 1% with f(51, 100, 0.39) at a cost of communica-
tion overhead.

Insight 6. Differing from ByzCoinX in OmniLedger, the 50%
BFT of RapidChain solves the BFT-based 1% attack by

8

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

increasing the FT of intra-consensus protocol, nevertheless,
this can only suit small-sized shards (not scalable with
communication overhead of O(n2)). In addition, the pre-
scheduled scheme defining the timeout is not conceivably
proved synchronous enough to run the pipelining 50% BFT.

Generating Randomness - VSS-based DRG protocol
The proposed DRG protocol by RapidChain, in fact, only

implements a basic VSS-shares scheme, where all participat-
ing validators can reconstruct the final randomness r by the
share of r (the share equals to

∑m
l=1 ρlj calculated by other

validators except validator-j) received from other validators.
Note that, ρ ∈ Fp denoting a finite field of prime order p,
and m denotes the size of the reference committee. As a
result, the DRG protocol encounters a similar issue to that
of any other typical VSS scheme, i.e., non-scalable (even
though it suits with the 50% BFT in small-sized shards).

6) BFT-based PoS - Ethereum 2.0
Ethereum has been running publicly as the first decentralized
Blockchain platform (Blockchain 2.0 [89], [90]) that imple-
ments a Turing-complete programming language to develop
smart contracts for the first time since 2014 [66]. With the
gradually rising demands of high throughput, Casper-FFG
with sharding (Shasper) is proposed [61] to allow the current
Ethereum mainnet (a PoW-based single chain, also referred
to Ethereum 1.0) to migrate to the new architecture stably
and securely. Note that, we mainly focus on Shasper that
has been running on testnet at the time of writing (referred
to Ethereum 2.0), rather than the still-up-in-the-air Casper-
CBC [91], based on which Ethereum plans to end up im-
plementing a PoW-free Proof-of-Stake (PoS)-based sharded
structure. Note that, only the intra-consensus protocol and
cross-shard transactions of Shasper (referring to Phases 0-1,
and Phase 4 in [92]) are discussed in this paper, because the
other subprotocols have not yet been finalized based on the
description in [61].

Consensus Algorithm - Solving the intra-consensus in a
global way

Shasper also chooses to use the second method (pre-
sented in Section III-A), a BFT-based consensus algorithm,
to solve the 1% attack issue of intra-consensus. Concretely,
the Casper-FFG of Shasper can be regarded as a variation of
BFT-based PoS consensus algorithms [78], [93] with careful
designs for generating randomness, as opposed to the virtual-
mining PoS consensus algorithms [94]-[96]. Note that, we
assume a scalable BFT algorithm similar to ByzCoin [65]
and ByzCoinX of OmniLedger is used in Shasper.

Shasper decouples the member allocation and consensus
process, which leads to the fact that the intra-consensus
within a shard also involves those validators from other
shards being the attesters. The members of attesters group
associated with a specific shard can be updated every slot.
This also implies that an eligible validator in Shasper should
at least store all block headers (headers is called collations in

Shasper) of all shards regardless of which shard this validator
is allocated at the beginning of every epoch. The procedures
are summarized as follows.

1) To become a validator, a node needs to deposit a certain
amount of ETH (currently it is set to 32ETH [97],
[98]) in an official smart contract5on the original PoW-
based mainnet. Having known the deposit, the system
registers this node as a valid validator on a new individ-
ual chain, i.e., the beacon chain, while the beacon chain
takes the role of a coordination device of the whole
Shasper protocol in regards to managing the global
validator pool, randomness generation, incentive, and
message exchange.

2) An infrequent shuffling for the global validator pool is
executed to re-allocate all validators to different shards
based on the generated randomness. Such an epoch is
currently set to 6.4mins [97], [99]. During each epoch,
a proposer is elected based on the randomness from the
local validator pool in each shard every 8s slot [97].
A proposed collation containing transactions of each
shard is broadcast to all attesters assigned to the same
shard, followed by a finalized collation being stored in
the local ledger if the consensus process succeeds.

3) In addition to the hash value of each block on the PoW-
based mainnet required to be stored on the beacon
chain, a checkpoint is finalized by 400 validators ran-
domly selected from the global validator pool for each
shard every 100 collations [100]. After that, these se-
lected validators aggregate all checkpoints and upload
them to the beacon chain. By storing the checkpoints as
well as the collation headers of all shards, the beacon
chain is able to obtain the local state and a group of
finalized transactions (and its corresponding receipts)
of each shard, referring to the State root and Txgroup
root fields in the beacon chain headers, respectively.
As a result, the deterministic finality can be achieved
rather than a probabilistic one that Ethereum 1.0 used
to rely on.

It is worth noting that the members (attesters) participating in
the intra-consensus of a shard are, in fact, not limited to the
indigenous validators (who have been allocated in a shard
at the beginning of the epoch, and randomly selected by the
generated randomness from the global pool). The group of
attesters can be re-allocated for each proposed collation in a
times slot, which provides the strongest security but incurs
huge overhead when, 1) each shard conducts the consensus
among continuously updated validators; 2) validators need
to store data of more shards; and 3) the 1-slot-period re-
allocation has to be executed.

Insight 7. The security level of Ethereum 2.0 - Shasper pro-
vides more flexible allocation for intra-consensus than that
of any other considered sharding mechanisms, nevertheless,

5https://github.com/ethereum/eth2.0-specs/blob/dev/specs/core/0_deposit-
contract.md

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Validator 1: VDF(λ1) + Deposit
Validator 2: VDF(λ2) + Deposit
Validator 3: VDF(λ3) + Deposit

Validator k-1: VDF(λk-1) + Deposit
Validator k: VDF(λk) + Deposit

…

…
function Commit()

function Reveal()

……
Validator 1: λ1
Validator 2: λ2

Validator k: λk

…

function Generate() ℛ =#
$%&

'

𝜆$

FIGURE 4. Ethereum 2.0 implements RANDAO and Verifiable Delay Function
to generate randomness.

by incurring larger overhead.

Generating Randomness - Combination of RANDAO and
VDF

RANDAO [101] is implemented based on the commit-
and-then-reveal scheme [69] written in a pre-defined smart
contract running on the beacon chain. To be specific, there are
three functions defined in the smart contract, each of which
must run in order; see Fig. 4. They are described as follows,

1) Commit(): all participating validators select a seed λ in
secret (e.g., the hash of the parent block), after they
have been deposited 32ETH in the smart contract.
Then each of the validators runs a Verifiable Delay
Function (VDF) [102] as a “hash onion” [100], [103],

V DF (λi) = Hash(Hash(Hash(...Hash(λi)))),
(5)

where the VDF conducts sufficient times of Hash(),
e.g. 10, 000 times shown in [100] for a sufficiently
long period (102min [97]). As such, some malicious
manipulation can be significantly prevented, e.g., de-
ciding not to reveal its commitment if

∑k−1
i λi is

found biased to k-th validator. The unbiased random-
ness is guaranteed by the VDF where only the serial
computing can be run regardless of the computation
power that is owned by this validator. Also note that,
each validator can only commit once.

2) Reveal(): validators reveal their own seed λ to the
smart contract, thus the contract can verify if the seed
matches up with their corresponding commitment by
verifying the 10, 000 preimages,

Hash−1(Hash−1(...Hash−1(V DF (λi)))). (6)

3) Generate(): the smart contract generates a randomness
by adding up all λi. Punishment is applied to those who
fail to reveal their own λ in time (corresponding to the
time overhead of the defined VDF).

However, this design still suffers from three flaws, as shown
in the following.
• A VDF consisting of n times Hash(·) incurs a com-

putation overhead of O(n), which is inefficient. There
have been a few advanced VDF schemes proposed by
the recent researches [104]-[106].

• This design is prone to the censorship attack [107].
Malicious validators can send irrelevant transactions
with a high gas fee to fill up a block. Thus, the Commit

may have to be interrupted as the gas limit of the block
is run out.

• This design is also prone to the grinding attack [108]
if the seed λ is based on the hash of the parent block,
because validators can send arbitrary transactions, and
try to find out the most biased seed by collecting
different sets of transactions.

Insight 8. Current design of randomness generator in
Ethereum 2.0 incurs high computation overhead, and is over-
whelmingly dependent on the incentive scheme (punishment).
It is prone to censorship attack and grinding attack, if the
attack cost is acceptable.

B. ATOMICITY OF CROSS-SHARD
It is of importance that a sharding mechanism can support
the cross-shard-verification and cross-shard transactions for
validators allocated in different shards, according to the result
shown in [58], [59] (showing that the probability of cross-
shard transactions approaches to 100% as the total number
of shards increases). Maintaining an individual global root
chain may be one of the solutions to verification, but it
does not natively support cross-shard transactions without
any additional mechanism, e.g., lock/unlock operation in syn-
chronous networks or lock-free operation in asynchronous
networks. The demand for a secure protocol of cross-shard
transactions gradually outweighs a naive mechanism lacking
the support of cross-shard transactions (even it can achieve a
high improving factor N).

Differing from the traditional database system, the support
of cross-shard transactions proposes a challenge to guarantee
the Atomicity of the data that was first defined in [62], [63]
across multiple shards. Not only a simple payment transac-
tion involving withdraw and deposit operations needs to be
atomically protected, but also the demand for the complicated
conditional statements attracts more attention to the contract-
oriented Atomicity.

In this section, we compare and discuss the protocols
to achieve cross-shard-atomicity in the considered sharding
mechanisms. We focus on the design of cross-shard transac-
tion, including Monoxide that supports asynchronous lock-
free simple payment transactions; OmniLedger, RapidChain,
and Ethereum 2.0 that supports simple payment transac-
tions with lock/unlock scheme; and Chainspace that sup-
ports cross-shard operations for smart contracts (Elastico is
vaguely discussed as it does not support atomic-safe cross-
shard transactions.

1) Monoxide - Relay Transactions
In order to bypass the overhead of lock/unlock operation that
greatly constrains the throughput and performance in regards
to cross-shard transactions, Monoxide proposes Eventual
Atomicity where a single cross-shard transaction is decoupled
into an originated transaction in the local shard, and a relay
transaction being put into the outbound transactions set (and
hence becoming an inbound transaction when it is received

10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

by the destination shard). Rather than the immediate atom-
icity, Eventual Atomicity features its lock-free design and
takes advantage of Chu-ko-nu mining across parallel shards
in an asynchronous network, in order to maximize the global
throughput via simple message exchange.

Concretely, the miners of shard a, i.e., an originate shard
for a cross-shard transaction t, generate a relay transaction tr
in its local outbound transaction set if the withdraw operation
passes the verification. Here, the withdraw operation is ver-
ified in the form of a local transaction tl, decoupled from t,
and stored in the local ledger. On the other hand, there are two
additional MPT roots regarding, 1) the outbound transaction
set; 2) the inbound transactions and local non-cross-shard
transactions (denoted as MPTO and MPTI , respectively,
and stored in the batch-chaining block defined in Chu-ko-
nu mining). By means of MPTO and MPTI , the miners of
shard b, i.e., the destination shard for t, are able to verify tr
via the attached proof,

[ShardID, ShardSize,BlockHeight, i, tr, πtr], (7)

where i denotes the index of tr in the outbound transaction
set generated by shard a; BlockHeight denotes the height of
block B that is stored tl; πtr denotes the MPT proof of tr in
the given MPT with a root of MPTO stored in the header
of B. Thus, it can be consequently observed that a cross-
shard transaction in Monoxide achieves an improving factor
of N = n

2 as it is split into the locally-executed transactions
and relay transactions expected to be outbound.

However, differing from the cross-shard transactions that
can be proactively rejected by an acknowledgement from
an entity (this is in charge by clients in OmniLedger, as
discussed later), the chain forking in Monoxide can cause a
reversion of the history and orphanize the block containing
the tl that has been executed within a shard. Without any
existing of acknowledgement reminding the originated shard
the status of tr in the destination shard, the forking not
only invalidates tr in the destination shard (if tr has been
sent out before the forking occurs), but also invalidates all
the subsequent cross-shard transactions relayed to any other
shards. This implies the following drawbacks.

Incompatibility to Smart Contracts. There does not exist
an upper-bound of timeout indicating if Eventual Atomicity
of a cross-shard transaction has been finalized, leading to the
incompatibility of conditional transactions, e.g., complicated
operations in smart contracts.

Additional Latency. There must be λ confirmation blocks
delaying the execution of the inbound transaction, i.e., tr, in
order to ensure the corresponding tl in the originated shard is
finalized and unlikely reverted. Also, the absence of acknowl-
edgement and strict upper-bound of timeout deteriorates the
latency and throughput due to the inevitable message loss,
which incurs additional latency.

