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Abstract
Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices.
Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions
implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in
these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes
practical constraints on the range of interactions between different frequency components. Here we propose and
experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range
interactions between discrete spectral lines mediated by frequency conversion in a nonlinear waveguide. We realize
triangular chiral-tube lattices in three-dimensional space and explore their four-dimensional generalization. We
implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics
of frequency combs, all within one physical spatial port. We anticipate that our method will provide a new means for
the fundamental study of high-dimensional physics and act as an important step towards using topological effects in
optical devices operating in the time and frequency domains.

Introduction
Discrete photonic lattices constitute a versatile platform

for topological photonics1, with various implementations
employing arrays of evanescently coupled waveguides2,
metamaterials3, and coupled resonators4. In these sys-
tems, the most commonly considered topological features
originate from the dispersion associated with the wave-
vector space, where accordingly, the geometrical dimen-
sionality fundamentally limits the degrees of freedom that
can contribute to the topological invariant. As such, the
possibility of accessing higher geometrical dimensions is a
key factor enabling a drastic boost in the manifestations of
topological effects. This motivates the rapidly developing
field of synthetic dimensions5,6, where many schemes for

artificially creating extra dimensions have been pro-
posed7–11 and experimentally demonstrated12–16. In gen-
eral, higher dimensionality is equivalent to increased
connectivity; thus, a multidimensional lattice can be
synthesized by lower- or even one-dimensional (1D) lat-
tices with long-range couplings extending beyond the
nearest neighbours17–19. Importantly, the higher-
dimensional formalism can reveal extra nontrivial geo-
metrical and topological properties incorporated into the
original 1D wave-vector space. Therefore, an essential yet
challenging task to facilitate topological photonics in
synthetic dimensions15 is the development of artificial
lattices exhibiting exotic topological behaviour enabled by
effectively larger dimensionality, such as higher-order
topological modes20.
In topological photonics, beyond the consideration of

dimensionality, there are other essential ingredients con-
tributing to the versatile topological phenomena. Of key
importance is the boundary condition that has been
extensively studied in the well-known bulk-boundary
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correspondence9,10,15. Although these are usually con-
sidered for lattices with edges, the periodic boundary
conditions in extended lattices are also physically relevant.
For instance, in carbon nanotubes, the specific way that
the honeycomb lattice gets wrapped into the tube can
dramatically impact the material properties; yet, the
associated topological characteristics remain largely
unexplored. Beyond the most familiar types of zigzag and
armchair carbon nanotubes, the most general situation
arises in between these two cases, corresponding to a
chiral periodic boundary condition, where chiral-tube
lattices are formed21. Notably, synthetic photonic systems
provide diverse and flexible platforms on which these
lattices can be artificially arranged, going beyond the
natural material arrangements. In particular, it is of fun-
damental interest to explore various lattice types in
addition to honeycombs and analyse the possibility of
realizing multidimensional analogues of chiral-tube
structures.
Another important ingredient of topological photonics

lies in the gauge potential and the associated gauge field
due to their fundamental role in describing the movement
of charged particles. The realization of artificial gauge
fields in photonics has underpinned novel manifestations
of light emulating charged-particle dynamics, facilitating
the multifaceted aspects of topological photonics such as
the breaking of time-reversal symmetry4,9,15,22,23, non-
reciprocal light guiding24,25 and topological lasing26,27. In
a tight-binding photonic lattice, an artificial gauge field
generally corresponds to different phases acquired by light
when it couples from site A to site B compared with the
opposite path from B to A. These gauge fields can give rise
to a flux associated with encircling a geometrical area in
2D or higher-dimensional generalizations, which is
essential to many topological models, such as the Landau
gauge9,28 with globally nonzero flux and the Haldane
model19,29 with locally nonzero flux.
The temporal and spectral behaviours of light play an

