
JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2020177
MANAGEMENT OPTIMIZATION

PLANNING ROLLING STOCK MAINTENANCE: OPTIMIZATION

OF TRAIN ARRIVAL DATES AT A MAINTENANCE CENTER

Hanyu Gu, Hue Chi Lam∗ and Yakov Zinder

School of Mathematical and Physical Sciences
University of Technology Sydney

15 Broadway, Ultimo, NSW 2007, Australia

(Communicated by Bertrand M.T. Lin)

Abstract. A railway network is an indispensable part of the public trans-
portation system in many major cities around the world. In order to provide

a safe and reliable service, a fleet of passenger trains must undergo regular

maintenance. These maintenance operations are lengthy procedures, which
are planned for one year or a longer period. The planning specifies the dates

of trains’ arrival at the maintenance center and should take into account the

uncertain duration of maintenance operations, the periods of validity of the pre-
vious maintenance, the desired number of trains in service, and the capacity of

the maintenance center. The paper presents a nonlinear programming formula-
tion of the considered problem and several optimization procedures which were

compared by computational experiments using real world data. The results of

these experiments indicate that the presented approach is capable to be used
in real world planning process.

1. Introduction. Passenger trains provide one of the major means of public trans-
port in many cities around the world. For example, the suburban passenger rail
network in Sydney, Australia connects central Sydney with northern, southern,
western, and eastern suburbs with 174 stations. The network spans over 813 kilo-
meters of track and delivered about 359.2 million passenger journeys in 2017/18
[16].

There is a risk of sudden breakdowns or even a derailment if the trains (rolling
stock) do not undergo maintenance regularly. There are several mandatory levels of
maintenance that differ from each other by their scope and periodicity. Readers are
referred to [9] for a detailed description of the various maintenance levels. This paper
focuses on the high-level heavy maintenance which is the most involved and time
consuming procedure and is performed at a specialized maintenance center. The
rolling stock arrives at the maintenance center in groups. Each group is comprised
of several cars coupled together and is referred to as a set or a train-set [9]. All cars
in a train-set undergo maintenance in the maintenance center simultaneously.

The reliable functioning of a passenger transportation system is not possible
without a plan, specifying the availability of the rolling stock. The dates when the
train-sets should be withdrawn from service and sent to the maintenance center

2020 Mathematics Subject Classification. 90B36, 90C59.
Key words and phrases. Poisson binomial distribution, maintenance planning, mixed integer

linear programming, iterated local search, earliness/tardiness.
∗ Corresponding author.

1

http://dx.doi.org/10.3934/jimo.2020177

2 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

are crucial for the rolling stock operator as well as for the planning at the main-
tenance center. Given that the heavy maintenance of a train-set is a long process,
both, rolling stock operator and maintenance center, need to specify at least for
a year when the heavy maintenance of each train-set should commence [10], [15].
Furthermore, often the transportation of passengers and the rolling stock heavy
maintenance are carried out by two separate organizations which operate on the
basis of a long term contract that specifies for each train-set the precise date of the
commencement of its maintenance.

This paper is concerned with the development of the plan that specifies the
dates when the train-sets should arrive at the maintenance center. The presented
optimization procedures take into account the specifics of the heavy maintenance
procedure, including its uncertain duration and the restriction on the period be-
tween consecutive arrivals of the train-sets at the maintenance center, as well as
the information provided by the rolling stock operator, including the engineering
restrictions on the permissible period between heavy maintenance procedures and
the demand for transportation.

The heavy maintenance has a validity period after which another heavy main-
tenance procedure must take place according to the engineering restrictions. Con-
sequently, the rolling stock operator determines for every train-set a time window
within which the maintenance of this train-set should commence (see, for example,
[10]). The length of such time window depends on the practice of the rolling stock
operator and in some cases can be zero (see, for example, [15]). Although it is
equally possible to start maintenance at any point in time within the corresponding
time window, for the purpose of the optimization procedures below, the middle of
a time window will be considered as a preferred date and the time window will be
viewed as a specification of the permissible deviation from this preferred date.

The dates when the train-sets should arrive at the maintenance center, speci-
fied by the mentioned above plan, may violate the time windows of the train-sets
which are dictated only by the practice of the rolling stock operator and do not
take into account the capacity of the maintenance center, the uncertain duration of
maintenance, and the demand for transportation. Such violation is highly undesir-
able which often is modeled by introducing a penalty for the violation of the time
windows.

A train-set that arrives at the maintenance center before its time window is
referred to as “early”, while a train-set that arrives after its time window is referred
to as “tardy”. If despite the penalties for the violation of the time windows the
plan still contains some early and tardy train-sets, this situation is resolved by
the consultations between the rolling stock operator and the maintenance center.
Similar to the majority of publications on this topic, the consultation phase is
beyond the scope of this paper.

Upon arriving at the maintenance center, a train-set is shunted to the first op-
eration line, where thorough inspections and replacement of some components and
parts such as air-conditioning units are performed. A train-set can arrive only if
the first operation line is not occupied by the previous train-set. Normally, there
are several types of trains and each type may require different time at the first
operation line.

After the first operation line, the train-set undergoes various maintenance oper-
ations such as bogies replacement, system testing, refurbishment, etc. In order to
perform these operations, the train-set has to be shunted between several lines. The

PLANNING ROLLING STOCK MAINTENANCE 3

duration of each operation depends on the condition of the train-set; the availability
and composition of the workforce; the availability of spare parts; and many other
factors. Consequently, the dwelling time of a train-set at the maintenance center
(also referred to as a cycle time) is uncertain at the time of planning.

On the arrival at the maintenance center, a train-set is completely withdrawn
from service and must stay at the maintenance center for at least one month. This
long cycle time directly impacts the number of train-sets available in active service.
Therefore, as part of the input data for the heavy maintenance planning, a permis-
sible number of train-sets that can be out of service simultaneously are specified for
each type of train-sets. Furthermore, the capacity of the maintenance center also
imposes the restriction on the number of train-sets which can undergo maintenance
simultaneously. Any violation of all these restrictions causes serious problems and
therefore must be taken into consideration at the planning stage.

The goal of the planning process is to determine an arrival plan, specifying the
arrival dates for all train-sets. The discussion above suggests that it is reasonable to
have the objective function as a weighted sum of two components: the total penalty
for the deviation (earliness and tardiness) from the arrival time windows, and the
expected total penalty for violating the center capacity as well as for violating the
permissible number of out-of-service train-sets of all types.

The body of literature on planning the rolling stock maintenance falls into two
broad categories: (i) planning the rolling stock low-level maintenance subject to
the trains timetable, and (ii) planning the rolling stock high-level maintenance for
a long planning horizon. The first category considers only low-level maintenance,
such as daily and monthly inspections, which is often combined with the decisions
on the rolling stock utilization. Accordingly, the low-level maintenance is often
considered as constraints in the planning process of rolling stock utilization (see for
example, [9], [7]).

The second category is concerned with the high-level maintenance which has
a long cycle time. In authors’ opinion, the high-level maintenance planning has
not attracted literature which it deserves. To the best of the authors’ knowledge,
only the publications [15], [5], and [10] are closely related to the planning problem
considered in this paper.

The first of these three publications, [15], is concerned with maintenance sched-
uling at the Hong Kong Mass Transit Railway Corporation. In contrast to our
paper, the authors of [15] postulate that the duration of maintenance is given. This
simplification allows them to approach the minimization of the earliness and tar-
diness with respect to the completion of maintenance as a deterministic scheduling
problem. The authors of [15] also assume that the given permissible number of
trains which can dwell at the maintenance center simultaneously can not be vio-
lated, which may not be possible to ensure when the duration of maintenance is
uncertain. The resultant deterministic scheduling problem is solved by a genetic
algorithm. The authors reported that the proposed approach produced near opti-
mal solutions for randomly generated instances with linear earliness and tardiness
objective.

As in [15], [5] assumes that the duration of maintenance is known and that the
limit on the number of trains that can dwell at the maintenance center simulta-
neously cannot be violated. In addition, [5] is concerned with planning under the
condition that the maintenance operations must commence prior to their due dates.
The planning problem was formulated as a mixed integer linear programming model

4 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

and was solved using IBM ILOG CPLEX 11.2. The objective function is a weighted
sum of the maintenance cost, the cost of shunting activities, the cost related to the
spare parts, and the penalty for early maintenance. The authors reported that the
inclusion of the cost related to the spare parts positively affected the quality of the
plan.