Unexpected Replay. To invalidate the inbound transactions
tr and all the subsequent trs due to the failure and reversion
of tl in the originated shard, and prevent the history of all
destination shards from being reverted, the history needs

to be rebuilt from the genesis block of each shard. This
incurs unexpected overhead even if a checkpoint scheme is
introduced, e.g., the shard pruning in OmniLedger [58].

Insight 9. In order to maximize the global throughput, Even-
tual Atomicity achieves the lock-free asynchronous cross-
shard transactions at the cost of incurring Incompatibility
to Smart Contracts, Additional Latency, and Unexpected
Replay.

2) Elastico - No cross-shard Transactions
The elected leader of the traditional PBFT consensus al-
gorithm in each shard finalizes and sends an agreement in
regards to local transactions to a global subset, i.e., the final
committee, as discussed in Section III-A2. A final global
block is stored in the global ledger and broadcast to all
validators among the network, so that validators can verify
the transactions from other shards. However, Elastico does
not provide a secure protocol to ensure the atomicity across
shards via this global ledger. There will be a fund loss as
an unexpected dead-lock occurs if the cross-shard transaction
sent to the destination shard gets rejected.

3) OmniLedger - Atomix Protocol
To simplify the cross-shard-atomicity, OmniLedger proposes
a client-driven Atomix protocol that is UTXO-based, where
the communication overhead is shifted outside the shards.
This indicates that the clients act as a gateway exchanging
messages across multiple shards, by paying an extra cost of
overhead.

Concretely, it consists of the following procedures.

1) Initialize. A UTXO-based cross-shard-transaction is
created and gossiped to all input shards (ISs) by
a client, where the inputs of this transaction spend
UTXOs in some ISs, while outputs create new UTXOs
in some output shards (OSs).

2) Lock. The cross-shard-transaction received from the
client is stored in the local ledger within the shard
after the verification is conducted. Meanwhile, either
a proof-of-acceptance or a proof-of-rejection is created
by the shard leaders attached with the corresponding
CoSi, in the case that success or failure is returned
by the verification, respectively. Therein, a proof-of-
acceptance contains an MPT proof and the transaction
itself.

3) Unlock.
• Unlock to Commit. The client issues an Unlock

to Commit consisting of the locked cross-shard
transaction and the attached proof-of-acceptance,
and gossip it to OSs, as soon as it receives proof-
of-acceptance from all ISs. After the success of
verification, OSs store the cross-shard transaction
in the local ledger.

• Unlock to Abort. The client issues an Unlock to
Abort to those ISs issuing a proof-of-acceptance

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

0x00 0x01 0x10 0x11

C0 C1 C2 C3
20 20

21 21

C2

C3
inputs outputs
I0 O3

I2

Cross-shard Tx
(UTXO)

inputs outputs
I0 I'0

inputs outputs
I2 I'2

C0

C2

Tx0

Tx2

C3

inputs outputs
I'0 O3

inputs outputs
I'2 O3

inputs outputs
I'0 O3

I'2

Tx3

T

T

FIGURE 5. (Top) Each committee (shard) maintains a routing table containing
log2 n other committees. The routing table improves the efficient
communication among multiple shards, as described in Section III-C2.
Committee C0 can locate C3 (via C2) responsible for transactions with prefix
0x11. (Bottom) To cross-validate a UTXO-based cross-shard transaction
requires this transaction to be spilt in three-way confirmation.

to unlock the state, once it receives a proof-of-
rejection from one IS.

Consequently, a cross-shard transaction containing inputs
from one single IS and OS can achieve an improving factor
of N = n

2 , as this transaction is only stored in two shards,
i.e., this IS and OS. On the other hand, inputs and outputs of
multiple ISs and OSs result in the transaction being stored
among the involved shards, i.e., an improving factor of
N = 1 in the worst case that the entire network is involved.

Insight 10. Atomix Protocol is, in fact, a band-aid at best. It
sacrifices the support of light-weighted clients, but requires
powerful performance for a client-driven exchange of mes-
sages.

Insight 11. Atomix Protocol has poorer support for UTXO-
based cross-shard transactions as the number of participat-
ing shards increases, which is unable to take full advantage
of the UTXO format.

4) RapidChain - Three-way Confirmation

To verify a UTXO-based cross-shard transaction, there pro-
poses a three-way confirmation in RapidChain to optimize
the Atomix Protocol in OmniLedger, as shown in the bottom
part of Fig. 5. Concretely, k − 1 sub-transactions (Tx0 and
Tx2) destined for each committee that stores its own Ii of
the cross-shard transaction, with Ii as the inputs and I ′i as the
outputs, respectively, and k is the number of inputs of this
cross-shard transaction, are created by the output committee,
i.e., C3 as the Cout. After passing the verification on each
input committees, i.e., C2 and C0 as the two Cin(s) of the
original cross-shard transaction, Tx0 and Tx2 are stored
in their own local ledger, respectively. Finally, all Cin(s)
send the corresponding transactions back to C3, and end up
aggregating Tx3 to be finally stored in the local ledger of C3.

In order to determine the improving factor N , we assume
that a single committee can only be either a sender committee

or a receiver committee (practically a shard can be both
a sender or a receiver) at the same time for simplicity. In
the worst case where a full-sized cross-shard transaction
contains only the input from a single committee, Cin has
to send this full-sized transaction twice (each corresponds
to invoking the inter-communication once), i.e, 1-st and 3-rd
handshaking. On the other hand, the period fromCin sending
Cout the cross-shard transaction to it finishing verifying the
sub-transactions received, equals to the period from Cout

finishing verifying the original cross-shard transaction to it
finishing verifying the confirmations sent by Cin, i.e., one
block period. It is because the original cross-shard transaction
is spilt into,

• the sub-transactions that are supposed to be stored in
the local ledger of each Cin (a full-sized of the original
cross-shard transaction with inputs from a single com-
mittee or inputs involving all committees);

• the final transaction that is supposed to be stored in the
local ledger of Cout (another full-sized of the original
cross-shard transaction) at the end of the protocol.

Consequently, either of these two kinds of transactions
accounts for the intra-throughput of a committee, hence one
block period, as shown by the T at the bottom of Fig. 5.
Therefore, an improving factor of N = n

2 can be achieved.

Insight 12. The routing table and three-way confirmation
resolve the issue of OmniLedger, by significantly reducing
the overhead of communication, even with a large number
of participating shards in a single UTXO-based cross-shard
transaction. However, by polluting specific routing tables, the
eclipse attack [109] becomes a concern.

5) Ethereum 2.0 - Using Receipts
Having known the beacon chain, validators can not only
address the issue of intra-consensus, but also address the
issue of cross-shard-atomicity, i.e., cross-verifying the nor-
mal transactions in each shard the validators care about, and
enabling the cross-shard transactions. Note that, Shasper so
far can only support a simple account-based (as opposed
to the UTXO-based) payment transaction, while the design
contract-oriented cross-shard transaction has not been final-
ized and presented.

The cross-shard transactions in Shasper rely on the re-
ceipts. Receipts correspond to accepted cross-shard trans-
actions that are used to verify and log the validity of the
transactions’ operations. Also, the result of these operations
can be obtained by the involved validators conducting cross-
validation in the destination shards. By means of receipts
whose identities are contained in Txgroup root field (Receipt
root), the cross-shard transactions are split into multiple sub-
transactions being executed in the originated and destination
shards, respectively. This can be regarded as a variation of
the synchronous lock/unlock scheme implemented in Om-
niLedger and RapidChain, while the receipts take the actual
role of the lock.

12

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Concretely, a proposed cross-shard transaction, t, is split
into a group of t1, t2, and t3.

1) The preliminary withdraw operation is executed and
stored after t1 is verified in the originated shard (in-
put shard, namely IS). A receipt corresponding to t1,
denoted as r1, is included in Txgroup root of the latest
collation being proposed by the chosen proposer.

2) Having waited for a period that t1 has been deter-
ministically finalized by the checkpoints (this period
can be shortened to meet different requirements, which
is similar to the trust-but-verify transaction validation
scheme proposed in OmniLedger; see the first point of
Section III-C and Insight 14), a proof-of-receipt is sent
to the destination shard (output shard, namely OS) as
the second sub-transaction, i.e., t2.

3) The OS can mark the r1 as spent, as validators of the
OS are able to verify the status of r1 by the correspond-
ing Txgroup root that is stored in the beacon chain, and
the received proof-of-receipt. Meanwhile, the deposit
operation is executed.

4) The OS sends a proof-of-response as t3 to the original
IS, indicating that the whole process of t has been
finalized. Validators of the IS can finally confirm this
fact by verifying the corresponding receipt of proof-of-
receipt on the beacon chain.

Consequently, a cross-shard transaction that is account-based
in Ethereum 2.0 - Shasper can achieve an improving factor of
N = n

3 due to the preliminary transaction, proof-of-receipt,
and proof-of-response.

Insight 13. Ethereum 2.0 - Shasper introduces account-
based cross-shard transactions by implementing the global
(stored by all validators) beacon chain to exchange the
essential message, i.e., the receipts and proofs. However,
Shasper cannot be more than a transitional version due to
the disadvantage of possible overhead.

6) Chainspace - The inter-part of S-BAC
S-BAC refers to Sharded Byzantine Atomic Commit, whose
intra-part makes use of an optimal PBFT, Mod-SMaRt,
to handle the intra-consensus process; see Section III-A3.
Upon the intra-consensus being finalized within a shard
(Chainspace allocates nodes in different shards based on the
objects management, as described in Section III-C6), the
elected leader of the shard, the BFT-Initiator, takes responsi-
bility for the atomicity of cross-shard transactions. It is worth
noting that Chainspace makes use of the concept of BFT to
ensure such atomicity, which constitutes the inter-part of S-
BAC.

Concretely, it resembles the Atomix Protocol in Om-
niLedger, with a crucial optimization where BFT consensus
process must be conducted instead of a naive client-driven
model. It consists of the following procedures.

1) Initialize and Intra-consensus An object-based cross-
shard-transaction T is created by a client and gossip to

all shards that manage the input objects, upon which
the intra-consensus is conducted in each of these shards
with an accept or commit broadcast to other concerned
shards. Objects are set to active by the matching shards
if ending up a commitment of T .

2) Lock All involved objects in T are locked whenever a
commit is received.

3) Unlock.
• Unlock to Commit. The lock of each involved

object in T is released if and only if commit is re-
ceived from all concerned shards, upon which the
objects are set to inactive and the output objects
are created via BFT consensus process in a certain
shard.

• Unlock to Abort. The same locks are released
whenever an abort is received, upon which the
objects are set back to active and may be used by
other subsequent transactions.

Similar to the problem the Atomix Protocol of Om-
niLedger has encountered, i.e., Insight 11, the improving
factor upon a cross-shard transaction can be ranged from
N = n to N = 1 with T containing only one input
object and no object being output, and T involving all objects
around the entire network, respectively.

C. GENERAL IMPROVEMENTS
In this section, some general key challenges and improve-
ments particularly proposed by the considered sharding
mechanisms are listed. Such improvements can be generally
implemented to address the new issues the considered shard-
ing solutions pose to the entire system. They include trans-
action latency, inter-communication protocol, shards ledger
pruning, decentralized bootstrapping, securing the epoch re-
configuration, and sharded smart contract.

1) Reducing Transaction Latency
Apart from the throughput, the transaction latency, referring
to how long a transaction is deterministically confirmed and
finalized, is most likely more sensitive to individual users.
It has been shown that the BFT-based 1% attack (refers
to Section III-A) can be either resolved by implementing
a scalable BFT consensus, e.g., OmniLedger and Ethereum
2.0, or increasing the FT within a single shard, e.g., Rapid-
Chain. However, it remains the issue of transaction latency,
as described below.
• The transaction latency deteriorates as a scalable

BFT consensus features a large scale shard size to
address the 1% attack, according to the evaluation
shown in [58], [65]. Thus, Omniledger introduces the
trust-but-verify transaction validation scheme running
within each shard to provide the real-time transaction
confirmation time, which can also be implemented in
any compatible sharding scheme, such as Ethereum
2.0. Concretely, validators of a shard are split into an
optimistic group and a core group. The optimistic group

13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

is further split into multiple small sub-groups (even a
sub-group with only one validator is allowed), hence
each sub-group can verify the transactions in a real-time
manner. Subsequently, the core group conducts the sec-
ond verification, where the inconsistent and malicious
transactions can be censored. Note that, there can be
multiple inputs from multiple optimistic sub-groups to
this second verification in a concurrent manner. Finally,
the transactions passing the second verification can be
contained in the proposed block and stored in the local
ledger.

Insight 14. The real-time transaction latency is achieved
by sacrificing the security, as the further 1% attack can
still happen in optimistic groups. Similar to IoTA [25], this
real-time transaction latency can only be used in specific
scenarios with lower security requirements.