important role in many research fields and applications,
from telecommunications to the spectroscopy of materi-
als. Importantly, many shortcomings restricting the per-
formance of photonic systems arise in the temporal
domain, such as group-velocity dispersion. It is thereby
important to achieve topological effects for robust
operation in temporal or spectral systems in a regime
compatible with common applications, such as frequency
combs generated from complementary metal-oxide-
semiconductor (CMOS) compatible integrated resona-
tors with a free spectral range (FSR) in the GHz regime30.
To date, the control of spectral couplings has been pri-
marily studied9,10,19 and realized28,31–33 based on electro-
optic modulation (EOM). However, this approach fun-
damentally limits the frequency separation between cou-
pled modes by the EOM bandwidth, which commonly

restricts the induced coupling to the nearest spectral lines
in synthetic frequency lattices. In contrast, all-optical
approaches based on parametric nonlinearity22,34 and the
photon–phonon interaction35–37 appear to be promising
solutions to the task of bringing multidimensional topo-
logical photonics to devices requiring ultra-fast temporal
modulation and accordingly large FSR. Recently, we
reported the implementation of synthetic long-range
coupling in an all-optical system mediated by para-
metric nonlinearity within one spatial mode (port) with
up to 100 GHz separation between the spectral lines22.
However, the possibility of realizing multidimensional
synthetic lattices in an all-optical platform remains
unexplored.
In this work, for the first time to our knowledge, we

theoretically establish and experimentally demonstrate that
all-optical spectral lattices can synthesize multidimensional
chiral lattices in combination with nontrivial gauge fields.
The synthetic dimensions are based on simultaneous spe-
cially tailored short- and long-range couplings between
discrete frequency components, which are mediated by
optical nonlinearity and are directly controlled by the
spectral shape of the optical pump. With three orders of
coupling, we show the construction of triangular chiral-tube
lattices in three dimensions and establish their four-
dimensional (4D) generalization. We also develop a pump
configuration that induces nontrivial artificial gauge fields
associated with effective nonzero magnetic flux and
experimentally demonstrate their influence on a quantum
walk in triangular chiral-tube lattices.
We note that our all-optical implementation achieves a

broad operating bandwidth of hundreds of GHz, which
exceeds the capabilities of the complex EOM schemes
considered previously while offering greater simplicity.
The high bandwidth enables direct matching with the FSR
of integrated resonators, which can facilitate multiple
applications of the synthetic multidimensional lattices
presented in our work. Moreover, a capability for the
multidimensional and coherent reshaping of discrete
frequency lines can enable the unconventional and non-
reciprocal manipulation of quantum frequency combs38,
which may boost the capacity of photonic quantum
communications and information processing.

Results
Construction of synthetic dimensions in a nonlinear
waveguide
We start by introducing a general approach for the

implementation of spectral photonic lattices in a non-
linear waveguide. As sketched in Fig. 1a, a spectral lattice
is realized by using a shaped pump composed of several
equidistant frequencies with spacing Ω. This pump can
drive the interactions between the frequency components
on the input signal spectrum all inside one fibre or
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waveguide with χ(3) nonlinearity in the regime of the so-
called four-wave-mixing Bragg scattering22. Under energy
conservation and undepleted pump approximation, each
pair of pump frequencies separated by nΩ drives the
coupling between two signal lines with the same fre-
quency difference nΩ, as shown in Fig. 1b. These discrete
spectral lines form a lattice (Fig. 1c), where each fre-
quency represents one lattice site. Importantly, nonlocal
and complex-valued couplings can be implemented by
specially tailoring the pump spectrum22.
Now, we outline the key concept of exact mapping

between higher-dimensional lattices and a 1D spectral
lattice with nonlocal couplings induced through nonlinear
frequency conversion. In the example shown above in
Fig. 1a–c, three pumps equally separated by Ω introduce
coupling of the first and second orders (Fig. 1c). Then, the
evolution of the signal spectrum along the nonlinear
waveguide in the phase-matching regime is governed by

the Hamiltonian in terms of the creation (âym) and anni-
hilation (âm) operators for the discrete signal frequency
components:

H ¼ �
X
m

X
fng

Cnâ
y
mâmþn �H:c: ð1Þ

where a set of positive integers {n} indicates the orders of
coupling and Cn are the corresponding coupling constants
of the n-th order. ‘H.c.’ denotes the Hermitian conjugate,
and m is an integer running through all phase-matched
spectral lines. The coupling constants Cn are given by the
following expression22:

Cn ¼ 2γP
X

m
AmA

�
m�n ð2Þ

where γ is the effective nonlinearity and P is the average
pump power. Here, Am denotes the complex amplitudes
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Fig. 1 Conceptual sketch of constructing multidimensional synthetic lattices in a nonlinear fibre. a A nonlinear waveguide with χ(3)

nonlinearity, where a shaped pump mediates the conservative interactions between signal frequencies, giving rise to a reshaped signal spectrum at
the output. b An example of a pump profile that induces cross-talk between one and two unit frequency separations. c The corresponding spectral
lattice with first-order (C1) and second-order (C2) couplings driven by nonlinear interactions mediated by the shaped pump spectrum shown in b.
d Synthetic two-dimensional square lattice constructed using the spectral lattice in c. e Illustration of the chiral-tube lattice formed by wrapping the
lattice in d with the chiral periodic boundary condition p
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of pump spectral components in the fibre, which are
normalized as

P
m jAmj2 ¼ 1. The evolution of the

wavefunction governed by the Hamiltonian in Eq. (1)
can be expressed as

ψðzÞ ¼ expðizHÞ ¼ expðizPH0Þ ð3Þ

where z is the propagation distance along the fibre and
we denote by H′ =H/P, a normalized Hamiltonian
that is independent of the total pump power. We see
that the wavefunction dynamics can be observed by
varying the average pump power P for a fixed fibre
length z = L such that P effectively acts as the time
variable.
We now consider a nontrivial and representative case of

two coupling orders n= 1,2 and show how the spectral
lattice is mapped to a two-dimensional square lattice. The
general idea is based on the mapping of each specific
order of coupling to a certain basis vector in higher-
dimensional space. For the example shown in Fig. 1d,
which is a two-dimensional space of a square lattice, there

are two basis vectors, ux and uy. Hence, we can map the
coupling order n= 1 to ux and n= 2 to uy. Then, we
obtain a Hamiltonian in the two-dimensional space that
represents a square synthetic lattice:

Hsq ¼ �
X

m
C1â

y
rm ârmþux þ C2â

y
rm ârmþuy

h i
�H:c:

ð4Þ
where rm is a vector indicating the spatial coordinate of
them-th site in this two-dimensional space. To provide an
exact mapping, it is essential to reflect in 2D the algebraic
property of the 1D lattice, where a sequence of two first-
order couplings produces the same frequency shift 2Ω as
that of a second-order coupling. This property can be
satisfied by imposing a periodic boundary condition for
the two-dimensional synthetic space, as shown in Fig. 1d,
where the orange arrow represents the wrapping vector
p= 2ux–uy. Consequently, the two-dimensional equiva-
lent lattice is actually wrapped into a (2,−1) chiral tube
connected by the dashed lines in Fig. 1d. This chiral tube
is schematically illustrated in Fig. 1e.
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Fig. 2 Experimental observation of a quantum walk in a synthetic two-dimensional triangular chiral-tube lattice. a A lattice with three
coupling orders 1, 3 and 4, where only couplings to the shown sites are plotted with arrows. b The corresponding synthetic triangular lattice in two-
dimensional space. c 3D sketch of the lattice in b. d Experimental realization of a frequency quantum walk, where P is the power of the three-pump
spectral components with A1= A2= A5. e–g Mapping of experimental data from d to a two-dimensional triangular lattice with P= 0.10, 0.19,
0.28 mW, as indicated by the labels
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Observation of a quantum walk in synthetic triangular
lattices
We formulate and experimentally demonstrate an ori-