The publication [10] is concerned with planning the heavy maintenance of the
electric multiple units at the Shanghai Railway Bureau. As in [15] and [5], it
is assumed that the duration of maintenance is known and that the limit on the
number of trains that can dwell at the maintenance center simultaneously cannot be
violated. As in our paper, each train has a time window when its maintenance should
commence, but in contrast to our paper, [10] postulates that this time window
cannot be violated. The problem is formulated as an integer linear program with
the objective of minimizing the total penalty for early maintenance. It was reported
that small instances can be solved exactly. For large instances, the authors propose
a simulated annealing algorithm and report solving instances with up to 124 train-
sets and a planning horizon of 607 days.

In summary, the contribution of our paper is that, in contrast to the previous
publications, our paper considers the planning problem where

• for each train-set, the duration of maintenance is uncertain;
• the violation of the time windows within which the maintenance should com-

mence is undesirable but possible;
• there are several types of train-sets;
• the violation of the given limit on the number of train-sets that can dwell at

the maintenance center simultaneously is undesirable but possible;
• for each type of train-sets, the violation of the given limit on the number of

train-sets that can dwell at the maintenance center simultaneously is undesir-
able but possible.

These differences to the previous publications lead to new optimization procedures
designed to be used in a complex planning process involving the negotiations be-
tween the rolling stock operator and the maintenance center. More specifically, the
paper presents

• a new nonlinear programming formulation of the considered planning problem,
which takes into account the uncertain duration of maintenance;

• a method that permits to evaluate the objective function of the introduced
nonlinear mathematical program for any feasible solution without resorting
to computationally expensive Monte-Carlo simulation;

• a new mixed integer linear programming relaxation that is based on Jensen’s
Inequality [3] and therefore provides a lower bound to the optimal value of the
objective function for the nonlinear mathematical program and hence allows
to assess the quality of approximate solutions;

• an Iterated Local Search (ILS) metaheuristic that, in contrast to the previous
publications, takes into account the uncertain duration of maintenance;

• a hybrid two-stage optimization procedure that combines the Jensen’s Inequal-
ity based relaxation (or another mixed integer linear program also introduced
in the paper) with either a local search subroutine or the presented ILS sub-
routine;

• a fast method for evaluation of the neighborhoods for the local search and ILS
subroutines;

PLANNING ROLLING STOCK MAINTENANCE 5

• results of the comparison, by means of computational experiments on real-
world data, of the presented optimization procedures taking into account two
main characteristics: the solution quality and the time needed for obtaining
the solution.

The remainder of the paper is organized as follows. Section 2 presents a nonlin-
ear mathematical programming formulation of the considered problem, an efficient
algorithm for evaluation of the objective function, and a Jensen’s Inequality based
mixed integer linear programming relaxation. Section 3 presents an alternative
mixed integer linear program, local search and iterated local search subroutines,
and a fast method for the neighborhood evaluation. Section 4 presents the re-
sults of computational experiments that use real-world data provided by a major
maintenance center in Australia. The conclusion can be found in Section 5.

2. Mathematical programming formulation. This section presents a Nonlin-
ear Integer Programming Model (NIPM) for the considered problem and a Mixed
Integer Programming Model (MIPM) that provides a lower bound for NIPM. The
considered planning problem can be stated as follows. A set N = {1, · · · , n} of
train-sets is to undergo maintenance at a maintenance center. The planning period
is T days which are numbered from 0 to T − 1. An arrival plan specifies for each
train-set j ∈ N the day sj of its arrival at the maintenance center. No two train-sets
can arrive on the same day. Furthermore, the train-sets are of m different types
and, for each type k, there exists a restriction when the next train-set can arrive
after the arrival of a train-set of type k. This restriction is given by the number of
days τk. If a train-set j of type k arrives on day sj , then, regardless of the type of
the next train-set, it can arrive only on the day sj + τk or later.

It is convenient to consider the partition F 1, ..., Fm of N , where each F k is
comprised of all train-sets of the same type k. Observe that arrival days that
satisfy the restriction on the time between two consecutive arrivals exist if and only
if ∑

1≤k≤m

|F k|τk − max
1≤k≤m

τk ≤ T − 1.

In what follows, it is assumed that this inequality holds.
For each j ∈ N , the time that a train-set j spends at the maintenance center (its

cycle time) is a discrete random variable Dj which assumes integer values. All these
random variables are independently distributed and, for each 1 ≤ k ≤ m, the cycle
times of all train-sets in F k are identically distributed between ak - the minimal
possible duration of a cycle for a train-set of type k, and bk - the maximal possible
duration of a cycle for a train-set of type k. For each 1 ≤ k ≤ m, τk < ak.

Each train-set j has the associated time window [θj − ∆, θj + ∆], where θj is
the preferred day of the commencement of maintenance, i.e. the preferred day of
the arrival at the maintenance center, and ∆ is the permissible deviation from this
preferred day of arrival. The penalty for the violation of time window is defined by
the function:

gj(sj) =

 λ1(θj − sj)2 if sj < θj −∆
λ2(θj − sj)2 if sj > θj + ∆
0 otherwise

(1)

6 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

where λ1 > 0 and λ2 > 0. For any arrival plan σ = [s1, · · · , sn], the total penalty
for the violation of time windows will be denoted by G1(σ) = G1(s1, · · · , sn):

G1(σ) = G1(s1, · · · , sn) =
∑
j∈N

gj(sj). (2)

For any arrival plan σ, any 1 ≤ k ≤ m, and any day t, denote by W k
t (σ) the

number of train-sets in F k that are at the maintenance center on day t. Since all
cycle times are random variables, W k

t (σ) is a random variable. If W k
t (σ) exceeds

the given limit Ckt, this attracts the penalty δkt(W
k
t (σ)−Ckt), where δkt > 0. The

total number of train-sets at the maintenance center on day t is

Wt(σ) =

m∑
k=1

W k
t (σ).

If this number exceeds the given limit Ct, this attracts the penalty δt(Wt(σ)−Ct),
where δt > 0. Let σ be an arbitrary arrival plan and G2(σ) be the mathematical
expectation of the total penalty for the violation of the limits on the number of
train-sets that can dwell at the maintenance center simultaneously. Then

G2(σ) =

T−1∑
t=0

(
E
[

max
{

0, δt

(
Wt(σ)− Ct

)}]
+

m∑
k=1

E
[

max
{

0, δkt

(
W k
t (σ)− Ckt

)}])
,

(3)

where E[·] is the mathematical expectation. The goal is to minimize

G(σ) = αG1(σ) + βG2(σ) (4)

where α and β are two positive weights.

2.1. Nonlinear integer programming formulation. For each t ∈ {0, ..., T − 1}
and each j ∈ N , let

xjt =

{
1 if train-set j arrives on day t
0 otherwise

(5)

The heavy maintenance planning problem can be formulated as follows.

(NIPM) ZNIPM = minαG1(s1, · · · , sn) + βG2(s1, · · · , sn) (6)

subject to

T−1∑
t=0

xjt = 1, ∀j ∈ N (7)

m∑
k=1

∑
j∈Fk

t∑
s=max(0,t−τk+1)

xjs ≤ 1, ∀t ∈ {0, ..., T − 1} (8)

sj =

T−1∑
t=0

txjt, ∀j ∈ N (9)

(1), (2), (3)

xjt ∈ {0, 1}, ∀j ∈ N, ∀t ∈ {0, ..., T − 1} (10)

In the above formulation, the objective function (6) is the weighted sum of two
components: the total penalty for the violation of time windows; and the expected

PLANNING ROLLING STOCK MAINTENANCE 7

penalties for the violation of the limits Ct and Ckt. Constraint set (7) ensures that
each train-set must arrive for maintenance within the planning horizon. Constraint
set (8) enforces that at most one train-set can occupy the first operation line on any
given day. The arrival day of each train-set can be calculated as (9). Constraint set
(10) states that the decision variables are binary.

2.2. Evaluation of the objective function. For optimization problems involv-
ing random variables, Monte-Carlo simulation is a commonly used approach for
approximately evaluating the objective function [2, 8] unless the model can be writ-
ten in closed form by assuming some special distributions [6, 1]. The objective
function (6) can be evaluated exactly using the method below.