• The transaction latency deteriorates as a non-scalable
50% BFT consensus incurs larger communication over-
head. Thus, upon the 50% consensus only agreeing
on a digest of the block. RapidChain implements the
information dispersal algorithm (IDA)-based gossip
protocol [110], [111] to transmit large payload more
efficiently. Concretely, the sender divides the original
message into some n-equal-sized chunks, followed by
applying an (m,n) erasure code scheme to encode the
n chunks to m chunks. As a result, each node can
reconstruct the original message by receiving valid n
chunks from its neighbors with the help of some proofs,
e.g, the MPT proofs, hence significantly reduces the
latency.

2) Inter-Communication Protocol
Differing from the protocol to achieve the atomicity-cross-
shard, the inter-communication protocol focuses on the over-
head of data transmission among shards. The related schemes
discussed in this survey include the following two major
types.
• A global root chain acting as a message distributor

is implemented, while each validator (or miner in the
context of Monoxide) needs to store this chain. Sharding
mechanisms using this kind include Ethereum 2.0,
Monoxide with identical PoW targets, and Elastico6.

Insight 15. The bottleneck is shifted to the global root chain
due to its single-chained structure, as opposed to sharded
structure. This can only be a transitional version but not a
real solution.

6Elastico maintains a final committee where the finalized block is pro-
posed and stored in the global root chain, based on the agreement from each
shard. The global chains implemented by OmniLedger and RapidChain,
i.e., the identity Blockchain and reference Blockchain, respectively, do not
account for this kind as the messages exchanged by these two chains are not
related to the actual transactions.

• The most straightforward way is used by OmniLedger
and Chainspace, i.e., full-mesh connection. This re-
quirement tends to hold in those latency-sensitive sys-
tems, which incurs an considerable overhead.

In order to bypass the full-mesh connection, RapidChain
proposes a novel inter-communication protocol based on a
routing table stored by each validator; see the top side of
Fig. 5. It is inspired by Kademlia-based [112] routing proto-
col, where each validator in a shard maintains a routing table
containing all members of its shard as well as log2 log2 n
validators of other log2 n shards which are distance 2i for
0 ≤ i ≤ log2 n − 1 away. The inter-communication is
conducted by having all validators in the sender shard send
messages to all validators on the receiver side. By taking
advantage of P2P network, the communication overhead can
be significantly reduced.

3) Shards Ledger Pruning
The reason most of the existing Blockchain system with a
single-chained structure [1], [66], [113]-[115] tends to store
the full version of its chain is that they intend to improve
the communication and computation overhead of censorship
and audition. Storing a full version of ledger of every shard
incurs an unacceptable overhead of disk storage to validators,
referring to the calculation in Section IV, as validators need
to track the history of each shard in order to support the cross-
shard transactions, as well as the re-allocation (bootstrap-
ping) during each epoch. To solve this, OmniLedger proposes
the design of state blocks (SB).

SBs of a shard summarizes the state as well as all transac-
tions of its shard associated with each epoch. At the end of
each epoch Ek, the selected leader of a shard i constructs an
MPT consisting of all the transactions, while the correspond-
ing MPT root is stored in the header of SBi,k. As such, the
body of SBi,k−1 can be pruned if SBi,k passes the verification
by other validations in shard i to become the new genesis
block of Ek+1. The regular blocks are also pruned as soon as
SBi,k+1 is generated at the end of Ek+1, during which it is
the clients’ responsibility to create and store the transaction
proofs to prove the existence of a past transaction to other
shards for cross-shard transactions.

The design of SBs is similar to stable checkpoints in
PBFT [5], fast-sync mode in Ethereum [113], and stable
checkpoints of Node Hash-Chains in Chainspace [60]. Ac-
cording to the evaluation in [60], such kind of pruning incurs
an overhead ofO(m+log T) for a partial audit andO(T) for
a full audit, where m denotes the shard size, and T denotes
the number of transactions. The partial audit allows any users
to obtain a proof to verify the existence of any transactions
in any shards; the full audit allows a full verification by
replaying the entire history of a shard. However, the design
of SB raises two issues, 1) the overhead of transaction proofs
might become the bottleneck, but it can still be relieved
by introducing the Simple Payment Verification (SPV) [1],
[113], several multi-hop backpointers [116]-[118], or Proofs
of Proof of Work (PoPoW) [119], [120]; and 2) Insight 16,

14

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Insight 16. The design of State blocks faces the same problem
as that of the Atomix Protocol in OmniLedger and light-
client protocol in Ethereum 1.0 (if used in Ethereum 2.0),
i.e., shirking the most important duty to the client side.

4) Decentralized Bootstrapping
For sharding mechanisms involving a randomness generator
that is responsible for a PoW-based entry ticket in the BFT-
based intra-consensus protocol, it is important to select the
initial set with an honest majority, e.g., the final committee in
Elastico, and the reference committee in RapidChain7.

Thus, RapidChain proposes a decentralized bootstrapping
in the form of sampler-graph election network [59], with
only a hardcoded seed and some network settings. In such
an election network, participating validators are uniformly
distributed into a few groups, within each of which a PoW-
based result is computed by each member based on the
randomness generated by the VSS-based DRG protocol (Sec-
tion III-A5) and its identification ID. Based on the result, a
subgroup can be obtained for each group. Finally, a unique
root group (it randomly selects the members of the reference
committee) can be obtained with 50% honest majority (high
probability), when this process is iterated. Consequently, the
communication overhead can be improved from Ω(n2) to
O(n
√
n) with n denoting the total number of participating

validators.

5) Securing the Epoch Reconfiguration
For sharding mechanisms running a BFT-based intra-
consensus protocol, (new) validators have to be swapped-
out and re-allocated in other shards every epoch in order
to prevent attacks from slowly adaptive adversaries, i.e.,
attacker can corrupt or Distributed Denial of Service (DDoS)-
attack validators, but it takes a bounded time for such attacks
to take effect. This indicates that the epoch length should be
carefully designed to be lower than the bounded time.

Recall that Elastico and Chainspace do not provide such a
solution, while Ethereum 2.0 solves the intra-consensus with
a global validator pool by frequently updating the member
participating in the intra-consensus protocol for each shard.
Both of them require validators to track the status of each
shard to speed up the reconfiguration phase. OmniLedger
implements a random permutation scheme to swap-out the
validators, ensuring the number of validators being swapped
is bounded by k = log n/m at a given time, where n denotes
the total number of participating validators; m denotes the
number of shards. Here, new validators that require to register
their ID on a global identity Blockchain are also assigned
to random shards. As such, the number of remaining honest
validators can be sufficient to reach consensus while some are

7OmniLedger eliminates the necessity of an initial global set that respon-
sible for verifying the PoW result, by using RandHound and VRF. However,
an initial global randomness is still needed to derive VRF. Ethereum 2.0
builds the design on top of PoW-based mainnet, where the PoS-based Casper
is used instead of PoW.

swapped-out, thus the idle phase can last shorter to improve
the throughput. However, this scheme incurs a significant
delay and scales moderately, which cause 1-day-long epoch
that does not suit highly adaptive adversaries (when the
bounded time becomes smaller).

In contrast, RapidChain proposes a light-weighted recon-
figuration protocol based on the Cuckoo rule [121], [122],
where only a constant number of validators are allowed to
move between committees in each epoch. To be specific, the
reference committee (Cr) announces a PoW puzzle based
on the randomness generated in epoch i − 1 (Ri) by the
DRG protocol, thus validators that wish to participate in
epoch i + 1 (including those that have participated in epoch
i − 1 and i) can solve the puzzle and inform Cr by the end
of epoch i. During epoch i + 1, Cr defines the active and
inactive lists of validators of epoch i + 1, and swap-out a
constant number of validators from one to another committee
based on Ri+1 generated in epoch i. Finally, Cr agrees
on a reference block stored in the local ledger of Cr, and
broadcasts it to the entire network. This design, compared to
that of OmniLedger, incurs less overhead and allows a more
frequent epoch reconfiguration to suit more highly adaptive
adversaries.

6) Sharded Smart Contract
None of the considered sharding mechanism has achieved
the smart-contract-oriented sharded so far except Chainspace
that introduces such functionality for the first time. Con-
cretely, Chainspace, inspired by the UTXO model, proposes
a new transaction structure based on new atoms Objects
denoted as o. Here, o records state in the system with two
kinds of unique identifier, i.e., id(o) (a cryptographically
id that cannot be forged within a polynomial time) and
types(o) (a pointer to a smart contract c that defines types(o)).
Meanwhile, a contract c, referred to a special types of o,
defines a namespace consisting of types(c) (the set of types
that the specific c has defined) and a checker v denoted as
v(input)→ {True, False}, as shown in (9). Such v is used
to verify procedures proc(c), denoted as p(input)→ output
(defining the operation logic, as shown in (8)), by means of a
pure function returning a Boolean value.

c.p(x, r, parameters)→ y, returns; (8)

c.v(p, x, r, parameters, y, returns, dependencies)

→ {True, False}; (9)

[c, p, x, r, y, parameters, returns, dependencies]

∈ Trace ∈ Transaction. (10)

Note that, x denotes the input objects that must be active
beforehand, and be set to inactive when the corresponding
new output objects y set to active. r denotes the reference
objects that must also be active, nevertheless, the status of

15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

TABLE 1. Notation Definition

Notation Definition

| · | Size of the items

Ch Blockchain with a block height of h within a single shard

Ĉh Headerchain with a block height of hwithin a single shard

B Block, including H, Txs, and Sigs. Note that, |H| and
|Sigs| are negligible for |B|.

H Block header

Tx Transaction

Sig Signature

T Block period

Ek k-th epoch

E Epoch length

n The number of shards

m Size of each shard

h Expected block height of chains among all the shards

r remains unchanged afterward. The dependencies, in the
form of a list of Traces from other contracts other than c,
is along with all the other items (as shown in (10)) so that a
single Trace can be obtained to constitute a Transaction.

The method to allocate nodes in different shards in
Chainspace is by placing the nodes that manage, record,
and verify the same set of o to a single shard, denoted
as φ(o). Further, Φ(T) is defined to denote the concerned
nodes of a transaction T , where concerned nodes represent
the set of nodes managing all x or r of T . To verify a
transaction T , all φ(o) with o being involved in T as input
or reference should ensure the active status. Meanwhile, all
Φ(T) (excluding the dependencies) should run the checker
v of the corresponding contract c to validate the Traces. As
such, a cross-shard consensus algorithm that guarantees the
atomicity of smart contracts, i.e., S-BAC, is proposed (as
discussed in Section III-B6).

Insight 17. By modifying the transaction structure and
involving the concept of the new atoms and objects, it can
safely shard a smart contract with strong atomicity, but at
the cost of considerable overhead and hence low throughput.

Up to this point, we have elaborated on the designs and
protocols of each considered sharding mechanisms in terms
of the intra-consensus, cross-shard atomicity, and general
improvements, based on which a comprehensive comparison
is presented in Table 2.

IV. EVALUATION
A. THE UPPER-BOUND OF THROUGHPUT
This section estimates the theoretical upper-bound of each
discussed sharding mechanism, given the outbound band-
width, disk storage space, and CPU process capability. Note
that, Chainspace is not discussed in this section, because it

pays the price in poor performance to be able to achieve
sharding for Turing-complete smart contracts (Insight 17).

We choose a typical compute-optimized type of servers
in either AWS or Ali cloud service, i.e., c5.xlarge. It
features outbound bandwidth up to 200Mbps (25MB/s)8,
4vCPU of Intel Xeon (Skylake) from 2.5GHz to 3.5GHz
with Turbo boost, and 1TB basic disk storage space. This
roughly costs 0.3USD/hour and 0.33USD/hour in AWS and
Ali cloud service, respectively, with the storage fee around
100GB/0.01USD/hour. Table. 1 lists the notations of neces-
sary parameters used in the calculation. We set the parameters
to some values in order that bandwidth can be filled. Here,
bandwidth is selected to be the upper-bound rather than disk
storage and computation processing as the latter two metrics
can be easily scaled in the cloud and cost much less than that
of bandwidth.

Also note that the randomness generations of Elastico,
OmniLedger, RapidChain, and Ethereum 2.0 are not dis-
cussed in this section, although the generation phase also
incurs the overhead. This is because the generation is con-
ducted only once in each E , resulting in a predictable data
burst that can be transiently scaled (the randomness genera-
tion is discussed in detail in Section III-A).

To be specific, the basic calculation of bandwidth, disk
storage, and computation processing are defined as follows,
• Bandwidth: Dedicated channel for outbound message

transmitting for the intra-consensus protocol and cross-
shard operation on a single miner at the same time. Note
that, whether a cross-shard transaction (cross-shard Tx)
accounts for the intra-shard bandwidth or inter-shard
bandwidth depends on whether the Tx should be inserted
in local C of destination shard within a single T.

