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Abstract. 

This paper investigates the free vibration and crack identification of functionally graded material (FGM) 

plates with a through-width edge crack. The material properties of the FGM plates change continuously with 

the power law distribution along the plate thickness direction. The crack in an FGM plate is simulated as a 

massless rotational spring and the plate is separated into two sub-plates at the crack location connected by the 

line spring. The stress intensity factor (SIF) in the FGM strip is calculated to determine the stiffness of the 

spring. The governing equations of cracked FGM plates are derived from the Mindlin plate theory and solved 

by the differential quadrature (DQ) method to obtain modal parameters. The vibrational mode of a cracked 

FGM plate is analyzed by utilizing continuous wavelet transform (CWT). A novel damage index (DI) is 

developed based on calculated wavelet coefficients to localize the crack in FGM plates. This method can 

localize the crack accurately and reduce the edge effect even with the measurement noise. 
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1. Introduction 

To address the challenges in scientific and industrial applications, composite materials with 

continuous spatial change in constituents and material properties were produced to improve their 

thermo-mechanical performance as thermal barrier and are named as the functionally graded materials 

(FGMs) [1-3]. FGMs can be designed with desirable mechanical, physical and electrical properties so that 

they can be applied in many areas, such as automobile, defense, energy, biomedical, aerospace, etc. [4]. In 

these application areas, FGM plate-like structures such as rectangular, circular, annular, trapezoidal and 

skew plates are important components of industrial structures, e.g. the automotive turbocharger turbine [5], 

cutting-tool [6], wind tunnel blade [7], broadband ultrasonic transducers [8], B-pillar [9], etc. Since FGM 

plates are in general used in hard working environments, damages to the plates often occur. Therefore, it is 

vitally important to estimate the locations and severity of damages in FGM plate-like structures. 

It is well-known that damages can reduce the local stiffness and change the vibration characteristics 

of structures. Base on the vibration characteristics, many frequency-based damage identification methods 

for structures were developed in the last three decades. Frequency-based methods were achieved by 

monitoring the natural frequency change of structures [10]. Pan et al. [11] experimentally detected the 

delamination in the composite curved plates based on surrogate assisted genetic algorithm and frequency 

shift polluted by noise. However, there are some limitations to predicate the damage location for 

frequency-based methods [12]. The database of frequency changes from different damage scenarios is 

needed to train the model for structural damage detection [13]. In general, the frequency change is 

insensitive to the structural local damage, and the uncertainties in numerical models, operational 

environments and measurement noise have a significant impact on the accuracy of structural damage 

identification. 

Mode shape is another modal parameter which can be easily obtained and used to implement damage 

localization in structures. The mode of a structure can provide the local information of the structure 

comparing with the natural frequency of the structure. Moreover, with the development of the non-contact 

vibration measurement, the mode shape can be measured precisely and obtained by enough sampling 

points [14-16]. However, the mode shape is insensitive to damages [12]. In 1991, Pandey et al. [17] first 

proposed the modal curvature shapes change method to identify the presence of the crack and its location 

for damaged beams. For plate-like structures, Araújo dos Santos et al. [18] studied the damage detection in 

a carbon fiber reinforced epoxy plate by using the modal curvature differences. Actually, the 
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differentiation will enlarge the measurement errors in the modal shape for the method based on the 

curvature shape [19].  

Note that the aforementioned methods require that the model parameters from intact structures are 

obtained as the baseline when comparing with the model parameters from damaged structures. In general, 

an imprecise baseline may result in the error of the change of model parameters between intact and 

damaged structures. Therefore, baseline-free damage detection methods are much suitable for practical 

applications. The baseline-free methods were proposed by many researchers, including gapped smoothing 

method, fractal dimension method, wavelet-based method etc. [20-22]. The wavelet-based methods were 

developed by using wavelet transform in which the static deflection [23], the mode shape [24], the 

operational deflection shapes [25] or the active thermography [26] can be treated as the input signal. By 

observing the sudden change in wavelet coefficients, the wavelet transform enables the singularity in the 

input signal to be detected [27]. In other words, damage location may be forecasted from the sudden 

change of wavelet coefficients at the spatial position. Douka et al. [28] employed one-dimensional 

continuous wavelet transform (CWT) method in the damage detection of plates with an all-over 

part-through crack. Fan and Qiao [29] took two-dimensional CWT of mode shapes to identify the crack 

location in plates.  Katunin [30] presented numerical and experimental investigations for the damage 

identification based on two-dimensional discrete wavelet transform. This method was effective for 

localizing the damage in the plate with crack, notch and spatial damages. Zhou and Li [31] proposed a 

damage index for detecting sandwich composite plates with damaged core. Xu et al. [32] proposed a 

damage identification method for of plate-like structures by employing the mode shape curvatures under 

noisy conditions. The calculated wavelet coefficients were equal to the sum of wavelet coefficients 

produced from the CWT of mode shape curvatures along the length and width directions.  