Given an arrival plan σ = [s1, . . . , sn], let

Yj(sj , t) =

{
1 if sj ≤ t and sj +Dj ≥ t+ 1
0 otherwise

(11)

which is a Bernoulli random variable that takes value 1 if the train-set j is at the
maintenance center on day t and 0 otherwise. Then, the probability of Yj(sj , t) = 1
can be computed as

Prob(Yj(sj , t) = 1) = Prob(Dj ≥ t− sj + 1)

=

bk∑
i=t−sj+1

Prob(Dj = i),

1 ≤ k ≤ m, j ∈ F k, t ∈ {sj , ..., T − 1}
Prob(Yj(sj , t) = 1) = 0, j ∈ N, t ∈ {0, ..., sj − 1}

(12)

For any arrival plan σ, and any day t, Wt(σ) =
∑
j∈N Yj(sj , t) is a sum of Bernoulli

random variables with success probabilities according to (12). Therefore, Wt(σ) is
a random variable that follows Poisson Binomial distribution [4]. For any arrival
plan σ = [s1, · · · , sn], any 1 ≤ i ≤ n, and any day t, denote pi = Prob(Yi(si, t) = 1).
Let Prob(Wt(σ

l) = i) be the probability that i train-sets from the partial arrival
plan σl = [s1, . . . , sl] dwell at the maintenance center on day t. Then,

Prob(Wt(σ
1) = 1) = p1 and Prob(Wt(σ

1) = 0) = 1− p1

and for all 1 ≤ l < n
Prob(Wt(σ

l+1) = 0) = (1− pl+1)Prob(Wt(σ
l) = 0)

Prob(Wt(σ
l+1) = i) = (1− pl+1)Prob(Wt(σ

l) = i)

+ pl+1Prob(Wt(σ
l) = i− 1), 1 ≤ i ≤ l

Prob(Wt(σ
l+1) = l + 1) = pl+1Prob(Wt(σ

l) = l)

. (13)

Let PMF be the probability mass function of the Poisson binomial distributed
variable. The entire procedure is outlined in Algorithm 1 [4].

Similarly, for any arrival plan σ, any 1 ≤ k ≤ m, and any day t, W k
t (σ) =∑

j∈Fk Yj(sj , t) is a sum of Bernoulli random variables with success probabilities

according to (12). Then, all probabilities Prob(W k
t (σ)) can be obtained using Al-

gorithm 1.

8 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Algorithm 1 Direct Convolution (DC)

1: Input: total number of Bernoulli random variables n; success probability pi of
the i-th random variable

2: Output: PMF
3: procedure DC(p1, · · · , pn)
4: PMF (0) = 1− p1, PMF (1) = p1

5: for i from 2 to n do
6: j = 1
7: new PMF (0) = (1− pi) PMF (0)
8: while j < i do
9: new PMF (j) = pi PMF (j − 1) + (1− pi) PMF (j)

10: end while
11: new PMF (i) = pi PMF (i− 1)
12: PMF = new PMF
13: end for
14: return PMF
15: end procedure

As a result, the objective function (4) can be computed as

αG1(σ) + βG2(σ) = αG1(σ)+

β

T−1∑
t=0

[|N |∑
w=Ct+1

δt(w − Ct)Prob(Wt(σ) = w)+

m∑
k=1

|Fk|∑
w=Ckt+1

δkt(w − Ckt)Prob(W k
t (σ) = w)

]
.

(14)

2.3. Integer linear programming relaxation based on Jensen’s Inequality.
As in (3), denoting the mathematical expectation by E[·], the right-hand side in (14)
can be written as

αG1(σ) + β

T−1∑
t=0

(
δtE[max{0,Wt(σ)− Ct}] +

m∑
k=1

δktE[max{0,W k
t (σ)− Ckt}]

)
and, taking into account that max{0, ·} is convex, by Jensen’s Inequality [3],

≥ αG1(σ) + β

T−1∑
t=0

(
δt max{0,E[Wt(σ)− Ct]}+

m∑
k=1

δkt max{0,E[W k
t (σ)− Ckt]}

)
= αG1(σ) + β

T−1∑
t=0

(
δt max{0,E[Wt(σ)]− Ct}+

m∑
k=1

δkt max{0,E[W k
t (σ)]− Ckt}

)
Denote

G′2(σ) =

T−1∑
t=0

(
δt max{0,E[Wt(σ)]− Ct}+

m∑
k=1

δkt max{0,E[W k
t (σ)]− Ckt}

)
Then,

αG1(σ) + βG2(σ) ≥ αG1(σ) + βG′2(σ). (15)

PLANNING ROLLING STOCK MAINTENANCE 9

Using the variables xjt, introduced in (5), for any t ∈ {0, ..., T − 1},

E[Wt(σ)] = E
[m∑
k=1

∑
j∈Fk

Yj(sj , t)
]

=

m∑
k=1

∑
j∈Fk

Prob
(
Yj(sj , t) = 1

)

=

m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs, (16)

and, for any t ∈ {0, ..., T − 1} and any 1 ≤ k ≤ m,

E[W k
t (σ)] = E

[∑
j∈Fk

Yj(sj , t)
]

=
∑
j∈Fk

Prob(Yj(sj , t) = 1)

=
∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs. (17)

This leads to the following Mixed Integer Programming Model (MIPM):

(MIPM) ZMIPM = minα
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt

)

+ β

T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
(18)

subject to

(7), (8), (10)

m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs ≤ Ct + wt,

∀t ∈ {0, ..., T − 1} (19)∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs ≤ Ckt + wkt ,

1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1} (20)

wt ≥ 0, wkt ≥ 0, 1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1}. (21)

The nonlinear programming problem NIPM and the mixed integer linear pro-
gramming problem MIPM use the same variables xjt, introduced in (5), that
satisfy the same set of constraints (7), (8), (10). Therefore, for any arrival plan
σ = [s1, ..., sn] that is feasible for NIPM, there exists a feasible solution for MIPM
with variables xjt, wt and wkt satisfying, for all j ∈ N , t ∈ {0, ..., T − 1} and
1 ≤ k ≤ m,

sj =

T−1∑
t=0

txj,t

10 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

wt = max

0,

m∑
k=1

∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs − Ct

wkt = max

0,
∑
j∈Fk

t∑
s=0

bk∑
i=t−s+1

Prob(Dj = i)xjs − Ckt

 .

or, by taking into account (16) and (17),

wt = max{0, E[Wt(σ)]− Ct}

wkt = max{0, E[W k
t (σ)]− Ckt}.

In other words, for any arrival plan σ = [s1, ..., sn] that is feasible for NIPM,
there exists a solution for the mixed integer linear programming problem MIPM
which variables xjt, wt and wkt satisfy

αG1(σ) + βG′2(σ) = α
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt

)

+ β

T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
.

This, by virtue of (15), implies that the optimal value ZMIPM of the objective
function for MIPM is a lower bound on the optimal value ZNIPM of the objective
function for NIPM.

3. Construction of arrival plans. As has been discussed in Section 1, the exist-
ing literature often ignores the stochastic nature of cycle times and focuses on the
optimization procedures that construct arrival plans assuming that the duration of
maintenance is known. This also reflects the practice often encountered in industry.
Under the assumption of deterministic cycle times, the arrival plan is constructed
either by solving a mathematical programming problem [10], [5] or by some meta-
heuristic [10], [15]. The Mixed Integer Linear Programming Problem (MILP) below
also assumes that the cycle times are known constants, but in contrast to the pre-
vious publications the resulting arrival plan is evaluated as described in Section
2.2.

As far as metaheuristics are concerned, this paper presents an Iterated Local
Search (ILS) algorithm which is embedded into the multi-start framework. In con-
trast to the previous publications, the presented ILS does not assume that the cycle
times are deterministic and evaluates each element in a neighborhood taking into
account the stochastic nature of cycle times.

Furthermore, this paper presents a hybrid optimization procedure which gen-
erates a starting solution by solving either the mixed integer linear programming
problem MILP or the mixed integer linear programming problem MIPM and then
enhances the obtained solution using the mentioned above ILS algorithm. As has
been discussed above, when the hybrid optimization procedure generates the start-
ing solution using the mixed integer linear programming problem MIPM, the op-
timal value of the objective function is a lower bound on the optimal value of the
original nonlinear programming problem.