• Disk storage: Data storage permanently committed to
the local database, including data both in the local shard
and other shards.

• Computation processing: CPU computation process-
ing mainly corresponds to the verification of each Tx
and Sigs of each B orH. Without loss of generality, We
consider that the verification of each Tx or Sig accounts
for a single operation of computation processing.

1) Monoxide
Monoxide is the only sharding mechanism that supports
Nakamoto consensus protocol with PoW for the intra-
consensus among the discussed mechanisms in this paper. We
consider |B| = 30KB, |H| = 500B, |Tx| = 250B, |Sig| =
65B (we consider the signature format of Ethereum [66]),
T = 12s, n = 262, 144 = 218, m = 128 and h =
1, 000, 000.

8https://github.com/sivel/speedtestcli. speedtest-cli is used to test
the bottleneck of inbound/outbound bandwidth on both AWS and Ali cloud.
The average inbound bandwidth is 535.91Mbps, and the average outbound
bandwidth is 202.56Mbps, while the latter matches with the 200Mbps
displayed in the dashboard.

16

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

TABLE 2. A comparison regarding the protocols (ranged from the settings of intra-consensus to the design of cross-shard atomicity, as well as the corresponding
overhead) among the discussed sharding mechanisms in this paper is elaborated.

Monoxide Elastico OmniLedger RapidChain Ethereum 2.0 Chainspace

Network model Partial-sync Partial-sync Partial-sync
Intra Sync

Partial-sync Partial-sync

Total
Partial-

sync

Security model

Threat model
Attackers behave

arbitrarily,
Uncoordinated majority

Attackers behave
arbitrarily, slowly

adaptive

Attackers behave
arbitrarily, slowly

adaptive

Attackers behave arbitrarily,
slowly adaptive

Attackers behave arbitrarily,
Uncoordinated majority

Attackers behave
arbitrarily,

Uncoordinated majority

FT
Intra 50% 33% 33% 50% 33% 33%

Total 50% 25% 25% 33% 33% 25%

Intra-Consensus Protocol
PoW-based Chu-ko-nu

mining
PBFT ByzCoinX 50% BFT BFT-based PoS

MOD-SMART

implementation of PBFT

Randomness
(R)

Existence No
Yes.Ri+1 is generated
by the final committee at

the end of epoch i

Yes. TheRi+1 is
generated by using

RandHound + VRF in
the beginning of epoch

i+1

Yes.Ri+1 is generated
by the reference committee

at the end of epoch i

Yes. EachR is generated
by using RANDAO + VDF

on the beacon chain
Unknown

Use N/A

1. The seed of PoW
puzzle for the next

epoch;
2. Select the leader

during intra-consensus

1. Select the leader and
the sub-group allocation
during intra-consensus;

2. Epoch reconfiguration;
3. trust-but-verify

transaction validation
scheme

1. The seed of PoW puzzle
for the next epoch;

2. Select the leader during
intra-consensus;

3. Decentralized
bootstrapping;

4. Epoch reconfiguration

1. Select the proposer of
each shard;

2. Select the attesters for
each shard;

3. Select the validators
responsible for

checkpointing from the
global pool.

Unknown

Members
Allocation

One-off allocation based
on the identity (address)

of nodes

Allocation based on the
least-significant bits of

the result of PoW puzzles
Allocation based onR

Allocation based on the
result of PoW puzzles

Allocation based onR
One-off allocation based

on objects

Safe
Epoch

reconfigu-
ration

N/A Unsafe
Yes, swapping-out
bounded by 2/3 at a

given time

Yes, swapping-out a
constant number of node

Yes N/A

Additional global Blockchain
Mixed targets: No

Identical targets: Yes
Yes, a global ledger Yes, identity Blockchain Yes, reference Blockchain

Yes, the mainnet and
beacon chain

No

Transaction structure Account UTXO UTXO UTXO Account
Object-driven,

contract-sharded

Cross-shard Tx
Support Yes No Yes Yes Yes Yes

Method Async, Lock-free N/A Sync, Lock/Unlock Sync, Lock/Unlock Sync, Lock/Unlock Sync, Lock/Unlock

Complexity

Communi-

cation

Mixed PoW targets:
O(m + n log2 n)

Identical PoW targets:
O(m + n)

O(m2 + n) O(log2 m + n) O(m2 + m log2 n) O(m2 + n) O(m2 + n)

Storage
Ω(|C|)
∼

O(|C| + n|Ch|)
O(n|C|) O(|C|) O(|C| + |Cr|)

Ω(|C| + n|H| + |Cg|)
∼

O(n|C| + |Cg|)
O(|C| + |Cnh|)

Features and Restrictions
Insight 1, Insight 9,

Insight 15
Insight 2, Insight 3,

Insight 15

Insight 4, Insight 5,
Insight 10, Insight 11,
Insight 14, Insight 16

Insight 6, Insight 12
Insight 7, Insight 8, Insight

13, Insight 15
Insight 2, Insight 11,

Insight 17

Bandwidth
• Bandwidth overhead within each shard (intra-

bandwidth). This mainly corresponds to the transmitting
of B within a single shard, i.e., |B|T = 2.5KB/s.

• Bandwidth overhead across all shards (inter-bandwidth).
According to the eventual atomicity of cross-shard Txs,
a single cross-shard Tx is split into two parts that are in-
serted in C of source shard and destination shard, respec-
tively. Each of the parts accounts for its corresponding
intra-shard bandwidth. Thus, this mainly corresponds to
the transmitting of the verification scheme of Chu-ko-nu
mining. [123] provides the expressions, as shown in the
following,

– Mixed PoW targets of shards in one batch. This
design allows miners to mine blocks in batch for

different PoW targets and nonces. Blocks whose
targets have been fulfilled can be sent out first,
followed by the update of MPT and the further
mining for those whose targets have yet to be ful-
filled. This can be calculated by n(|H|+32 log2(n))

T =
22.4MB/s, where 32 log2(n) denotes the Merkle
proof for Chu-ko-nu mining across shards.

– Identical PoW targets of shards in one batch [123].
In this case, the design allows miners to mine
blocks in batch for all n shards simultaneously with
identical PoW targets and nonce. It sacrifices the
decentralization to maintain a global subnet where
all miners should participate, to broadcast H of all
shards. We also let n = 524, 288 = 219, hence the
network size can be extended more, as calculated

17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

by n|H|
T = 20.8MB/s.

• Throughput of a single shard (intra-throughput). This is
simply calculated by |B|

|Tx|T = 10.24tps.
• Throughput of the network (inter-throughput). This can

be calculated by multiplying the intra-throughput by the
improving factor, i.e., n

2 for Monoxide (details refer to
Section III-B1), as shown in the following,

– Mixed PoW targets of shards in one batch. This can
be calculated by 10.24n

2 = 1.23Mtps, where n =
262, 144.

– Identical PoW targets of shards in one batch. This
can be calculated by 10.24n

2 = 2.56Mtps, where
n = 524, 288.

The total bandwidth of both designs, i.e., identical and mixed
PoW targets, have been upper-bounded, i.e., 20.8 < 22.4 <
25MB/s. Here, the intra-bandwidth can be negligible due
to its small size compared with that of the inter-bandwidth.
Restricted by this, Monoxide can achieve nearly 1.23Mtps
for mixed PoW targets, and 2.56Mtps for identical PoW
targets by sacrificing the decentralization.

Disk Storage
As B contains H, Txs, and Sigs, implying that |B| dom-

inates in |C|, as calculated by h|B| = |Ch| = 28GB. On
top of that, Chu-ko-nu mining requires miners to track and
synchronize block headers of all the shards they participate
in (the more the number of shards being involved, the more
secure Chu-ko-nu mining is), i.e.,

∑n−1
i (|Ĉh|) + h|B| =

(n− 1)h|H|+h|B|. This can be up to 119TB and 238TB for
mixed and identical PoW targets, respectively. It indicates
that a miner that only focuses on a single shard can reap a
profit from the small disk storage, while Chu-ko-nu mining
requires much more storage to guarantee security in the
context of cross-sharding.

Computation Processing
Monoxide may have overwhelming computation process-

ing than the other discussed sharding mechanisms due to
the use of PoW. It requires as much processing as a normal
PoW in a single shard as usual9. However, the hashrate varies
with the total amount of computation power in a single shard
(directly proportional tom) with a nearly fixed T to prevent a
high orphan rate. We consider the hashrate to be the average
Bitcoin hashrate of CPU used in the considered server (Intel
Xeon), i.e., 66MH/s [124]. Here, any other PoW algorithms
can replace as the kind of PoW is orthogonal to Monoxide.
Besides, the computation processing also corresponds to the
construction of the MPT of every pending block in each shard

9Although the other discussed sharding mechanisms, e.g., Elastico and
RapidChain, also conduct a PoW consensus during the stage of validators
allocation to prevent the sybil attack, those miners participating in inter-
shard communication may have to compete with those who do not attend in
Monoxide. This is also the reason m does not account for any calculations
of Monoxide. As a result, the hashrate of PoW in Monoxide is bound to
be much higher than that of in Elastico or RapidChain, which should be
considered in the calculation.

involved in the current round of Chu-ko-nu mining, as well
as the verification of every intra-shard Tx and inter-shard Tx.
These two kinds of Tx both account for the throughput of a
single shard (10.24tps), which can be negligible compared
to the PoW process. Thus, totally a 66MH/s of affordable
CPU computation processing is needed in Monoxide.

In summary, a miner only conducting normal mining may
only need to spend 0.21USD/hour and 0.24USD/hour in
AWS and Ali cloud, respectively. In order to extend the disk
space, miners participating in Chu-ko-nu mining across all
shards need to spend about 36USD/hour and 40USD/hour
in AWS and Ali cloud, respectively for mixed PoW targets,
and 71USD/hour and 79USD/hour in AWS and Ali cloud,
respectively for identical PoW targets. By only paying the
price on the extended disk storage, Monoxide can achieve
nearly 1.23Mtps for mixed PoW targets, and 2.56Mtps for
identical PoW targets.

2) Elastico

Elastico is the first practical sharding mechanism where only
the communication and processing are sharded while it still
needs to be globally stored. We consider the intra-throughput
is 1000tps (which is average among others with PBFT con-
sensus algorithm [64]), |B| = (1000×10×250) + 2m|Sig|

3 '
2.4MB where T = 10s and |Tx| = 250B, |H| = 500B,
|Sig| = 65B, n = 48, m = 64(10), h = 1, 000, 000, and
E = 10min. The randomness is negligible due to its small
size.

Bandwidth
Bootstrapping and ID generation are rarely conducted, also

during which there is no block-oriented consensus being
processed. On the other hand, the consensus of the final
committee can use MPT root hash being transmitted to sub-
stitute B itself. Thus, the considered bandwidth here mainly
corresponds to the intra-consensus protocol and cross-shard
operation.

• Bandwidth overhead within each shard. This mainly
corresponds to the transmitting of B during the intra-
consensus within a single shard, i.e., m(|H|+|B|)+|B|

T =
14MB/s. Here, an optimized PBFT can be used to
prevent the block body from being broadcasting twice.

• Bandwidth overhead across all shards. The bandwidth
of a single miner corresponds to n|B| at most when it
is a member of the final committee, and a global ledger
is run and maintained locally. This is simply calculated
by n|B|

T = 11MB/s. Note that, this does not indicate
Elastico supports cross-shard Txs as no atomicity can be
guaranteed in Elastico, leaving a likely unsafe Tx being
locked forever.

• Throughput of a single shard. This is simply defined as
1000tps, as discussed previously.

10This is 3
2

of the minimum number of members in each shard, as defined
in [57].

18

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

• Throughput of the network. This can be calculated by
multiplying the intra-throughput by the improving fac-
tor of, i.e., n for Elastico. Thus, it is 1000n = 48ktps.

The total bandwidth overhead of a single validator has been
upper-bounded if we sum up the values of intra-bandwidth
and inter-bandwidth, i.e., 14 + 11 . 25MB/s. Restricted by
this, Elastico can achieve nearly 48ktps.

Disk Storage
As no ledger pruning scheme is introduced in Elastico, the

periodical reshuffling of validators make all validators have
to store a global ledger, which contains all B from all shards
and costs a huge amount of disk storage. This can be simply
calculated by nh|B| = 104.8TB.