ginal mapping procedure for the realization of a synthetic
triangular lattice. This presents a nontrivial case with
non-orthogonal basis vectors, which has not been con-
sidered on any synthetic photonic lattice platform in
previous studies. We show that a triangular lattice can be
obtained by mapping from a spectral lattice with specially
engineered simultaneously short- and long-range cou-
plings. The synthetic frequency space is sketched in
Fig. 2a, where the first, third and fourth orders of the
coupling are present. In the two-dimensional space of the
triangular lattice, as shown in Fig. 2b, the basis vectors are
u1= [1,0]T and u2 ¼ 1=2;

ffiffiffi
3

p
=2

� �T
, which are not

orthogonal relative to each other. We map the first-order
coupling to the vector u1 and the fourth-order coupling to
u2. Then, we find that the third-order coupling is auto-
matically mapped to u3= u2− u1. This arrangement is
used to construct the two-dimensional equivalent trian-
gular lattice sketched in Fig. 2b with the Hamiltonian

Htr ¼ �
X

m
C1â

y
rm ârmþu1 þ C3â

y
rm ârmþu3 þ C4â

y
rm ârmþu2

h i
�H:c:

ð5Þ

Similar to the example of the square lattice discussed
above (Fig. 1d), there appears a periodic boundary con-
dition. It is defined by the wrapping vector q= 4u1 − u2,
shown as a green arrow in Fig. 2b. Hence, the triangular
lattice is effectively wrapped and connected by the dashed
lines in Fig. 2b. To show this more intuitively, we sketch a
three-dimensional (3D) visualization of the (4,−1) chirally
wrapped tube in Fig. 2c. We determine the unit cell vector
of the tube lattice as l=−2u1+ 7u2 (not shown in the
figure), which is the shortest vector that can connect two
sites along the parallel direction of the tube (lTq= 0 due
to orthogonality).
We now present an experimental realization of a

quantum walk in the multidimensional synthetic lattice
space. Quantum walks have been observed in various
types of photonic lattices using classical laser sources,
where the evolution of coherent light is mathematically
analogous to the quantum single-particle dynamics39. We
tailor the complex amplitudes Am of the pump spectral
lines to induce the desired couplings in the signal fre-
quency lattice according to Eq. (2). Specifically, we employ
three pumps with equal amplitudes A1=A2=A5 to
achieve the frequency lattice, as illustrated in Fig. 2a, with
equal first-, third- and fourth-order couplings, i.e., C1=
C3=C4. We shape the pump with no phase difference
between the complex amplitudes at different frequencies
and, therefore, all couplings are real-valued. With a
single-frequency signal excitation, we observe a quantum

walk in this frequency space, as shown in Fig. 2d. We map
this experimentally realized synthetic lattice to the trian-
gular lattice as outlined in Fig. 2b, c. The mapped quan-
tum walk is shown in Fig. 2e–g at three representative
average pump powers P= 0.10, 0.19, 0.28 mW, respec-
tively. As mentioned above, the pump power acts as the
time variable in the quantum walk. In these figures, the
site of excitation is marked by a green arrow. This
represents an experimental observation of quantum walks
in higher synthetic dimensions. Our results agree quite
well with the corresponding theoretical predictions cal-
culated by the coupled mode equations. An animated
image illustrating the dynamics of the experiment
(incorporating Fig. 2e–g) and a comparison with theory is
provided as Supplementary Fig. S1 in supplementary files.
To provide insight into the properties of our mapped

synthetic chiral-tube lattice, we also perform a theore-
tical analysis of the wave dispersion. We apply Bloch
theorem and calculate the propagation constant as
βðk1; k2Þ ¼ 2Re½C1expðik1Þ þ C4expðik2Þ þ C3expðik3Þ�,
where k1, k2 and k3 are the wave numbers in the reci-
procal space of the basis vectors u1, u2, and u3, respec-
tively, and k3 � k2 � k1. In Fig. 3a, we plot a
representative case for C1= C3= C4= 1. Due to the
periodic boundary condition, not all values of k1,k2 are
allowed. For the (4,−1) chiral tube discussed above, we
have 4k1− k2= 2Nπ, where N is an integer. These
allowed values are denoted as white lines in Fig. 3a. We
trace out k1= k2/4 for the range of −π to π and present
the dispersion as a 1D curve in Fig. 3b. For comparison,
we also show another case with a different coupling C4

= i in Fig. 3c. We see that the resulting 1D dispersion
shown in Fig. 3d becomes asymmetric due to the com-
plex coupling C4, which breaks the time-reversal sym-
metry. We show in the following section that this regime
is associated with the appearance of a gauge field in the
mapped high-dimensional lattices.