PLANNING ROLLING STOCK MAINTENANCE 11

Section 4 reports the results of computational experiments which were aimed
at the comparison of the quality of the solutions produced by the presented opti-
mization procedures and the times needed to generate these solutions. Since the
considered optimization problem is a component of the complex planning process
which normally involves a lot of negotiations between the rolling stock operator and
the maintenance center, both characteristics, quality and time, are important.

3.1. Mixed integer linear program MILP. It is reasonable to model random
cycle times using a beta-PERT distribution [12], which is commonly used in project
management [13]. In this case, the constant duration is chosen as the most likely
value of the cycle time according to the beta-PERT distribution. This approach is
adopted in the computational experiments below. Let qk be the most likely value
of the cycle time for the train-sets in F k. Then, the arrival day for each train-set j
can be determined by

sj =

T−1∑
t=0

txjt

where variables xjt are obtained by solving the following mixed integer linear pro-
gram

(MILP) ZMILP = min α
∑
j∈N

(
λ1

θj−∆−1∑
t=0

(θj − t)2xjt + λ2

T−1∑
t=θj+∆+1

(t− θj)2xjt

)

β

T−1∑
t=0

(
δt wt +

m∑
k=1

δktw
k
t

)
(22)

subject to

(7), (8), (10)

m∑
k=1

∑
j∈Fk

t∑
s=max(0,t−qk+1)

xjs ≤ Ct + wt,

∀t ∈ {0, ..., T − 1} (23)∑
j∈Fk

t∑
s=max(0,t−qk+1)

xjs ≤ Ckt + wkt ,

1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1} (24)

wt ≥ 0, wkt ≥ 0, 1 ≤ k ≤ m, ∀t ∈ {0, ..., T − 1}. (25)

3.2. Local search subroutines. As has been discussed above, the considered
planning problem can be solved either by some local search based metaheuristic or
by a hybrid algorithm that produces a starting solution by solving one of the two
mixed integer linear programs, MIPM or MILP, and then enhances this solution by
some local search based optimization procedure. Four neighborhood operators, N1,
N2, N ′1, and N ′2, as described below, will be used for this purpose.

3.2.1. Neighborhood operators. Consider an arbitrary arrival plan σ = [s1, ..., sn]
and a sequence t1, ..., tn of arrival days which are listed in a nondecreasing order
and which are obtained by changing a single arrival day in σ, say by changing the
arrival day sg of some train-set g. For each 1 ≤ j ≤ n, let n(j) be the train-set that

12 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

arrives at tj , and let k(j) be the type of n(j). Let ti be the new arrival day assigned
to the train-set g. The replacement of sg by ti results in a new feasible arrival plan
if

(p1) i = 1 and t1 + τk(1) ≤ t2;
(p2) 1 < i < n, ti−1 + τk(i−1) ≤ ti and ti + τk(i) ≤ ti+1;
(p3) i = n and tn−1 + τk(n−1) ≤ tn.

The neighborhood explored by the operator N1 is comprised of all feasible arrival
plans (solutions) that can be obtained from the input arrival plan σ by assigning a
different arrival day to a single train-set. In other words, the neighborhood explored
by the operator N1 is comprised of all arrival plans that are obtained when the
change of a single arrival day in σ results either in (p1), or (p2), or (p3). The benefit
of using N1 is in the fast evaluation of each solution in the neighborhood because
each solution is obtained by changing only a single arrival day and this change does
not affect any other arrival days. The operator N2 explores all solutions that can
be obtained by changing any two arrival days of the input arrival plan. Similar to
N1, these two changes must not affect any other arrival days in the input arrival
plan.

Other two operators N ′1 and N ′2 are similar to N1 and N2 but their neighbor-
hoods are constructed without the restriction that the change of an arrival day
in σ does not affect any unchanged days in σ. More specifically, the operator N ′1
explores the neighborhood comprised of the solutions that result from a change of
a single arrival day in the input arrival plan, but in contrast to N1, this change is
allowed to violate all three feasibility conditions (p1), (p2), and (p3). In such case,
the set of arrival days is transformed into a feasible arrival plan by the algorithm
TRANSFORMATION and its two subroutines LEFT and RIGHT. Similarly, the
operator N ′2 explores all solutions that can be obtained by changing any two arrival
days in the input arrival plan, but in contrast to N2, these two changes may affect
some other arrival days in the input solution. In such case, analogously to N ′1, the
resultant set of arrival days is transformed into a feasible arrival plan using the
same algorithm TRANSFORMATION.

Algorithm 2 TRANSFORMATION

1: if ti < sg then
2: LEFT(i, t1, ..., tn) . Algorithms 3
3: else
4: RIGHT(i, t1, ..., tn) . Algorithm 4
5: end if
6: for j = 1; j ≤ n; j++ do
7: sn(j) = tj
8: end for
9: return [s1, ..., sn]

PLANNING ROLLING STOCK MAINTENANCE 13

Algorithm 3 LEFT

1: t
′

i = ti
2: if i > 1 then
3: for j = i− 1; j > 0; j-- do
4: t

′

j = min{tj , t
′

j+1 − τk(j)}
5: end for
6: if t

′

1 < 0 then
7: t1 = 0
8: for j = 2; j ≤ i; j++ do
9: tj = tj−1 + τk(j−1)

10: end for
11: else
12: for j = 1; j ≤ i; j++ do
13: tj = t

′

j

14: end for
15: end if
16: end if
17: if i < n then
18: for j = i; j < n; j++ do
19: tj+1 = max{tj + τk(j), tj+1}
20: end for
21: end if
22: return [t1, ..., tn]

Algorithm 4 RIGHT

1: t
′

i = ti
2: if i < n then
3: for j = i; j < n; j++ do
4: t

′

j+1 = max{tj+1, t
′

j + τk(j)}
5: end for
6: if t

′

n > T − 1 then
7: tn = T − 1
8: for j = n− 1; j ≥ i; j-- do
9: tj = tj+1 − τk(j)

10: end for
11: else
12: for j = i+ 1; j ≤ n; j++ do
13: tj = t

′

j

14: end for
15: end if
16: end if
17: if i > 1 then
18: for j = i; j > 1; j-- do
19: tj−1 = min{tj − τk(j−1), tj−1}
20: end for
21: end if
22: return [t1, ..., tn]

14 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Let N be one of the four operators, N1, or N ′1, or N2, or N ′2. For each solution
σ̃ = [s̃1, ..., s̃n] in the neighborhood of an input arrival plan σ, the operator N
computes the value of the objective function

αG1(σ̃) + βG2(σ̃) = α
∑

1≤j≤n

gj(s̃j) + β

T−1∑
t=0

(
E [max{0, δt(Wt(σ̃)− Ct)}]

+

m∑
k=1

E
[
max{0, δkt(W k

t (σ̃)− Ckt)}
])
.

(26)

Let σ̂ be a solution in the neighborhood of σ with the smallest value of the objective
function. Denote by N(σ) the output solution produced by the operator N. Then

N(σ) =

{
σ if αG1(σ) + βG2(σ) ≤ αG1(σ̂) + βG2(σ̂)
σ̂ otherwise

(27)

The Algorithm 5 below outlines the local search procedure for an input arrival plan
σ. If N is Ni, where i ∈ {1, 2}, then this procedure will be referred to as LSi. If N

is N ′i , where i ∈ {1, 2}, this procedure will be referred to as LSi
′
.

Algorithm 5 Local Search

1: repeat
2: σ̄ = σ
3: σ = N(σ)
4: until αG1(σ) + βG2(σ) == αG1(σ̄) + βG2(σ̄)
5: return σ̄

The four search operators, mentioned above, can be combined in different ways.
In this paper, four options are considered: (1) LS1 is a local search that uses only

the operator N1; (2) LS1
′

is a local search that uses only the operator N ′1; (3)
Sequential Local Search (SLS) applies LS1 to the input arrival plan and when LS1

terminates applies LS2 to the output of LS1; and (4) SLS
′

applies LS1
′

to the input

arrival plan and when LS1
′

terminates applies LS2
′

to the output of LS1
′
. Each

option has its own merit as demonstrated in the computational study.