Computation Processing
The computation processing of PoW during the stage of

reshuffling validators depends on the total amount of com-
putation power among the entire network, given a fixed T.
As PoW does not account for the intra-consensus protocol in
Elastico, while it is only conducted once every E . We can ne-
glect the computation processing of PoW in this calculation.
In addition, the randomness generation is also conducted
only once every E and can be negligible in this calculation
(this assumption always holds for the rest of the discussed
sharding mechanisms where a randomness is needed.). Thus,
the following factors are considered for simplicity,
• As discussed above, Elastico does not support safe

cross-shard Txs due to the of a (un)lock scheme or a
relay Tx scheme introduced in Monoxide. Thus, we have
the verification for every individual Tx that equals to the
intra-throughput, i.e., 1000H/s.

• If a considered miner is a member of the final commit-
tee, 2 × 2m|Sig|

3T ' 555H/s can be obtained when the
verification of B during PBFT process in the normal
committees and final committee are both considered. In
addition, each member of the final committee needs to
verify Txs that are aggregated from all m shards in the
global ledger, i.e., 48kH/s.

The total overhead of computation processing is roughly
50kH/s, which is even smaller than that of Monoxide,
i.e., 66MH/s, and has yet to reach the bottleneck of the
considered CPU.

In summary, validators participating in the final committee
need to spend about 32USD/hour and 35USD/hour in AWS
and Ali cloud, respectively. By paying the price on the
extended disk storage, Elastico can achieve nearly 48ktps.

3) OmniLedger
OmniLedger is the first practical sharding mechanism where
bandwidth, storage, and processing are all sharded by means
of a scalable intra-consensus, Atomix protocol, and the
scheme of ledger pruning. We consider the intra-throughput
is 1200tps (refers to Fig. 9 in [58]), |B| = 32MB (refers
to Table 3 in [58]), |Tx| = 500B (refers to Size of Unlock

Transactions of Section IV in [58]), |Sig| = 65B (this is not
the size of CoSi [79]), |H| = 500B, n = 48, m = 1024,
h = 1, 000, 000, and E = 1day. Thus, T = 32M

1200|Tx| = 55s
(nearly matches with Table 3 in [58]). The randomness is
negligible due to its small size.

Bandwidth
Similar to Elastico, the considered bandwidth mainly cor-

responds to the intra-consensus protocol and cross-shard
operation due to the conduct of Bootstrapping and ID gen-
eration for every one-day E.
• Bandwidth overhead within each shard. This mainly

corresponds to the transmitting of |B| during the intra-
consensus within a single shard. Recall that, Om-
niLedger proposes ByzCoinX that implements a group-
based scheme (rather than a tree-based scheme in Byz-
Coin [65]), where a single shard is partitioned into mul-
tiple consensus groups. Each group leader is selected
based on the randomness generated for every epoch, and
is unchanged unless a view change occurs. This group-
based scheme can be a shadow-tree where the depth-
3 is constant and the branching factor depends on the
number of group leader. As a result, each validator only
needs to broadcast B to its children in addition to a uni-
cast of B to its parent. We consider the number of groups
and group size are both

√
m (refers to the same as-

sumption of Section VI-D in [58]), the intra-bandwidth
can be calculated by

√
m|B|+|B|

T = 19.2MB/s, i.e.,
the bandwidth overhead of either the prepare phase
or commit phase11. Here, the aggregated signature is
negligible due to its small size compared to

∑
|Tx|.

• Bandwidth overhead across all shards. As Atomix pro-
tocol is client-driven, the inter-bandwidth mainly cor-
responds to the outbound bandwidth of clients rather
than validators. Thus, the inter-bandwidth for a validator
can be simply regarded as a unicast to the client, i.e.,
|B|
T = 0.554MB/s(12). On the other hand, the client

has to suffer from a huge amount of bandwidth over-
head, i.e., n|B|

T = 26.6MB/s > 25MB/s, which has
exceeded the upper-bound of the bandwidth of a single
considered server.

• Throughput of a single shard. This is simply defined as
1200tps as discussed previously.

• Throughput of the network. This can be calculated by
multiplying intra-throughput by the improving factor,
i.e., n

2 for OmniLedger with only one input shard and
output shard involved; refer to Section III-B3. Thus, it
is 1200n

2 = 28.8ktps.
The total bandwidth overhead of a single validator has been
upper-bounded if we sum up the values of intra-bandwidth
and inter-bandwidth, i.e., 19.2+0.56 < 25MB/s. Restricted

11Txs are either transmitted in the prepare phase or commit phase, i.e., it
is counted only once.

12As CoSi is used in ByzcoinX, |B| consists of the CoSi of each Tx, i.e.,
' 788.48B × 1.2ktps = 0.9MB, instead of 2m|Sig|

3
, where 788.48B

refers to Size of Unlock Transactions of Section IV in [58].

19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

by this, OmniLedger can achieve nearly 28.8ktps, by shifting
the bottleneck to clients.

Disk Storage
The disk storage in OmniLedger mainly corresponds to the

ID Blockchain and the local pruned chain in each shard. We
consider the size of a single ID, |ID| = 32B.
• The block height of the ID Blockchain can be calculated

by, hT
E = 637. Thus, |BID,637| = 637nm|ID| =

0.93GB.
• The shard ledger pruning can be achieved by construct-

ing an MPT with the aggregated Bs in the current Ek,
and end up finalizing a state block being the genesis B
of Ek+1 at the end of Ek. Validators only need to store
H of each state block, and all the regular Bs of each E .
This can be calculated by h|H|+ |B|E

T ' 48GB.

Computation Processing
This mainly corresponds to the computing overhead of

the intra-consensus (ByzcoinX) and cross-shard operation
(Atomix). The computing overhead in ByzcoinX consists
of the verification of signature, i.e., 2m/3+1

T = 12.4H/s
and Txs, i.e., 1.2kH/s as defined. Validators log the cross-
shard Txs in the local ledger and mark them as (un)locked
one during the Initialize and Unlock to Abort of the client-
driven Atomix protocol. This implies that the cross-shard Txs
must account for the intra-Txs. As a result, a 1.2kH/s of the
overhead of computation processing can be obtained, which
is smaller than that of Monoxide, and has yet to reach the
bottleneck of the considered CPU.

In summary, validators need to spend about 0.2USD/hour
and 0.23USD/hour in AWS and Ali cloud, respectively.
OmniLedger can achieve nearly 28.8ktps with fewer disk
storage.

4) RapidChain
RapidChain trades-off the protocol complexity for system
robustness and achieves an efficient shard-driven cross-
shard protocol by improving several parts of Elastico and
OmniLedger. RapidChain also shards all of the bandwidth,
storage, and processing. We consider the intra-throughput is
1000tps, |B| = 8MB (refers to Fig. 3 in [60]), |Tx| = 512B,
|Sig| = 65B, |H| = 500B, n = 256, m = 256,
h = 1, 000, 000 and E = 1day. Thus, T = |B|

1000|Tx| = 16.4s.
The randomness is negligible due to its small size.

Bandwidth
Similar to Elastico and OmniLedger, the considered band-

width mainly corresponds to the intra-consensus protocol and
cross-shard operation due to the conduct of Bootstrapping
and ID generation for every one-day E.
• Bandwidth overhead within each shard. RapidChain

implements the IDA to transmit Bs within a shard. We
consider that the Reed-Solomon erasure codes [125]
used in this protocol is (255, 233), leading to an ac-

tual |Ḃ| roughly 12.5% larger than the metadata, i.e.,
|Ḃ| = 9MB. We further consider the parameter κ =
d = m − 1 = 255, where κ and d denote the
number of chunks and the number of neighbours of each
validator, respectively. A single MPT proof incurs a size
of 32 log2(d) = 256B. Thus, the bandwidth overhead
to gossip Bs by IDA is |Ḃ|+256d

T = 0.55MB/s, where
|Ḃ| can be regarded as the size of chunks, and 256B
denotes the total size of a single MPT proof sent to each
neighbour.
By means of the IDA-based gossip protocol, only H is
needed in the intra-consensus protocol based on [88].
Thus, the bandwidth overhead can be calculated by
m|H|×3

T = 23kB/s, which can be negligible. Note
that, the multiplier 3 corresponds to 2-nd, 3-rd, and 4-
th consensus rounds in every iteration, as described in
Section III-A5.

• Bandwidth overhead across all shards. The cross-shard
operation of RapidChain features a routing-table main-
tained by every validator in each shard. Every validator
communicates with other log2(n) ' 8 shards, and
records log2 log2(n) ' 3 nodes of each other shard.
As such, this can be 2(8×3)|B|

T = 23.4MB/s. Here, the
senders, in the worst case, incur a double overhead of
cross-shard operation due to the “three-way confirma-
tion”; refer to Section III-B4.
Another IDA gossiping is conducted by the shard leader
after receiving the cross-shard B, this can be another
|Ḃ|+256d

T = 0.55MB/s.
• Throughput of a single shard. This is simply defined as

1000tps, as discussed previously.
• Throughput of the network. This can be calculated by

multiplying intra-throughput by the improving factor,
i.e., n

2 in RapidChain (details refer to Section III-B4).
Thus, it is 1000n

2 = 128ktps.

The total bandwidth overhead of a single validator has been
upper-bounded if we sum up the values of intra-bandwidth
and inter-bandwidth, i.e., 23.4 + 0.55 × 2 < 25MB/s.
Restricted by this, RapidChain can achieve nearly 128ktps.

Disk Storage
The disk storage in RapidChain mainly corresponds to the

ID in the local routing table, the local pruned chain in each
shard by using the same scheme as that of OmniLedger, and
the ID Blockchain for a member of the reference committee.
We consider the size of a single ID to be the same as that of
OmniLedger, i.e., |ID| = 32B.

• The routing table of a validator stores ID of all
members in its committee, as well as log2 log2 n
validators of other log2 n committees, i.e. 32m +
32 log2(log2(n)) log2(n) = 9kB.

• RapidChain suggests using the shard pruning scheme
proposed in OmniLedger. Thus it can be calculated by
h|H|+ |B|E

T ' 42GB.

20

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Computation Processing
Similar to Elastico, only the reconfiguration phase incurs

the computation processing of PoW in RapidChain. We can
also neglect this kind of computation overhead. Thus, the
computation processing overhead mainly corresponds to the
following two factors,
• The verification of Txs and the corresponding Sigs, i.e.,
' 1000H/s.

• As the leader of an output committee, the Txs need to
be verified when the leader first receives these Txs from
input committees. However, these Txs will not be logged
into the local ledger prior to the final confirmation; refer
to Fig. 5, which implies the fact that the verification of
these cross-shard Txs should be independent to that of
the local Txs, i.e., ' 1000(n−1)

T ' 16kH/s.
As a result, a 16k + 1k = 17kH/s of the computation
overhead can be obtained, which is still smaller than that
of Monoxide, and has yet to reach the bottleneck of the
considered CPU.

In RapidChain, it costs validators that participate in the
reference committee nearly the same price as that of Om-
niLedger, i.e., 0.2USD/hour and 0.23USD/hour in AWS and
Ali cloud, respectively, but with a significant breakthrough of
the global throughput of nearly 128ktps, i.e., ∼ 4.5x.

5) Ethereum 2.0
The Shasper of Ethereum 2.0 is a design that resolves the
two major issues defined in Section III at the same time.
Meanwhile, it also shards all of the bandwidth, storage,
and processing. We consider |Bc| (collation in a shard)
= 1.5MB, |Hc| = |Hb| (size of a header on the beacon
chain) = 500B, |Tx| = 250B, |Sig| = 256B, T = 8s
(local chains and the beacon chain), n = 512, m = 8,
h = 1, 000, 000 and E = 1week. In addition, We also
consider the number of attesters selected in each slot (several
slots in one E) is 9, the number of validators responsible for
checkpoints is 400, and the checkpoint period is 100 [100].
The randomness is negligible due to its small size.

Bandwidth
To reach the consensus within a shard in Ethereum 2.0,

the attesters are randomly selected from the global validators
pool outside the local shard. This leads to the bandwidth
mainly corresponding to only the intra-consensus, as well as
all the other cross-shard operation. We consider that Byz-
CoinX proposed in OmniLedger is used for a large-scaled
consensus group in this calculation as the actual protocol is
not discussed and given in Ethereum 2.0. To be specific, We
consider there exist

√
400 = 20 sub-leaders, each of which

contains
√

400 = 20 children.
• Bandwidth overhead within each shard. This mainly

corresponds to the transmitting of Bc within a single
shard, i.e., |Bc|

T = 192KB/s.
• Bandwidth overhead across all shard. This mainly cor-

responds to two parts, i.e., to reach the consensus within

a shard, and to upload to the beacon chain with another
consensus in a single checkpoint period.
Every T = 8s, a proposer is randomly selected from
the local validator pool within a shard, followed by
9 attesters are also randomly selected from the global
validator pool. Note that, validators are evenly allocated
in each local validator pool of each shard based on
the randomness generated every E . Also note that a
validator can be both a potential attester from a global
pool, and a proposer selected from its local pool. The
selected proposer needs to collect at least 2/3 signatures
from the attesters to finalize a Bc to be stored in the
local ledger of this slot. This can be calculated by
9(|Bc|+Hc|)

T = 1.7MB/s.
Every checkpoint period contains 100 Bcs, while the
400 validators as a global checkpoint-committee need to
sign the tip Bc during the checkpoint period. This is also
called notarization in Ethereum 2.0. By anchoring the
checkpoint, history can be deterministically finalized
and cannot be reverted. Concretely, it consists of the
following steps,

1) Finalize the checkpoints. The required data size
can be calculated by n(20|Bc|+|Bc|) = 15.75GB.