Artificial gauge field with nonzero magnetic flux in chiral-
tube lattices
We demonstrate that the complex-valued nature of the

coupling constants in the synthetic frequency lattice can
enable artificially created gauge fields. In contrast to the
1D case, in higher-dimensional lattices, an important
aspect of the gauge potential is associated with the
induced magnetic flux that can arise in the presence of
nonzero phase accumulation around a closed loop in the
lattice.
To illustrate the capacity of our scheme to synthesize a

nontrivial gauge field, we first revisit the mapping of a
spectral lattice with three orders of coupling, as sketched
in Fig. 2a. To induce these couplings, the minimum
number of pumps is three, with complex amplitudes A1,
A2, and A5, as illustrated in Fig. 4a, with the corresponding
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couplings C1 / A2A�
1, C3 / A5A�

2 and C4 / A5A�
1. In

Fig. 4b, we show a section of a spectral lattice imple-
mented by the pump configuration in Fig. 4a, visualizing
five sites (1–5) as an illustration. We use a one-way arrow
to show each order of coupling, where the coupling to the
other direction simply takes the complex-conjugate value
due to Hermiticity. We determine the phases of each
order of the coupling along the direction of the arrows in
Fig. 4b as ϕ1= arg(A2)− arg(A1) (grey arrow), ϕ3= arg
(A5)− arg(A2) (blue arrow), and ϕ−4= arg(A1)− arg(A5)
(orange arrow). This lattice is mapped to the triangular
lattice using the approach described above, which is
shown in Fig. 4c for the first five sites. We find that the
clockwise flux vanishes in each of the triangular cells:

Φ1�5�2 ¼ ϕ�4 þ ϕ3 þ ϕ1 ¼ 0

Φ1�4�5 ¼ �ϕ�4 � ϕ3 � ϕ1 ¼ 0
ð6Þ

This shows that with the minimum necessary number
of three pumps, the number of free parameters is not

sufficient to implement nonzero flux in any of the trian-
gular cells of this two-dimensional lattice.
We reveal that a nonzero flux can be induced by adding

an extra pump, indicated with the green arrow in Fig. 4d
with amplitude A3. The corresponding couplings between
the signal frequencies are sketched in Fig. 4e. As we are
still aiming for coupling orders 1, 3, and 4, we first need to
ensure that the second-order coupling, denoted by the
green dashed arrows in Fig. 4e, is cancelled out:

C2 / A3A
�
1 þ A5A

�
3 ¼ 0 ð7Þ

As a sufficient condition to fulfil Eq. (7), in our
experiment, we take jA1j ¼ jA5j, argðA3A�

1Þ ¼ π=4 and
argðA5A�

3Þ ¼ �3π=4. Then, we calculate the phases of the
other orders of coupling and find that ϕ3 (blue arrow) and
ϕ−4 (orange arrow) remain the same as in the case ana-
lysed above with three pumps. This situation occurs, as
each of the two orders is induced by the same pair of
pumps. Importantly, the first-order coupling acquires a
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Fig. 5 Experimental observation of quantum walks in synthetic dimensions with artificial gauge fields. a–c Experimental results for an
effective complex coupling phase π/2 along the direction of the yellow arrow for pump average powers P= 0.10, 0.19, 0.28 mW, respectively. d–f The
corresponding cases of a–c with the opposite direction of the π/2 phase
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different phase according to the expression

C1 / A2A
�
1 þ A3A

�
2 ð8Þ

This relation allows us to implement an arbitrary phase
ϕ1= arg(C1) in the experiment, where we fix argðA3A�

1Þ ¼
π=4 but freely choose the amplitudes of all three involved
pumps and the phase of A2. Therefore, the limitation
given in Eq. (6) no longer applies and we can engineer any
nonzero flux Φ1−5−2. It is noteworthy that the following
condition still holds:

Φ1�4�5 � �Φ1�5�2 ð9Þ

which leads to a zero flux if one encircles a pair of
neighbouring cells. This case is analogous to that of the
Haldane model29, where the total flux over all cells is zero,
yet locally there appear locations with nonzero flux.
Next, we show a representative set of experimental

results that demonstrate these nontrivial gauge potentials.
We intentionally make jC4j slightly larger than jC1j ¼ jC3j
to more clearly observe the features associated with the
artificial gauge potential. Specifically, we choose the pump
profiles with four frequencies to obtain the coupling
constants C1 : C3 : C4 ¼ 3 : �3 : 5expðiαÞ. This arrange-
ment effectively corresponds to a phase of π− α along the
u2 basis vector (positive direction) if we use a gauge
transformation to make all couplings other than those
along u2 real-valued. In the two sets of experiments pre-

sented in Fig. 5, we realize quantum walks with a single-
site excitation in the synthetic triangular lattice with
α=−π/2 and α= π/2. In Fig. 5a–c, we show the case with
α=−π/2, where the yellow arrow indicates the direction
along which there is a positive π/2 phase in the coupling.
For the gradually increasing pump powers, as indicated in
Fig. 5a–c, we find that the evolution of the single-site
excitation exhibits an asymmetric behaviour along the
direction of the effective gauge field. This situation can be
clearly seen by a comparison with the case of α= π/2,
which is shown in Fig. 5d–f for the same pump powers as
in Fig. 5a–c, respectively. In particular, the patterns
formed in the quantum walk, as shown in Fig. 5c, f, look
like two arrows pointing in opposite directions. Com-
parisons of the experimental results with theory for
Fig. 5a–c, d–f are shown using two animated images in
the supplementary files; see Supplementary Figs. S2 and
S3, respectively.

Higher-dimensional analogues of tube lattices
We now discuss how 3D cubic lattices can be con-

structed through mapping and how the periodic boundary
conditions wrap the cubic lattice into a 4D analogue of the
3D chiral tubes considered above. We keep using the
lattice configuration in Fig. 2a as an example, which
involves coupling orders 1, 3 and 4; however, we perform
a different mapping procedure. We map the first-order
coupling to the basis vector ux, the third-order coupling
to uz and the fourth-order coupling to −uy; see Fig. 6a. By
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Fig. 6 Construction of a four-dimensional analogue of chiral-tube lattices. a Sites of a cubic lattice constructed from the coupling orders 1, 3
and 4, which is wrapped in a fourth dimension, forming a chiral lattice. b Zoomed-in view of the dashed panel in a, with the sites in one unit cell
numbered from 1 to 26
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doing so, we effectively realize the Hamiltonian

Hcub ¼ �
X

m
C1â

y
rm ârmþux þ C4â

y
rm ârm�uy þ C3â

y
rm ârmþuz

h i
�H:c:

ð10Þ

The mapped cubic lattice is subject to a nontrivial
periodic boundary condition. In contrast to the 2D case,
where the periodic boundary is described by a wrapping
vector, as discussed above, the condition can be expressed
here as a wrapping plane s, given by the equation x− 4y
+ 3z= const. Within each wrapping plane, we keep lattice
sites with no repetitions, which gives rise to the lattice
structure shown in Fig. 6a. We determine the unit cell
vector as lpar= ux− 4uy+ 3uz, which is shown as a red
arrow in Fig. 6a. The colour map in Fig. 6a shows the
coordinate of each lattice site in a unit cell along lpar. We
further zoom in the dashed panel in Fig. 6a and show it as
Fig. 6b, where we number all 26 sites in one unit cell. It is
noteworthy that although this lattice structure is visua-
lized in 3D, there are couplings (connections) enabled by
a fourth dimension analogous to the wrapping of a tube.
For example, in this 3D layout, site 15 has only two
neighbouring sites, i.e., 14 and 19 (see Fig. 6b); however, it
actually also interacts with sites 11, 12, 16, 18 and 19
(connections not shown) via a fourth dimension. This is
the first example of using a synthetic lattice to realize a 4D
generalization of tube lattices. We note that the geometry
of this structure is equivalent to an open 3-torus40, which
is one of the important models used to study the topology
of the universe41.