3.2.2. Evaluation of solutions in a neighborhood. The main computational burden
in many local search algorithms is the evaluation of the elements constituting a

neighborhood. The local search procedures LS1, LS2, LS1
′

and LS2
′

are no excep-
tion. Therefore, an algorithm for computing (26) for each element of the neighbor-
hood of an input solution is the key factor that determines the efficiency of these
optimization procedures.

As (14) indicates, in order to recompute (26) efficiently, one requires a fast algo-
rithm for recomputing the probability mass functions of the random variables Wt,
W k
t for all t ∈ {0, ..., T − 1} and 1 ≤ k ≤ m. All these random variables have the

same nature - they are sums of Bernoulli random variables. Given the structure of
neighborhoods explored by the operators N1 and N2, each element in the neigh-
borhood of the input arrival plan can be obtained by changing the arrival day of
one or two trains-sets in this input solution. For each such train-set, the change in
the arrival day results in the change of one of the Bernoulli random variables in the
sums defining the random variables Wt, W

k
t for all t ∈ {0, ..., T −1} and 1 ≤ k ≤ m.

PLANNING ROLLING STOCK MAINTENANCE 15

This replacement can be viewed as the elimination of one of the Bernoulli random
variables from the sum followed by the addition of another Bernoulli random vari-
able to the result of the elimination. The Algorithm 6 and Algorithm 7 below do
this efficiently for any probability mass function of a random variable that is a sum
of Bernoulli random variables, and therefore, are used for recomputing probabil-
ity mass functions of the random variables Wt, W

k
t for all t ∈ {0, ..., T − 1} and

1 ≤ k ≤ m.
Let p be the success probability of the Bernoulli random variable that is to

be eliminated, PMF be the original probability mass function, and new PMF
be the probability mass function resulted from the elimination of this Bernoulli
random variable. The probability mass function new PMF is defined for all integers
0 ≤ i ≤ n − 1, whereas the probability mass function PMF is defined for all
integers 0 ≤ i ≤ n. For each i from the domain of new PMF , if p = 0, then
new PMF (i) = PMF (i), whereas if p = 1, then new PMF (i) = PMF (i + 1). If
0 < p < 1, then

PMF (0) = (1− p) new PMF (0)

and, for 1 ≤ i ≤ n− 1,

PMF (i) = p new PMF (i− 1) + (1− p) new PMF (i)

This observations lead to the Algorithm 6 below.

Algorithm 6 Single Train-set Removal (STR)

1: if 0 < p < 1 then
2: new PMF (0) = PMF (0) / (1− p)
3: for i from 1 to n - 1 do
4: new PMF (i) = [PMF (i)− new PMF (i− 1) ∗ p] / (1− p)
5: end for
6: else
7: for i from 0 to n - 1 do
8: if p = 1 then
9: new PMF (i) = PMF (i+ 1)

10: else
11: new PMF (i) = PMF (i)
12: end if
13: end for
14: end if
15: return new PMF

Let p be the success probability of the Bernoulli random variable that is to
be added to a sum of Bernoulli random variables which has the probability mass
function PMF . Let new PMF be the probability mass function of the sum after
this addition. The probability mass function new PMF is defined for all integers
0 ≤ i ≤ n, whereas the probability mass function PMF is defined for all integers
0 ≤ i ≤ n− 1. The reasoning similar to the above lead to the Algorithm 7.

3.3. Iterated local search. Iterated local search (ILS) is one of the commonly
used metaheuristics which was successful in solving a wide range of optimization
problems [11]. The Algorithm 8 below outlines this metaheuristic as it was im-
plemented and used in the computational experiments, the results of which are

16 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Algorithm 7 Single Train-set Addition (STA)

1: if 0 < p < 1 then
2: new PMF (0) = PMF (0) ∗ (1− p)
3: for i from 1 to n− 1 do
4: new PMF (i) = PMF (i) ∗ (1− p) + PMF (i− 1) ∗ p
5: end for
6: new PMF (n) = PMF (n− 1) ∗ p
7: end if
8: if p = 0 then
9: new PMF (n) = 0

10: for i from 0 to n− 1 do
11: new PMF (i) = PMF (i)
12: end for
13: end if
14: if p = 1 then
15: new PMF (0) = 0
16: for i from 1 to n do
17: new PMF (i) = PMF (i− 1)
18: end for
19: end if
20: return new PMF

reported in Section 4. In this pseudocode, G is the objective function (4) and the
parameter U specifies the maximum permissible number of consecutive unsuccessful
attempts to improve the current best known arrival plan σ∗.

The Algorithm 8 interchangeably invokes two subroutines, SEARCH and PER-
TURB. In some computational experiments, reported in Section 4, the subroutine

SEARCH is a local search procedure LS1 or LS1
′

(see Algorithm 5), whereas in the

others, the subroutine SEARCH is the sequential local search SLS or SLS
′
. The

subroutine PERTURB randomly chooses three train-sets and one by one assigns to
them new arrival days without violating the feasibility (that is, without violating
the restrictions on the duration of time intervals between any two consecutive ar-
rivals of train-sets). In the process of assigning the arrival days to the three selected
train-sets, the subroutine PERTURB does not take into account the new value of
the objective function G. In what follows, for any arrival plan σ̃, SEARCH(σ̃)
and PERTURB(σ̃) denote the output of SEARCH and PERTURB, respectively,
resulted from their application to σ̃. The arrival plan σ in SEARCH(σ) in line 1 is
a feasible (in terms of the time between the consecutive arrivals) input solution.

An input arrival plan for the ILS is generated either by solving one of the two
mixed integer linear programs, MIPM or MILP, or by the heuristic INITIAL de-
scribed below. The heuristic INITIAL chooses randomly n different arrival days
t1 < ... < tn and associates randomly with each ti one of m types of train-sets in
such a manner that each type 1 ≤ k ≤ m receives |F k| arrival days. Denote by k(ti)
the type associated with ti. If, for each 1 ≤ i < n,

ti + τk(ti) ≤ ti+1,

then the arrival days are feasible. If they are not feasible, then the heuristic
INITIAL transforms the generated arrival days into feasible arrival days, using the

PLANNING ROLLING STOCK MAINTENANCE 17

Algorithm 8 Iterated Local Search

1: σ∗ = SEARCH(σ)
2: u = 0
3: while u ≤ U do
4: σ = PERTURB (σ∗)
5: σ = SEARCH (σ)
6: if G(σ∗) > G(σ) then
7: σ∗ = σ
8: u = 0
9: else

10: u = u+ 1
11: end if
12: end while
13: return σ∗

Algorithm 9 below. After obtaining feasible arrival days, the heuristic INITIAL
generates an arrival plan by assigning the days associated with each type of train-
sets to the train-sets of this type in the increasing order of their preferred days θj .

Algorithm 9 Arrivals Adjustment

1: for i from n− 1 to 1 do
2: ti = min[ti, ti+1 − τk(ti)]
3: end for
4: if t1 < 0 then
5: t1 = 0
6: for i from 2 to n do
7: ti = max[ti, ti−1 + τk(ti−1)]
8: end for
9: end if

10: return t1, ..., tn

4. Computational results. The proposed solution approaches are tested and
evaluated on data provided by one of the leading maintenance centers in Australia.
The planning horizon is one year. There are 35 train-sets of 3 different types. The
parameters of train-sets in F k, 1 ≤ k ≤ 3 are given in Table 1. The column ‘|F k|’
reports the total number of train-sets of the same type k; the column ‘τk’ gives the
number of days a train-set of the corresponding type spends on the first operation
line. Since an increase in transport demand is often expected during public holi-
days, the number of train-sets of type k which can dwell at the maintenance center
simultaneously during these days is normally less than that on any other days of
the year. The out-of-service limit ‘Ckt’ for type k on day t is reported in column
‘non-PH’ if day t is not a public holiday, and in column ‘PH’ if day t is a public
holiday, where PH is an abbreviation of public holiday.

18 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Table 1. Parameters for the train types.

Train type k |F k| τk
Ckt

non-PH PH
1 25 4 3 1
2 5 5 2 1
3 5 5 1 1

For any day t, the capacity of the maintenance center imposes a limit Ct = 5,
and the daily penalty factor δt is fixed at 1. For any 1 ≤ k ≤ 3, and any day
t, the daily penalty factor δkt = 1 if t is not a public holiday, and δkt = 10 if t
is a public holiday. A larger penalty is applied for public holidays because it is
more undesirable to violate the given limit Ckt during these periods. With a larger
penalty factor δkt, the violation of the permissible number of train-sets of type k
that can dwell at the maintenance center simultaneously on public holidays is still
possible in the optimal solution.