2) Upload to the beacon chain. The required data size
for the selected validators to upload the check-
points of all shards can be calculated by n(|Bc| +
400×2|Sig|

3) = 516MB.
3) Consensus on the beacon chain. The required data

size can be calculated by (
√
nm|Hb| + |Hb|) =

31.7KB, as each validator should be aware of the
body of the corresponding Bc during the previous
steps.

The three steps take at most 100T = 800s to
be finished, hence the considered inter-bandwidth is
15.75GB+516MB+31.7KB

800 = 20.8MB/s.
• Throughput of a single shard. This can be calculated by
|Bc|
|Tx|T = 787tps.

• Throughput of the network. This can be calculated by
multiplying intra-bandwidth by the improving factor,
i.e., n

3 for Ethereum 2.0 (details refer to Section III-B5).
Thus, it is 787n

3 = 134ktps.

The total bandwidth overhead of a single validator has been
bounded if we sum up the values of both kinds of bandwidth
overhead, i.e., 192KB + 1.7MB + 20.8MB < 25MB/s.
Restricted by this, Ethereum 2.0 can achieve nearly 134ktps.

Disk Storage

The disk storage in Ethereum 2.0 mainly corresponds
to the PoW-based main chain, the beacon chain, and the
local chain of each shard that a validator cares more about.
We consider the considered validators are in single-shard

21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

mode13. We consider the size of a single ID, |ID| = 32B

• It is intended that most of the business logic and data,
i.e., Txs, will be moved to the beacon chain for storage,
while the original PoW-based main chain is only respon-
sible for additional computation-based security, as well
as a smart contract used to register and manage the val-
idators. As a result, it can be regarded as a C with empty
bodies (as if a light node in Ethereum [113]), which
accounts for about 400MB at the time of writing [126].

• Each block of the beacon chain, i.e., Bb needs to store
Hcs from all involved shards, i.e., nh|Hc| = 238GB. In
addition, the IDs all active validators need to be stored
in the beacon chain, i.e., 32nm = 128KB.

• Validators require to download the entire local ledger
of the shard in which they are allocated, i.e., h|Bc| =
1.43TB.

Computation Processing
We can neglect the PoW overhead, as a validator can

involve itself in mining on the PoW-based main chain or not
at will in Ethereum 2.0. Thus, the computation processing
overhead mainly corresponds to the following two factors,
• A validator that is elected to be the attester to verify

transactions for a single shard, without the loss of
generality, can also be elected to be the attester for
other shards (which is not discussed in details in any
of the documents). We neglect the overhead of verify-
ing signatures due to the small size of each group of
attesters. Thus, the overhead of verifying transactions in
n proposed Bcs can be 787n = 403kH/s.

• Every checkpoint period (100Bcs of each shard) the
checkpoint committee consisting of 400 validators final-
izes the checkpoint of each shard. This corresponds to,

– the 2/3 signatures required to reach the consensus
for each checkpoint in every single shard, i.e.,
n(400×2/3)

800 = 171H;
– verifying transactions incurring n|Bc|

800|Tx| = 4kH/s;
– uploading checkpoints to the beacon chain with the

consensus, i.e., 2nm
800×3 = 3.4H/s.

Note that, the verification of proposed Bcs in each shard is
independent to the verification of notarizing checkpoints. As
a result, ' 408kH/s of the computation overhead can be
obtained, which is smaller than that of Monoxide, and has
yet to reach the bottleneck of the considered CPU.

In Ethereum 2.0, validators need to spend about
0.39USD/hour and 0.42USD/hour in AWS and Ali cloud for
disk extension, respectively, to achieve nearly 134ktps. How-
ever, demand for stronger security incurs a huge overhead of
disk storage for validators as they are most likely to be re-
allocated every 8s-slot, which forces the validators to store
the ledgers of every shard. As such, the huge overhead of disk

13The single-shard mode can be used rather than the super-full mode.
A single-shard node processes the beacon chain blocks only, including the
headers and signatures of the collation, i.e., Bc in each shard, but does not
download and verify all the data of the Bcs unless it cares more about.

storage is boosted to ∼ 100TB (similar to that of Monoxide
and Elastico), i.e., a super-full node [61].

B. COMPARISON AND DISCUSSION
This section, based on the calculation of the upper-bound of
the throughput, provides a comparison among the considered
sharding mechanisms, i.e., Monoxide, Elastico, OmniLedger,
Rapidchain, Ethereum 2.0, and Chainspace. This comparison
is also characterized as Table 3.

We conclude that RapidChain and Ethereum 2.0 imple-
ment optimizations that reduce restrictions of Elastico and
OmniLedger, which leads to RapidChain and Ethereum 2.0
being the most advanced BFT-based sharding mechanisms in
terms of throughput and cost. On the other hand, Monoxide
pushes the upper-bound of throughput to Mega level, and
opens up a new direction of the Nakamoto-based sharding
mechanisms. Chainspace has plenty of room for performance
improvement for sharded-smart contract.

Furthermore, we point out the challenges remaining un-
solved practically, as well as the future trend being dis-
cussed.

1) Future Trend for Reducing the Overhead
Three common pitfalls in existing sharding mechanisms pre-
vent the system from being horizontally scaled to the theo-
retical upper bound due to the communication and storage
overhead.
• An existing global chain that is needed to be stored

by all participating miners/validators. Such a global
chain tends to be responsible for all global operations,
such as generating randomness, cross-validating trans-
actions in different shards, reshuffling operation. How-
ever, this simply poses the bottleneck threat back to a
single global chain, which is the root issue sharding
technologies would have tried to solve. Insight 15 and
SSChain [127] hit this pitfall. Note that SSChain simply
utilizes a two-layer architecture where a global chain
is set to deal with all data migration and reshuffling
operations. Trend 1: Restricting the use of a global
chain in any operations, and the bottleneck requiring
to be solved if used.

• Requiring miners/validators to store ledgers from other
shards. This is necessary in some of the existing shard-
ing mechanisms in order to cross-validating transactions
and reshuffling operation. However, it leads to min-
ers/validators incurring high communication and stor-
age overhead in O(n) (n is the number of shards).
Insights 1, 7, 9, 10, 11, 13 hit this pitfall. Trend 2:
Balancing the storage and communication overhead
for miners/validators in sending cross-shard trans-
actions and reshuffling, so that the order can be
lower than O(n). One of the potential solutions might
be the fraud proof that enables light nodes to be as
secure as full nodes without needing to store the whole
ledger [128], yet it has not been mature at the time of
writing.

22

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

TABLE 3. A comparison (regarding the results of throughput and cost calculated in Section IV-A) among the discussed sharding mechanisms in this paper is
elaborated. Based on the result, the latency is also obtained and shown. Note that, we consider cloud servers with outbound bandwidth 25MB/s, 4vCPU of Turbo
boost, and 1TB basic disk storage space (N/A: Not Available).

Monoxide Elastico OmniLedger RapidChain Ethereum 2.0 Chainspace

Shards’ settings
Number of
shards (n) 210∼218 <102 <26 <28 <29 <102

Shard size
(m) 102∼104 <102 22∼210 (22 - 1)∼28 <102 <102

Epoch length N/A ∼10min ≥one day ≤one day one week Exists, details not
provided

Latency

Transaction
confirma-

tion
23s <900s ∼100s 70s 6s∼8s [99] 2s

Epoch
reconfigu-

ration
N/A N/A 1000s 200∼350s Unknown Unknown

Upper-bound

Improving
factor (N) n/2 n 1∼n/2 n/2 n/3 1∼n/2

Throughput 1.23∼2.56Mtps 48ktps 28.8ktps 128ktps 134ktps <400tps

Cost 30∼80 USD/hour 30∼35 USD/hour 0.2∼0.3 USD/hour 0.2∼0.3 USD/hour 0.4∼0.45 USD/hour N/A

• Allocating participating nodes to shards based on their
business requirements in order to bypass the overhead
of using the sharding technology. Business-driven mem-
bers allocation for shards has been proposed and dis-
cussed in some designs, e.g., Ethereum 2.0 [100]14 in or-
der to reduce, 1) the frequency that a participating node
gets swapped out; and 2) the ratio of non-cross-shard
transactions, for the ease of management and lower
overhead. However, this results in a very long epoch
reconfiguration for participating nodes and unevenly
shard size, which ultimately poses a risk of crowed
transactions to a single shard as time passes and the size
and throughput increases, thus hitting the bottleneck of
intra-consensus. Trend 3: Avoiding simple business-
driven members allocation that risks shards suffer-
ing from crowed transactions.

2) Future Trend for Strengthening the Security and Atomicity
This trend corresponds to the intra-consensus and atomicity
of cross-shard transactions, respectively. We point out the
potential direction on more secure intra-consensus and more
efficient cross-shard transactions, as shown in the following.

Intra-consensus:
• Trend 4: Scaling the unbiased and unpredictable

randomness generator in large-scale networks with
as few third-party hardcoded settings as possible.
The unbiased and unpredictable randomness plays an
important role in BFT-based intra-consensus design. Im-
proving this kind of algorithms can significantly prevent
the validators from being under DDoS attacks. Insights
3, 5, and 8 belong to this aspect.

• Trend 5: Improving the PoW-based intra consensus,
and generalizing it into other types of Nakamoto-

14A possible design proposed by Ethereum 2.0 is to merge shards that
interact more frequently than others

based consensus algorithms. Chu-ko-nu mining of
Monoxide takes advantage of PoW to bypass the vortex
of randomness, nevertheless, the security of which is
dependent on the storage. As such, the future direction
can be potentially decoupling the security and storage,
and generalize the concept to other Nakamoto-based
consensus algorithms, e.g., Proof-of-Stake.

Efficient atomicity:
• Trend 6: Enabling efficient conditional cross-shard

transactions that enable contract-orient operations.
Only Chainspace and the future phase of Ethereum 2.0
claim to support such conditional cross-shard transac-
tions so far, but at the cost of unacceptable overhead and
latency, which requires more focus in the future trend.

V. CONCLUSIONS
This survey highlights the importance of sharding for the de-
sign of scale-out Blockchains and systematizes the state-of-
the-art sharding mechanisms in regards to the intra-consensus
security, atomicity of cross-shard transactions, and general
challenges and improvements. We also proposed our calcu-
lations and insights analyzing the features and restrictions,
based on which a comprehensive comparison among the
considered sharding mechanisms was obtained.

A list of the key observations and conclusions are as
follows:
• For the first time Monoxide proposes a Nakamoto-based

sharding mechanism, but at the cost of storing headers
of all shards to guarantee the maximum intra-consensus-
safety.

• The traditional PBFT used in Elastico and Chainspace
does not guarantee the intra-consensus-safety due to its
weak scalability, while the BFT-based sharding mech-
anisms, i.e., OmniLedger, Rapidchain, and Ethereum
2.0, improve the intra-consensus-safety in the sense

23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

that scaling the traditional PBFT or increasing the fault
tolerance of the traditional PBFT.

• The randomness generators of all considered shard-
ing mechanisms in this paper need strict network set-
tings, otherwise the unpredictiability and unbiasability
in scaled networks will be compromised.

• Monoxide, OmniLedger, Rapidchain, and Ethereum 2.0
all propose their own solution to the issue of cross-shard
transactions, none of which can support cross-shard
smart contracts. Only Chainspace proposes a smart-
contract-oriented sharding mechanism, but at the cost
of low throughput.

• All considered sharding mechanisms introduce the opti-
mizations to address the new challenges their proposed
sharding mechanisms pose to the system, i.e., latency
and storage, but further improvements are necessary.

ACKNOWLEDGEMENT
This project was partially supported by funding from Food
Agility CRC Ltd, funded under the Commonwealth Govern-
ment CRC Program. The CRC Program supports industry-
led collaborations between industry, researchers and the com-
munity. This project was also partially supported by UCOT
Australia Pty Ltd. UCOT Australia is a full-industry chain
anti-counterfeiting traceability solution operator, dedicated to
research and development of technology products based on
Blockchain.

REFERENCES
[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.

[Online]. Available: https://bitcoin.org/bitcoin.pdf
[2] O. Novo, “Blockchain meets iot: An architecture for scalable access

management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, April 2018.