Discussion
To summarize, we have theoretically constructed and

experimentally realized nonlinearity-induced synthetic
frequency lattices, in which mapping forms multi-
dimensional chiral-tube lattices. The working principle
based on nonlinear frequency conversion enables an all-
optical realization with large separation between the
spectral lines, overcoming the bandwidth limitations of
systems employing EOM. We observed quantum walks in
artificial two-dimensional triangular lattices wrapped into
a 3D tube and implemented gauge fields with nonzero
flux. We also showed the construction of a 4D analogue of
tube lattices employing the chiral periodical boundary
conditions formed in a mapped 3D cubic lattice. We point
out that the periodic boundary condition, which is an
important ingredient of this work, can also be suppressed
if so desired by using a combination of large and
incommensurate coupling orders. An interesting open
question is how to develop a general mathematical
formalism that establishes a mapping between 1D lattices
with arbitrary coupling ranges and higher-dimensional
lattices with different lattice types. We anticipate that our

general conceptual approach may be implemented in a
variety of optical setups, including EOM, and can also
stimulate new realizations of lattices in the spatial
domain15,16,42. Furthermore, synthetic lattices can enable
new applications for single-shot reconstruction of the
amplitude, phase and coherence of signal spectra43.
We further note that by employing the process of sum-

frequency generation mediated by the second-order
nonlinearity, one could implement two sub-lattices that
realize a synthetic honeycomb lattice. The on-site
potential of each lattice site would be determined by the
phase mismatch, which can enable the implementation of
edges by dispersion engineering of the nonlinear wave-
guide, opening a path towards the exploration of topo-
logical properties associated with edge-boundary
correspondence. Parametric nonlinearity can also be used
to realize gain and induce synthetic lattices with non-
Hermitian topological properties. Importantly, our
approach is, in general, non-reciprocal, as the phase-
matching condition is fulfilled in one direction of the
nonlinear waveguide determined by the pump44; yet, this
system is free of the limitations imposed by dynamic
reciprocity45 associated with nonlinear devices. In addi-
tion, as our approach is mediated by optical nonlinearity,
it is naturally suitable for the exploration of nonlinear
effects in synthetic space, such as multidimensional soli-
tons46. Future work may also consider developing
schemes to implement other types of synthetic gauge
fields in synthetic space, such as those corresponding to a
uniform magnetic field that can induce a circular motion
of wavepackets in photonics47,48. Above all, we anticipate
that our work can motivate new fundamental advances
and practical experiments in multidimensional topologi-
cal, nonlinear and quantum photonics.

Materials and methods
Experimental setup for a synthetic frequency lattice in a
nonlinear fibre
The nonlinear frequency conversion was realized in a

highly nonlinear fibre with a length of 750 m, the zero-
dispersion wavelength of which was 1551 nm. The
coherent light source was a mode-locked laser with an
approximately 25 nm bandwidth, which was reshaped by
two spectral pulse shapers (Finisar WaveShaper 4000 S),
following the approach of ref. 22. In the first wave shaper,
the laser was split into two channels, with one as a pump
channel and the other as a signal channel. The pump
channel was then launched into an erbium-doped fibre
amplifier (EDFA) for amplification, followed by a variable
attenuator to change the average pump power. The signal
channel went through a tuneable delay line, which could
be adjusted for the signals to match the pump in time.
The two channels were then recombined using the second
wave shaper, which also shaped the required signal profile
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(as the input state of the spectral lattice) and removed the
noise induced by the EDFA to the pump. The output
spectra were observed with an optical spectrum analyser.
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