The permissible deviation from the preferred day of the commencement of main-
tenance is 14 days, i.e. ∆ = 14. The penalty factors for the violation of time
windows are chosen as λ1 = λ2 = 1.

As has been discussed in Section 3.1, the random cycle times are modeled using
beta-PERT distribution with the minimum, most likely, and maximum values as
given in Table 2 for each train type k. Note that the beta-PERT distribution is a
continuous probability distribution. So for the computational experiments, beta-
PERT distribution is discretized into days.

Table 2. Parameters of probability distribution for cycle time by
train types.

Train type Minimum Most likely Maximum Distribution
1 20 25 40 beta-PERT
2 27 30 46 beta-PERT
3 29 30 52 beta-PERT

Extensive experiments were performed on numerous settings for the weights α
and β. The choice of values presented in Table 3 corresponds to the appropriate
weight coefficients that can generate solutions representing typical scenarios. For
case 1, a large relative weight is assigned to the second component of the objective
function G2(σ), and the optimization procedures aim at minimizing the expected
penalties for the violation of the limits Ct and Ckt. The importance of the objective
G1(σ) increases when proceeding from case 1 to case 9.

Table 3. Assignment of α and β for all the cases.

Case α β Case α β
1 1 1000 6 1 100
2 1 300 7 1 50
3 1 200 8 1 10
4 1 180 9 1 1
5 1 150

PLANNING ROLLING STOCK MAINTENANCE 19

All algorithms are implemented in Python 2.7. The mixed integer linear pro-
grams are solved with IBM ILOG CPLEX 12.7 via the mathematical programming
modeling language PuLP [14]. All tests are run on a computer with Intel i5-6300U
2.4GHz processor and 8GB of RAM.

4.1. Comparison of the performance of MIPM and MILP. Table 4 com-
pares the results of the two mixed integer linear programs. As has been discussed
in Section 2.3, solving the MIPM produces a lower bound which is reported under
the column titled ‘LB’. The column ‘Time’ gives the running time (in seconds) by
CPLEX to obtain an optimal solution. For all cases, the objective values of the
solutions are computed as described in Section 2.2 and reported under the column
titled ‘Obj.’. The relative gap is calculated as %Rel = (Obj.− LB)/LB× 100.

The results in Table 4 shows that the MILP can be solved in short computation
time, yet the MIPM has the advantage of providing a lower bound. It is observed
that the MIPM gives better solutions in 6 out of 9 cases, and on average 0.54% better
than the MILP. For all cases, CPLEX obtains an optimal solution to MILP in less
than 11 seconds, whereas more time is needed to solve the MIPM to optimality. By
investigating the output of CPLEX in case 1 which takes the longest time, it was
found that the optimal solution in fact was obtained in less than 2 minutes. The
remaining time was taken by CPLEX for proving optimality, which is a common
behavior of this software. As the relative weight of β decreases, the computation
time of MIPM reduces substantially. This observation suggests that the second
component of the objective function is harder to optimize for the MIPM.

Table 4. Comparison of the performance of MIPM and MILP

Case LB
MIPM MILP

Time Obj. %Rel Time Obj. %Rel

1 156,744 2,078 206,060 31.46 7 201,203 28.36

2 62,612 235 77,764 24.20 7 80,353 28.33

3 48,629 68 59,178 21.69 8 59,103 21.54

4 45,768 100 55,368 20.98 8 56,322 23.06

5 40,190 54 48,447 20.54 11 49,369 22.84

6 30,789 46 36,245 17.72 8 36,572 18.78

7 20,940 41 23,624 12.82 8 23,337 11.45

8 10,594 39 10,753 1.50 8 10,818 2.11

9 6,706 38 6,725 0.28 8 6,748 0.63

Average 46,997 300 58,240 16.80 8 58,203 17.46

The improvements in solution quality by the hybrid two-stage optimization pro-
cedure that combines the mixed integer linear program with the local search LS1
and the Sequential Local Search (SLS) are reported in Tables 5 and 6, respectively.
In both tables, the column ‘LS Time’ gives the computation time (in seconds) of the
local search procedure. Results in Table 5 show that the local search LS1 is effective
in improving the solutions of both models for all cases. On average, the relative gap
is reduced by 30.56% for MIPM and 29.71% for MILP. The behavior of the local
search is consistent for both models: the best performance is achieved in case 5 with
a change in the objective value of 11.48% for MIPM, and 11.76% for MILP; whereas
the worst performance is observed in case 8 at 0.004% and 0.23%, respectively. The

20 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Table 5. Improvements in solution quality of MIPM and MILP
by the local search LS1.

Case
MIPM-LS1 MILP-LS1

LS Time Obj. %Rel LS Time Obj. %Rel

1 46.32 189,551 20.93 19.59 192,637 22.90

2 44.29 72,584 15.93 32.72 75,368 20.37

3 36.11 56,483 16.15 46.72 55,102 13.31

4 28.95 53,125 16.07 60.71 51,999 13.61

5 67.76 42,884 6.70 46.84 44,547 10.84

6 22.06 32,971 7.09 13.01 35,356 14.83

7 7.44 22,948 9.59 26.11 22,905 9.38

8 10.56 10,752 1.49 15.11 10,793 1.88

9 6.89 6,724 0.27 6.85 6,732 0.39

Average 30.04 54,225 10.47 29.74 55,049 11.95

Table 6. Improvements in solution quality of MIPM and MILP
by the sequential local search SLS.

Case
MIPM-SLS MILP-SLS

LS Time Obj. %Rel LS Time Obj. %Rel

1 879 189,551 20.93 2,366 190,584 21.59

2 871 72,584 15.93 3,593 72,868 16.38

3 884 56,483 16.15 931 54,766 12.62

4 802 53,125 16.07 3,245 51,208 11.89

5 862 42,884 6.70 3,589 44,173 9.91

6 838 32,971 7.09 3,592 34,911 13.39

7 3,196 22,631 8.08 899 22,905 9.38

8 699 10,752 1.49 687 10,793 1.88

9 708 6,724 0.27 749 6,732 0.39

Average 1,082 54,189 10.30 2,183 54,327 10.82

MIPM with LS1 performs better than the MILP with LS1. The former produces
solutions that are, on average, 1.48% better than the latter, with the same average
time of 30 seconds. Moreover, the local search applied to a better initial solution
does not necessarily produce a better local optimum, as demonstrated by the result
of case 1.

If the SLS is used to enhance the starting solutions of MIPM and MILP, results
in Table 6 show that the MIPM with SLS yields better solutions in shorter running
times. For MIPM, the search in the neighborhood explored by the operator N2

finds better solution in only one of the nine cases, i.e. case 7. For MILP, the
SLS is seen to be especially useful on cases with large relative weight β. Since the
MIPM produces better results over the MILP for most cases, MIPM is used in the
remainder of the computational experiments.

4.2. Comparison of hybrid ILS and multi-start ILS. In this section, eight

algorithms, namely hybrid ILS with LS1, hybrid ILS with LS1
′
, hybrid ILS with

SLS, hybrid ILS with SLS
′
, multi-start ILS with LS1, multi-start ILS with LS1

′
,

PLANNING ROLLING STOCK MAINTENANCE 21

multi-start ILS with SLS, and multi-start ILS with SLS
′
, are compared by means

of computational experiments. For all eight algorithms, a maximum permissible
number of iterations without improvement U = 20 is used. The computational
results are reported in Tables 7 - 10. In the preliminary testing, performing an
exhaustive search on the neighborhood by N2 and N ′2 is too time consuming, which
significantly reduces the number of perturbation in the ILS procedure due to the
time limit of 1 hour. As a result, the ability of ILS to escape the local optimum is
severely impaired. Therefore instead of allowing the arrival days of two train-sets to
be changed to any feasible days from {0, ..., T − 1}, the newly assigned arrival day t
of each such train-set j is selected from the range sj − 36 ≤ t ≤ sj + 36, where sj is
obtained from the input arrival plan σ. Such restriction substantially reduces the
size of the search space so that the neighborhood can be explored in a reasonable
time. The reduced structure of neighborhood explored by N2 and N ′2 is employed

in the computational experiments of hybrid ILS with SLS, hybrid ILS with SLS
′
,

multi-start ILS with SLS, and multi-start ILS with SLS
′
. We will discuss the results

of hybrid ILS first.
The hybrid ILS is implemented by solving the MIPM, which provides an input

arrival plan to the iterated local search in Algorithm 8. Because of the faster
evaluation of solutions in a neighborhood and the smaller neighborhood size, the
versions of the hybrid iterated local search with the operators N1 and N2 are faster
than their counterparts with the operators N ′1 and N ′2 often at a cost of inferior
solution quality. The computational experiments took this into account and ran
versions with the operators N1 and N2 with one hour limit on the permissible
computation time, recorded for each such optimization procedure the average of the
actual computation times for ten runs, and then set this recorded average time as
the limit on the computation time for the version with the corresponding operators
N ′1 and/or N ′2.