[3] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and chal-
lenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp.
1508–1532, Secondquarter 2019.

[4] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and
K. Zheng, “Survey on blockchain for internet of things,” Computer
Communications, vol. 136, pp. 10 – 29, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366418306881

[5] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, no. 1999, 1999, pp. 173–186.

[6] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs.
bft replication,” in International workshop on open problems in network
security. Springer, 2015, pp. 112–125.

[7] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies,” IEEE Communications Surveys
Tutorials, vol. 18, no. 3, pp. 2084–2123, thirdquarter 2016.

[8] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[9] “Raiden network,” 2015. [Online]. Available: https://raiden.network/
[10] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”

White paper, pp. 1–47, 2017.
[11] M. Jourenko, K. Kurazumi, M. Larangeira, and K. Tanaka, “Sok: A

taxonomy for layer-2 scalability related protocols for cryptocurrencies.”
IACR Cryptology ePrint Archive, vol. 2019, p. 352, 2019.

[12] R. Cattell, “Scalable sql and nosql data stores,” Acm Sigmod Record,
vol. 39, no. 4, pp. 12–27, 2011.

[13] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse,
“Bitcoin-ng: A scalable blockchain protocol,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, Mar. 2016, pp.

45–59. [Online]. Available: https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/eyal

[14] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake.” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[15] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Annual International
Cryptology Conference. Springer, 2017, pp. 357–388.

[16] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of
bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 31–42.

[17] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff:
Bft consensus with linearity and responsiveness,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, ser.
PODC ’19. New York, NY, USA: ACM, 2019, pp. 347–356. [Online].
Available: http://doi.acm.org/10.1145/3293611.3331591

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in ACM SIGOPS Operating Sys-
tems Review, vol. 41, no. 6. ACM, 2007, pp. 45–58.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017, pp.
51–68.

[20] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Watten-
hofer, “On scaling decentralized blockchains,” in Financial Cryptography
and Data Security, J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach,
M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 106–125.

[21] J. Garzik, “Bip102: Block size increase to 2mb,” 2015. [Online]. Avail-
able: https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki

[22] P. Wuille, “Bip103: Block size following technological growth,”
2015. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0103.mediawiki

[23] E. Lombrozo, J. Lau, and P. Wuille, “Bip141: Segregated witness (con-
sensus layer),” 2015.

[24] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in Financial Cryptography and Data Security, R. Böhme and
T. Okamoto, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 507–527.

[25] S. Popov, “The tangle,” cit. on, p. 131, 2016.
[26] A. Churyumov, “Byteball: A decentralized system for storage and trans-

fer of value,” URL https://byteball. org/Byteball. pdf, 2016.
[27] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzan-

tine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01,
Tech. Rep., 2016.

[28] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol.” IACR Cryptology ePrint Archive, vol.
2016, p. 1159, 2016.

[29] Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag protocol.”
IACR Cryptology ePrint Archive, vol. 2018, p. 104, 2018.

[30] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, “Scaling nakamoto
consensus to thousands of transactions per second,” arXiv preprint
arXiv:1805.03870, 2018.

[31] L. Kan, Y. Wei, A. Hafiz Muhammad, W. Siyuan, G. Linchao, and
H. Kai, “A multiple blockchains architecture on inter-blockchain commu-
nication,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), July 2018, pp. 139–145.

[32] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web and
Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[33] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus
protocols on blockchain applications,” in 2017 4th International Confer-
ence on Advanced Computing and Communication Systems (ICACCS),
Jan 2017, pp. 1–5.

[34] W. Gao, W. G. Hatcher, and W. Yu, “A survey of blockchain: Techniques,
applications, and challenges,” in 2018 27th International Conference on
Computer Communication and Networks (ICCCN), July 2018, pp. 1–11.

[35] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, vol. 7, pp. 22 328–
22 370, 2019.

[36] W. Yang, S. Garg, A. Raza, D. Herbert, and B. Kang, “Blockchain: Trends
and future,” in Knowledge Management and Acquisition for Intelligent

24

https://bitcoin.org/bitcoin.pdf
http://www.sciencedirect.com/science/article/pii/S0140366418306881
https://raiden.network/
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
http://doi.acm.org/10.1145/3293611.3331591
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

Systems, K. Yoshida and M. Lee, Eds. Cham: Springer International
Publishing, 2018, pp. 201–210.

[37] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress), June
2017, pp. 557–564.

[38] S. Goswami, “Scalability analysis of blockchains through
blockchain simulation,” UNLV Theses, Dissertations, Profes-
sional Papers, and Capstones, 2017. [Online]. Available:
https://digitalscholarship.unlv.edu/thesesdissertations/2976

[39] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of
ethereum: An initial quantitative analysis,” in 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE), April
2019, pp. 167–176.

[40] C. Worley and A. Skjellum, “Blockchain tradeoffs and challenges
for current and emerging applications: Generalization, fragmentation,
sidechains, and scalability,” in 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), July 2018, pp. 1582–
1587.

[41] S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions on
blockchain,” in 2018 International Conference on Information and Com-
munication Technology Convergence (ICTC), Oct 2018, pp. 1204–1207.

[42] A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, “Blockchain and
scalability,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), July 2018, pp. 122–128.

[43] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and chal-
lenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp.
1508–1532, Secondquarter 2019.

[44] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature
review of blockchain-based applications: Current status, classification
and open issues,” Telematics and Informatics, vol. 36, pp. 55 – 81,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0736585318306324

[45] D. Mechkaroska, V. Dimitrova, and A. Popovska-Mitrovikj, “Analysis of
the possibilities for improvement of blockchain technology,” in 2018 26th
Telecommunications Forum (TELFOR), Nov 2018, pp. 1–4.

[46] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, July 2018.

[47] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of
distributed consensus protocols for blockchain networks,” CoRR,
vol. abs/1904.04098, 2019. [Online]. Available: http://arxiv.org/abs/
1904.04098

[48] R. Wang, K. Ye, and C.-Z. Xu, “Performance benchmarking and opti-
mization for blockchain systems: A survey,” in Blockchain – ICBC 2019,
J. Joshi, S. Nepal, Q. Zhang, and L.-J. Zhang, Eds. Cham: Springer
International Publishing, 2019, pp. 171–185.

[49] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus
protocols on blockchain applications,” in 2017 4th International Confer-
ence on Advanced Computing and Communication Systems (ICACCS),
Jan 2017, pp. 1–5.

[50] M. H. Manshaei, M. Jadliwala, A. Maiti, and M. Fooladgar, “A game-
theoretic analysis of shard-based permissionless blockchains,” IEEE Ac-
cess, vol. 6, pp. 78 100–78 112, 2018.

[51] P. Singhal and S. Masih, “Metaanalysis of methods for scaling blockchain
technology for automotive uses,” CoRR, vol. abs/1907.02602, 2019.
[Online]. Available: http://arxiv.org/abs/1907.02602

[52] A. Meneghetti, T. Parise, M. Sala, and D. Taufer, “A survey on
efficient parallelization of blockchain-based smart contracts,” CoRR,
vol. abs/1904.00731, 2019. [Online]. Available: http://arxiv.org/abs/
1904.00731

[53] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on blockchain,”
in Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, ser. AFT ’19. New York, NY, USA: ACM, 2019, pp. 41–
61. [Online]. Available: http://doi.acm.org/10.1145/3318041.3355457

[54] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 95–112. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

[55] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s globally distributed database,” ACM Trans. Comput.
Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2491245

[56] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
CoRR, vol. abs/1505.06895, 2015. [Online]. Available: http://arxiv.org/
abs/1505.06895

[57] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 17–30.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978389

[58] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), May
2018, pp. 583–598.

[59] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: ACM, 2018, pp. 931–948. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243853

[60] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn,
and G. Danezis, “Chainspace: A sharded smart contracts
platform,” CoRR, vol. abs/1708.03778, 2017. [Online]. Available:
http://arxiv.org/abs/1708.03778

[61] V. Buterin, “Ethereum sharding FAQ,” Apr. 2019, accessed on
01.08.2019. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Sharding-FAQ

[62] J. Gray et al., “The transaction concept: Virtues and limitations,” in
VLDB, vol. 81, 1981, pp. 144–154.

[63] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM computing surveys (CSUR), vol. 15, no. 4, pp. 287–317,
1983.

[64] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, ser. SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 1085–
1100. [Online]. Available: http://doi.acm.org/10.1145/3035918.3064033

[65] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser,
and B. Ford, “Enhancing bitcoin security and performance with
strong consistency via collective signing,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016, pp. 279–296. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/kogias

[66] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[67] A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl,
“Merged mining: Curse or cure?” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomartí, Eds. Cham:
Springer International Publishing, 2017, pp. 316–333.

[68] BitCoinWIKI, “Merged mining specification,” Aug. 2015, accessed
on 01.08.2019. [Online]. Available: https://en.bitcoin.it/wiki/
Merged_mining_specification

[69] M. Naor, “Bit commitment using pseudorandomness,” Journal of
Cryptology, vol. 4, no. 2, pp. 151–158, Jan 1991. [Online]. Available:
https://doi.org/10.1007/BF00196774

[70] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.
[Online]. Available: http://doi.acm.org/10.1145/322186.322188

[71] P. Feldman, “A practical scheme for non-interactive verifiable secret shar-
ing,” in 28th Annual Symposium on Foundations of Computer Science
(sfcs 1987), Oct 1987, pp. 427–438.

[72] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Advances in Cryptology — CRYPTO ’91,
J. Feigenbaum, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1992, pp. 129–140.

25

https://digitalscholarship.unlv.edu/thesesdissertations/2976
http://www.sciencedirect.com/science/article/pii/S0736585318306324
http://www.sciencedirect.com/science/article/pii/S0736585318306324
http://arxiv.org/abs/1904.04098
http://arxiv.org/abs/1904.04098
http://arxiv.org/abs/1907.02602
http://arxiv.org/abs/1904.00731
http://arxiv.org/abs/1904.00731
http://doi.acm.org/10.1145/3318041.3355457
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
http://doi.acm.org/10.1145/2491245
http://arxiv.org/abs/1505.06895
http://arxiv.org/abs/1505.06895
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/3243734.3243853
http://arxiv.org/abs/1708.03778
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
http://doi.acm.org/10.1145/3035918.3064033
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://doi.org/10.1007/BF00196774
http://doi.acm.org/10.1145/322186.322188

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

[73] M. Stadler, “Publicly verifiable secret sharing,” in Advances in Cryptol-
ogy — EUROCRYPT ’96, U. Maurer, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 190–199.

[74] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Advances in Cryptology —
CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 148–164.

[75] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, ser. STOC ’89.
New York, NY, USA: ACM, 1989, pp. 73–85. [Online]. Available:
http://doi.acm.org/10.1145/73007.73014

[76] J. Sousa and A. Bessani, “From byzantine consensus to bft state machine
replication: A latency-optimal transformation,” in 2012 Ninth European
Dependable Computing Conference, May 2012, pp. 37–48.

[77] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp.
444–460.

[78] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 51–68. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132757

[79] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” in Advances in Cryptology – ASIACRYPT 2018,
T. Peyrin and S. Galbraith, Eds. Cham: Springer International Publish-
ing, 2018, pp. 435–464.

[80] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities "honest or bust"
with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP), May 2016, pp. 526–545.

[81] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of
Cryptology, vol. 4, no. 3, pp. 161–174, Jan 1991. [Online]. Available:
https://doi.org/10.1007/BF00196725

[82] C. Stathakopoulous and C. Cachin, “Threshold signatures for blockchain
systems,” Swiss Federal Institute of Technology, 2017.

[83] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Advances in
Cryptology — CRYPTO’ 89 Proceedings, G. Brassard, Ed. New York,
NY: Springer New York, 1990, pp. 307–315.

[84] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold dss
signatures,” in Advances in Cryptology — EUROCRYPT ’96, U. Maurer,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 354–371.

[85] V. Shoup, “Practical threshold signatures,” in International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2000, pp. 207–220.

[86] A. Boldyreva, “Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme,” in Public
Key Cryptography — PKC 2003, Y. G. Desmedt, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2002, pp. 31–46.