For each case, i.e. for each choice of the parameters α and β, Tables 7 and 8
present the average computation time in seconds (Time), the average value of the
objective function (Obj.), and the average relative gap (%Rel) obtained for ten
runs of the hybrid ILS. The column In. Obj. displays the value of the objective
function obtained by solving the MIPM. Table 7 indicates that the version with N ′1
obtains better quality solutions in six of the nine cases, with the average relative gap
improving from 9.12% to 5.84%. Table 8 also indicates the superior performance of
the version with N ′1 and N ′2 in comparison with the version with N1 and N2.

The output of the multi-start ILS is the best output obtained by the application
of the Algorithm 8 to five different input arrival plans generated by the heuristic
INITIAL. These five applications of the Algorithm 8 constitute one run of the multi-
start ILS. In the course of the computational experiments, the duration of each run
of the multi-start ILS was limited by one hour. For each case, i.e. for each choice of
the parameters α and β, Tables 9 and 10 present the average required time (Time),
average value of the objective function (Obj.), and average relative gap (%Rel)
obtained for ten runs of the multi-start ILS. The column In. Obj. contains the
average value of the objective function for the input arrival plans that resulted in
the output of the multi-start ILS.

In Table 9, the multi-start ILS with LS1 is superior to the multi-start ILS with

LS1
′

in both time and solution quality. The same observation can be seen in Table
10, in which the multi-start ILS with SLS showing better performance over the ver-

sion with SLS
′
. It is worth noting that although the multi-start ILS algorithms begin

22 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

Table 7. Performance of hybrid ILS with LS1 and LS1
′

.

Case In. Obj. Time
Hybrid ILS with LS1 Hybrid ILS with LS1

′

Obj. %Rel Obj. %Rel

1 206,060 2,685 189,487 20.89 180,530 15.17

2 77,764 864 71,715 14.54 67,092 7.16

3 59,178 581 55,624 14.38 51,344 5.58

4 55,368 932 50,780 10.95 47,803 4.45

5 48,447 805 42,416 5.54 41,666 3.67

6 36,245 472 32,828 6.62 32,371 5.14

7 23,624 817 22,494 7.42 22,948 9.59

8 10,753 483 10,752 1.49 10,752 1.49

9 6,725 355 6,724 0.27 6,724 0.27

Average 58,240 888 53,647 9.12 51,248 5.84

Table 8. Performance of hybrid ILS with SLS and SLS
′
.

Case In. Obj. Time
hybrid ILS with SLS hybrid ILS with SLS

′

Obj. %Rel Obj. %Rel

1 206,060 3,600 187,992 19.94 179,847 14.74

2 77,764 2,482 70,845 13.15 66,967 6.96

3 59,178 1,640 55,100 13.31 51,324 5.54

4 55,368 2,281 51,459 12.43 47,785 4.41

5 48,447 2,496 42,193 4.98 41,432 3.09

6 36,245 1,634 32,968 7.08 32,371 5.14

7 23,624 1,413 22,613 7.99 22,948 9.59

8 10,753 1,191 10,752 1.49 10,752 1.49

9 6,725 1,078 6,724 0.27 6,724 0.27

Average 58,240 1,979 53,405 8.96 51,128 5.69

Table 9. Performance of multi-start ILS with LS1 and LS1
′
.

Case
multi-start ILS with LS1 multi-start ILS with LS1

′

Time In. Obj. Obj. %Rel Time In. Obj. Obj. %Rel

1 2,904 731,900 200,646 28.01 3,600 701,192 221,792 41.50

2 3,206 246,939 76,713 22.52 3,600 228,459 82,564 31.87

3 3,525 205,225 56,717 16.63 3,600 161,630 62,662 28.86

4 3,101 157,225 52,039 13.70 3,600 141,340 57,548 25.74

5 2,946 155,164 46,623 16.01 3,600 115,812 48,889 21.65

6 2,996 110,872 35,309 14.68 3,600 97,424 39,585 28.57

7 2,736 80,850 23,722 13.29 3,600 60,620 29,355 40.19

8 2,548 50,200 11,109 4.86 3,600 29,562 14,635 38.15

9 2,386 40,485 6,917 3.14 3,600 30,494 11,311 68.67

Average 2,928 197,651 56,644 14.76 3,600 174,059 63,149 36.13

PLANNING ROLLING STOCK MAINTENANCE 23

Table 10. Performance of multi-start ILS with SLS and SLS
′
.

Case
multi-start ILS with SLS multi-start ILS with SLS

′

Time In. Obj. Obj. %Rel Time In. Obj. Obj. %Rel

1 3,600 704,669 207,738 32.53 3,600 792,732 229,339 46.31

2 3,600 234,564 76,228 21.75 3,600 242,8870 80,410 28.43

3 3,600 176,729 55,596 14.33 3,600 149,560 61,766 27.01

4 3,600 165,457 52,054 13.73 3,600 139,882 56,795 24.09

5 3,600 141,360 45,025 12.03 3,600 112,386 50,796 26.39

6 3,600 112,397 35,946 16.75 3,600 109,447 43,065 39.87

7 3,600 78,051 23,870 13.99 3,600 59,009 29,110 39.02

8 3,600 57,798 11,192 5.64 3,600 30,803 15,081 42.35

9 3,600 35,437 6,903 2.93 3,600 28,582 9,512 41.85

Average 3,600 189,607 57,173 14.85 3,600 185,030 63,986 35.04

Table 11. Summary of the effects of the different neighborhoods.

Tables N N ′ EQUAL Winner

7 1 6 2 MIPM + ILS + N
′
1

8 1 6 2 MIPM + ILS + N
′
1+ N

′
2

9 9 0 0 multi-start ILS + N1

10 9 0 0 multi-start ILS + N1 + N2

with poor initial solutions, significantly better results are achieved after the local
search based enhancement procedures, with the best reported average improvement
of 72% observed in the multi-start ILS with LS1.

In summary, the comparison of the eight optimization procedures indicates that
the best solution quality is obtained by the combination of the mixed integer linear
program MIPM and the iterated local search with the operators N ′1 and N ′2. The
comparison of the different neighborhoods is summarized in Table 11. The column
Tables contains references to the tables that present the results of computational
experiments. The column N contain the number of cases for which the neighbor-
hood structure that does not require the subroutine TRANSFORMATION yields
a better solution quality. The column N ′ contain the number of cases for which
the neighborhood structure obtained, using the subroutine TRANSFORMATION,
yields a better solution quality. The column EQUAL contains the number of cases
when both neighborhood types produced the same solution quality.

4.3. Visualization of quality of arrival plan. During the negotiations between
the rolling stock operator and the maintenance center, it is useful to have informa-
tion about the risk of violating the center capacity which may occur as a result of
the uncertain duration of maintenance. For this reason, a powerful visualization
tool, based on the idea of heat map [17], is developed to provide insights into the
risk over the planning horizon. Figures 1A and 1B show examples of the risk heat
map associated with the arrival plans of cases 1 and 9, respectively. The horizontal
axis indicates the month and year (for example, 2018-06 stands for June 2018),
while the vertical axis indicates the day of the month. Each cell of the heat map

24 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

(a)

(b)

Figure 1. Heat maps displaying the probability of having more
than 5 train-sets residing in the maintenance center for each day
across the planning horizon of one year for cases (A) α = 1, β =
1000; and (B) α = 1, β = 1.

corresponds to a particular day in the planning horizon, and the probability of vi-
olating the limit is clearly stated in each cell. The color intensity reflects the level
of risk whereby the darker the color, the higher the risk.

PLANNING ROLLING STOCK MAINTENANCE 25

The resulting heat map in Figures 1A and 1B show a trade-off example in which
the constructed arrival plan must prioritize either the technological restrictions of
the maintenance center or the arrival time windows. Figure 1A considers the per-
spective of the maintenance center who is more concerned about keeping the number
of train-sets below the capacity of the maintenance center. As a result, the total
penalty for the violation of the capacity limitation is insignificant and it can be
seen on Figure 1A that there are few days which have high probability of exceeding
the center capacity. However, the total penalty for the violation of time windows,
G1(σ), is 23,487. On the other hand, the heat map in Figure 1B is associated with

an arrival plan σ
′

that is constructed considering the perspective of the rolling stock
operator, the main concern of whom is to satisfy the arrival time windows. In this
case, the total penalty G1(σ

′
) is only 6,218 but the maintenance center has a high

risk of violating the capacity, i.e. it is harder to have an efficient operational plan.

5. Conclusion. The paper contributes to the existing body of literature on train
maintenance by introducing a nonlinear programming problem that determines the
arrival days of train-sets to a maintenance center, taking into account the uncertain
duration of maintenance and the requirements specified by the rolling stock operator
as well as the technological restrictions of the maintenance center. A fast method
of evaluation of the objective function for any feasible solution of the nonlinear
program is presented together with a mixed integer programming relaxation based
on Jensen’s inequality. This relaxation provides a lower bound on the optimal
value of the objective function of the nonlinear program and generates a starting
solution for the hybrid optimization procedure which enhances this solution by using
iterated local search. This hybrid optimization procedure is compared with iterated
local search metaheuristic diversified by the multi-start framework. The results of
the computational experiments on real-world data warrant the implementation of
the presented approach in the process of maintenance planning. Further research
should be focused on the operational level of the maintenance planning for a shorter
planning horizon and more detailed information about maintenance procedures.

Acknowledgments. We are grateful to the Editor and three anonymous referees
for their constructive comments on the earlier versions of our paper.

REFERENCES

[1] S. Ahmed, Two-stage stochastic integer programming: A brief introduction, in Wiley Ency-

clopedia of Operations Research and Management Science (eds. J.J. Cochran, L.A. Cox, P.
Keskinocak, J.P. Kharoufeh and J.C. Smith), John Wiley & Sons, (2011).

[2] G. Bayraksan and D. P. Morton, Assessing solution quality in stochastic programs via sam-
pling, in Informs 2009 Tutorials in Operations Research, (2009), 102–122.

[3] P. Billingsley, Probability and Measure, 3rd edition, John Wiley & Sons, New York, 1995.

[4] W. Biscarri, S. D. Zhao and R. J. Brunner, A simple and fast method for computing the Pois-

son binomial distribution function, Computational Statistics & Data Analysis, 122 (2018),
92–100.

[5] K. Doganay and M. Bohlin, Maintenance plan optimization for a train fleet, in Computers in
Railways XII , (eds. B. Ning and C.A. Brebbia), WIT Press, (2010), 349–358.

[6] B. Fortz, M. Labbé, F. Louveaux and M. Poss, Stochastic binary problems with simple penal-

ties for capacity constraints violations, Mathematical Programming, 138 (2013), 199–221.
[7] G. L. Giacco, D. Carillo, A. D’Ariano, D. Pacciarelli and A. G. Maŕın, Short-term rail rolling

stock rostering and maintenance scheduling, Transportation Research Procedia, 3 (2014),
651–659.

http://dx.doi.org/10.1002/9780470400531.eorms0092
http://dx.doi.org/10.1287/educ.1090.0065
http://dx.doi.org/10.1287/educ.1090.0065
http://www.ams.org/mathscinet-getitem?mr=MR1324786&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3765817&return=pdf
http://dx.doi.org/10.1016/j.csda.2018.01.007
http://dx.doi.org/10.1016/j.csda.2018.01.007
http://dx.doi.org/10.2495/CR100331
http://www.ams.org/mathscinet-getitem?mr=MR3034805&return=pdf
http://dx.doi.org/10.1007/s10107-012-0520-4
http://dx.doi.org/10.1007/s10107-012-0520-4
http://dx.doi.org/10.1016/j.trpro.2014.10.044
http://dx.doi.org/10.1016/j.trpro.2014.10.044

26 HANYU GU, HUE CHI LAM AND YAKOV ZINDER

[8] T. Homem-de Mello and G. Bayraksan, Monte Carlo sampling-based methods for stochastic
optimization, Surveys in Operations Research and Management Science, 19 (2014), 56–85.

[9] Y. C. Lai, D. C. Fang and K. L. Huang, Optimizing rolling stock assignment and maintenance

plan for passenger railway operations, Computers & Industrial Engineering, 85 (2015), 284–
295.

[10] B. Lin, J. Wu, R. Lin, J. Wang, H. Wang and X. Zhang, Optimization of high-level preventive
maintenance scheduling for high-speed trains, Reliability Engineering & System Safety, 183

(2019), 261–275.

[11] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated local search: framework and applica-
tions, in Handbook of Metaheuristics (eds. M. Gendreau and J. Potvin), 2nd edition, Springer,

Boston, (2010), 363–397.

[12] D. G. Malcolm, J. H. Rooseboom, C. E. Clark and W. Fazar, Application of a technique for
research and development program evaluation, Operations Research, 7 (1959), 646–669.

[13] J. G. Pérez, M. Mart́ın, C. Garćıa and M. Granero, Project management under uncertainty be-

yond beta: The generalized bicubic distribution, Operations Research Perspectives, 3 (2016),
67–76.

[14] S. Mitchell, M. O’Sullivan and I. Dunning, PuLP: a Linear Programming Toolkit for Python,

2011. Available from: http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf.
[15] C. Sriskandarajah, A. K. S. Jardine and C. K. Chan Maintenance scheduling of rolling stock

using a genetic algorithm, Journal of the Operational Research Society, 49 (1998), 1130–1145.
[16] Sydney Trains, Sydney Trains Annual Report 2017-18, 2018. Available from:

https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/

sydney-trains-annual-reports.
[17] M. Waskom, Seaborn: v0.8.1, 2017. Available from: https://seaborn.pydata.org.

Received January 2020; revised September 2020.

E-mail address: hanyu.gu@uts.edu.au

E-mail address: hue.lam@student.uts.edu.au

E-mail address: yakov.zinder@uts.edu.au

http://www.ams.org/mathscinet-getitem?mr=MR3224282&return=pdf
http://dx.doi.org/10.1016/j.sorms.2014.05.001
http://dx.doi.org/10.1016/j.sorms.2014.05.001
http://dx.doi.org/10.1016/j.cie.2015.03.016
http://dx.doi.org/10.1016/j.cie.2015.03.016
http://dx.doi.org/10.1016/j.ress.2018.11.028
http://dx.doi.org/10.1016/j.ress.2018.11.028
http://dx.doi.org/10.1287/opre.7.5.646
http://dx.doi.org/10.1287/opre.7.5.646
http://www.ams.org/mathscinet-getitem?mr=MR3579177&return=pdf
http://dx.doi.org/10.1016/j.orp.2016.09.001
http://dx.doi.org/10.1016/j.orp.2016.09.001
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/sydney-trains-annual-reports
https://www.transport.nsw.gov.au/news-and-events/reports-and-publications/sydney-trains-annual-reports
https://seaborn.pydata.org
mailto:hanyu.gu@uts.edu.au
mailto:hue.lam@student.uts.edu.au
mailto:yakov.zinder@uts.edu.au

	1. Introduction
	2. Mathematical programming formulation
	2.1. Nonlinear integer programming formulation
	2.2. Evaluation of the objective function
	2.3. Integer linear programming relaxation based on Jensen's Inequality

	3. Construction of arrival plans
	3.1. Mixed integer linear program MILP
	3.2. Local search subroutines
	3.3. Iterated local search

	4. Computational results
	4.1. Comparison of the performance of MIPM and MILP
	4.2. Comparison of hybrid ILS and multi-start ILS
	4.3. Visualization of quality of arrival plan

	5. Conclusion
	Acknowledgments
	REFERENCES