[87] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in
constantinople: Practical asynchronous byzantine agreement using
cryptography,” Journal of Cryptology, vol. 18, no. 3, pp. 219–246, Jul
2005. [Online]. Available: https://doi.org/10.1007/s00145-005-0318-0

[88] L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Practical synchronous
byzantine consensus,” CoRR, vol. abs/1704.02397, 2017. [Online].
Available: http://arxiv.org/abs/1704.02397

[89] M. Swan, Blockchain : blueprint for a new economy. Sebastopol, Calif.:
O’Reilly Media, 2015. [Online]. Available: http://shop.oreilly.com/
product/0636920037040.do

[90] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the
security of blockchain systems,” Future Generation Computer Systems,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X17318332

[91] V. Zamfir, “Casper-CBC FAQ,” Nov. 2018, accessed on 01.08.2019.
[Online]. Available: https://github.com/ethereum/cbc-casper/wiki/FAQ

[92] J. Ray, “Sharding roadmap,” Mar. 2019, accessed on 01.08.2019.
[Online]. Available: https://github.com/ethereum/wiki/wiki/Sharding-
roadmap

[93] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure Proof-of-Stake Blockchain Protocol,” in The 37th Annu.
Int. Cryptology Conf. (CRYPTO ’17). Springer, 2017, pp. 357–388.

[94] S. King and S. Nadal, “PPcoin: peer-
to-peer crypto-currency with proof-of-stake,” Aug.

2012. [Online]. Available: https://pdfs.semanticscholar.org/0db3/
8d32069f3341d34c35085dc009a85ba13c13.pdf

[95] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making
big data open in edges: A resource-efficient blockchain-based approach,”
IEEE Transactions on Parallel and Distributed Systems, pp. 1–1, 2018.

[96] (2018) Reddcoin. [Online]. Available: https://wiki.reddcoin.com/
Main_Page

[97] V. Buterin, “Convenience link to Casper+Sharding chain v2.1 spec,” Aug.
2018, accessed on 01.08.2019. [Online]. Available: https://ethresear.ch/
t/convenience-link-to-casper-sharding-chain-v2-1-spec/2332

[98] J. Y. Park, “Preparing for Ethereum PoS Staking
in 2019,” Dec. 2018, accessed on 01.08.2019. [On-
line]. Available: https://medium.com/whaley-official/getting-prepared-
for-ethereum-pos-staking-in-2019-3a3855e6a018

[99] J. Prestwich, “What to Expect When ETH’s Expecting,” Jan. 2019,
accessed on 01.08.2019. [Online]. Available: https://hackernoon.com/
what-to-expect-when-eths-expecting-80cb4951afcd

[100] LinkTime. Justin Drake-Ethereum, Sharding. Youtube. [Online].
Available: https://www.youtube.com/watch?v=J4rylD6w2S4

[101] (2017) Randao: Verifiable Random Number Generation. [Online].
Available: https://www.randao.org/whitepaper/Randao_v0.85_en.pdf

[102] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay func-
tions,” in Advances in Cryptology – CRYPTO 2018, H. Shacham and
A. Boldyreva, Eds. Cham: Springer International Publishing, 2018, pp.
757–788.

[103] JustinDrake, “Minimal VDF randomness beacon,” 2018, accessed
on 01.08.2019. [Online]. Available: https://ethresear.ch/t/minimal-vdf-
randomness-beacon/3566

[104] B. Wesolowski, “Efficient verifiable delay functions,” Cryptology ePrint
Archive, Report 2018/623, 2018, https://eprint.iacr.org/2018/623.

[105] K. Pietrzak, “Simple verifiable delay functions,” Cryptology ePrint
Archive, Report 2018/627, 2018, https://eprint.iacr.org/2018/627.

[106] L. D. Feo, S. Masson, C. Petit, and A. Sanso, “Verifiable delay functions
from supersingular isogenies and pairings,” Cryptology ePrint Archive,
Report 2019/166, 2019, https://eprint.iacr.org/2019/166.

[107] V. Buterin, “The Problem of Censorship,” 2015, accessed on 01.08.2019.
[Online]. Available: https://blog.ethereum.org/2015/06/06/the-problem-
of-censorship/

[108] A. Chepurnoy, “Interactive proof-of-stake,” arXiv preprint
arXiv:1601.00275, 2016.

[109] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 129–144. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/heilman

[110] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern, “Scalable
secure storage when half the system is faulty,” in Automata, Languages
and Programming, U. Montanari, J. D. P. Rolim, and E. Welzl, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 576–587.

[111] ——, “Addendum to “scalable secure storage when half the system
is faulty”[inform. comput. 174 (2)(2002) 203–213],” Information and
Computation, vol. 205, no. 7, pp. 1114–1116, 2007.

[112] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information
system based on the xor metric,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems, ser. IPTPS ’01.
London, UK, UK: Springer-Verlag, 2002, pp. 53–65. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687801

[113] V. Buterin et al., “Ethereum white paper: a next generation smart contract
& decentralized application platform,” First version, 2014.

[114] block.one. (2018, Mar.) Eos.io technical white paper v2.
[Online]. Available: https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md

[115] (2018) NEO White Paper. [Online]. Available: http://docs.neo.org/en-us/
[116] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,

I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive software-
update transparency via collectively signed skipchains and verified
builds,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp.
1271–1287. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/nikitin

[117] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations
with pegged sidechains,” URL: http://www. opensciencereview.

26

http://doi.acm.org/10.1145/73007.73014
http://doi.acm.org/10.1145/3132747.3132757
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/s00145-005-0318-0
http://arxiv.org/abs/1704.02397
http://shop.oreilly.com/product/0636920037040.do
http://shop.oreilly.com/product/0636920037040.do
http://www.sciencedirect.com/science/article/pii/S0167739X17318332
http://www.sciencedirect.com/science/article/pii/S0167739X17318332
https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/ethereum/wiki/wiki/Sharding-roadmap
https://github.com/ethereum/wiki/wiki/Sharding-roadmap
https://pdfs.semanticscholar.org/0db3/8d32069f3341d34c35085dc009a85ba13c13.pdf
https://pdfs.semanticscholar.org/0db3/8d32069f3341d34c35085dc009a85ba13c13.pdf
https://wiki.reddcoin.com/Main_Page
https://wiki.reddcoin.com/Main_Page
https://ethresear.ch/t/convenience-link-to-casper-sharding-chain-v2-1-spec/2332
https://ethresear.ch/t/convenience-link-to-casper-sharding-chain-v2-1-spec/2332
https://medium.com/whaley-official/getting-prepared-for-ethereum-pos-staking-in-2019-3a3855e6a018
https://medium.com/whaley-official/getting-prepared-for-ethereum-pos-staking-in-2019-3a3855e6a018
https://hackernoon.com/what-to-expect-when-eths-expecting-80cb4951afcd
https://hackernoon.com/what-to-expect-when-eths-expecting-80cb4951afcd
https://www.youtube.com/watch?v=J4rylD6w2S4
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://eprint.iacr.org/2018/623
https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2019/166
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
http://dl.acm.org/citation.cfm?id=646334.687801
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://docs.neo.org/en-us/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965147, IEEE Access

Guangsheng Yu et al.: Survey: Sharding in Blockchains

com/papers/123/enablingblockchain-innovations-with-pegged-
sidechains, p. 72, 2014.

[118] E. Regnath and S. Steinhorst, “Leapchain: Efficient blockchain
verification for embedded iot,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD ’18. New
York, NY, USA: ACM, 2018, pp. 74:1–74:8. [Online]. Available:
http://doi.acm.org/10.1145/3240765.3240820

[119] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-work.” IACR Cryptology ePrint Archive, vol. 2017, no. 963, pp. 1–42,
2017.

[120] A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work
with sublinear complexity,” in Financial Cryptography and Data Security,
J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and
K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 61–78.

[121] B. Awerbuch and C. Scheideler, “Towards a scalable and robust dht,”
Theory of Computing Systems, vol. 45, no. 2, pp. 234–260, Aug 2009.
[Online]. Available: https://doi.org/10.1007/s00224-008-9099-9

[122] S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group
partitioning for large-scale services,” SIGOPS Oper. Syst. Rev.,
vol. 46, no. 1, pp. 33–39, Feb. 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2146382.2146389

[123] W. Jiaming, “Monoxide: A Solid Solution to Breaking the
Blockchain Trilemma. [Blog] Notes of Decentralized Digital
World,” Jan. 2019, accessed on 01.08.2019. [Online]. Available:
https://zhuanlan.zhihu.com/p/56065714

[124] B. Wiki, “Non-specialized hardware comparison,” 2019. [Online]. Avail-
able: https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

[125] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8, no. 2,
pp. 300–304, 1960.

[126] W. Lim, “What are the Ethereum disk space
needs?” 2018, accessed on 01.08.2019. [Online]. Avail-
able: https://ethereum.stackexchange.com/questions/143/what-are-the-
ethereum-disk-space-needs?noredirect=1&lq=1

[127] H. Chen and Y. Wang, “Sschain: A full sharding protocol for
public blockchain without data migration overhead,” Pervasive and
Mobile Computing, vol. 59, p. 101055, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119218306370

[128] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Maximising
light client security and scaling blockchains with dishonest majorities,”
CoRR, vol. abs/1809.09044, 2018. [Online]. Available: http://arxiv.org/
abs/1809.09044

GUANGSHENG YU is currently pursuing the
Ph.D. degree with the Faculty of Engineering and
Information Technology, University of Technol-
ogy, Sydney, Australia. He received the B.Sc.
degree and M.Sc degree from the University of
New South Wales, Sydney, Australia, from 2011 to
2015. His main research interests lie in blockchain
consensus algorithms, scaling blockchains, pri-
vacy in blockchains and IoT application with
blockchains.

XU WANG received the Ph.D. and B.E. degrees
in Computer Science from Beijing University of
Posts and Telecommunications, Beijing, China
and Beijing Information Science and Technol-
ogy University, Beijing, China, in 2019 and 2010
respectively. His main research interests include
blockchain, cyber security, complex network, so-
cial network, and network dynamics.

KAN YU received his Ph.D., M.Sc., and B.Sc.
degrees from Malardalen University (Sweden) in
2014, Chalmers University of Technology (Swe-
den) in 2010 and Beijing University of Posts
and Telecommunications (China) in 2005, respec-
tively. He was a visiting scholar at the University
of Sydney in 2015. He worked in Huawei Beijing
Research Centre and Huawei Australia in 2007
and 2016 respectively. He is currently a lecturer
in Internet-of-things(IoT) in La Trobe University.

His present research interest includes applying blockchain to IoT, industrial
IoT, smart cities and smart agriculture.

WEI NI (M09-SM15) received the B.E. and Ph.D.
degrees in electronic engineering from Fudan Uni-
versity, Shanghai, China, in 2000 and 2005, re-
spectively. He is currently a Team Leader with
CSIRO, Sydney, Australia, and an Adjunct Pro-
fessor with the University of Technology Sydney.
He was a Post-Doctoral Research Fellow with
Shanghai Jiaotong University from 2005 to 2008,
the Deputy Project Manager of the Bell Labs RI
Center, Alcatel/Alcatel-Lucent from 2005 to 2008,

and a Senior Researcher with Devices Research and Development, Nokia
from 2008 to 2009. His research interests include stochastic optimization,
game theory, graph theory, as well as their applications to network and
security.

J. ANDREW ZHANG (M’04-SM’11) received
B.Sc. degree from Xi’an JiaoTong University,
China, in 1996, M.Sc. degree from Nanjing Uni-
versity of Posts and Telecommunications, China,
in 1999, and Ph.D. degree from the Australian
National University, in 2004. Currently, He is an
Associate Professor in the School of Electrical
and Data Engineering, University of Technology
Sydney, Australia. Dr. Zhang’s research interests
are in the area of signal processing for wireless

com- munications and sensing, and autonomous vehicular networks. He has
published 150+ papers in leading interna- tional Journals and conference
proceedings, and has won 5 best paper awards for his work.

REN PING LIU (M’09-SM’14) is a Professor at
the School of Computing and Communications in
University of Technology Sydney, where he leads
Network Security Lab. Prior to that he was a Prin-
cipal Scientist at CSIRO, where he led wireless
networking research activities. He specialises in
protocol design and modelling, and has delivered
networking solutions to a number of government
agencies and industry customers. Professor Liu
was the winner of Australian Engineering Inno-

vation Award and CSIRO Chairman medal. His research interests include
Markov analysis and QoS scheduling in WLAN, VANET, IoT, LTE, 5G,
SDN, and network security. Professor Liu has over 100 research publica-
tions, and has supervised over 30 PhD students.

27

http://doi.acm.org/10.1145/3240765.3240820
https://doi.org/10.1007/s00224-008-9099-9
http://doi.acm.org/10.1145/2146382.2146389
http://doi.acm.org/10.1145/2146382.2146389
https://zhuanlan.zhihu.com/p/56065714
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://ethereum.stackexchange.com/questions/143/what-are-the-ethereum-disk-space-needs?noredirect=1&lq=1
https://ethereum.stackexchange.com/questions/143/what-are-the-ethereum-disk-space-needs?noredirect=1&lq=1
http://www.sciencedirect.com/science/article/pii/S1574119218306370
http://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1809.09044