According to the aforementioned literatures, many modal based damage identification methods are 

studied in homogeneous and laminated structures. A little research has been reported on damage 

identification of FGM structures. Khiem and Huyen [33] presented frequency-based crack identification 

method for FGM beams. A crack identification method is developed by Yu and Chu [34] based on the 

natural frequency change between the intact and cracked FGM beams. Yang et al. [35] investigated the 

damage identification of FGM beams based on the change of the modal strain energy. Lu et al. [36] 

detected the damages in the axial FGM beam by employing model updating approach. For the 

vibration-based damage identification method of FGM plates, the model parameters need to be obtained 
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first for cracked FGM plates. Studies on the vibration analysis of cracked FGM plates have been reported 

in [37-42].  

In this paper, the free vibration and crack identification of FGM plates with a through-width edge 

crack are presented. The material properties of FGM plates vary continuous in the plate thickness direction 

as the power law distribution. The crack is simulated as a massless line rotational spring. The stiffness of 

the line spring depends on the stress intensity factors (SIFs) which are determined from the material 

properties, the graded index and the crack depth. SIFs are calculated by using the ABAQUS software 

package. The governing equations of a cracked FGM plate are solved to obtain the eigen frequencies and 

the corresponding mode shapes. The mode shapes are decomposed into wavelet components by utilizing 

the CWT along the x- and y-directions, respectively. Based on calculated wavelet coefficients, a novel 

damage index (DI) is proposed to localize the crack in FGM plates under normal and noise conditions.  

 

2. Linear rotational spring model 

Fig. 1a depicts an FGM plate with a through-width edge crack of depth a located at . The 

thickness, length and width of the plate are h,  and , respectively. The Young’s modulus , 

Poisson’s ratio  and mass density  of FGM plates change with the power law function in the 

z-axis direction, i.e. 

,                        (1) 

,                        (2) 

,                         (3) 

where n is the gradient index and the subscripts t and b represent the top and bottom surfaces of FGM 

plates, respectively. 

In Fig. 1b, the through-width edge crack is replaced by a massless rotational spring. The cracked FGM 

plate is composed of two sub-plates connected by a spring. In the rotational spring model, only the 
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spring is defined by  

                              ,                                    (4) 

and the flexibility can be calculated from [43] 

,                              (5) 

where  is the mode I SIF under the pure bending moment Mc;  and  are the Young’s 

modulus and Poisson’s ratio at the crack tip, respectively. 

 is calculated from the J-contour integral within the software ABAQUS. Fig. 2 shows a 

multilayer model of FGM strip for the numerical calculation of SIFs. A couple of opposite pure bending 

moment  is applied to the ends of the edge-cracked layer with thickness h and the length L. The 

collapsed elements are used at the crack tip. The element type is CPS8R. To simulate the graded 

properties of FGM layer, the layer is discretized into Nf sub-layers. The thickness of the l-th sub-layer  

is defined by 

                    (6) 

where  is the ratio of the crack depth and layer thickness and is chosen as 0.1, 0.2, …., 0.7 in this 

study. 

The Young’s modulus and Poisson’s ratio of each sub-layer can be calculated by using the equivalent 

discrete layer approach [44] 

               (7) 

where  and  are the coordinates of the upper and lower faces of the l-th sub-layer, respectively. 
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The FGM plates in this study are made of SUS304 and Si3N4 on the top and bottom surfaces, 

respectively. Table 1 gives material properties of SUS304 and Si3N4. Table 2 presents the SIFs with 

different grade index n and crack depth ratio . Based on the values of the mode I SIFs in Table 2, the 

relationship between  and  can be given by the Lagrange interpolation method [45]: 

, ,                         (9) 

where the crack depth ratio  and  is given as  

              (10a) 

             (10b) 

              (10c) 

            (10d) 

Substituting Eq. (9) into Eq. (5) yields 

  .                         (11) 

Then, the bending stiffness of the rotational spring can be calculated from Eqs. (4) and (11). 

 

3. Vibration of cracked FGM plates 

According to the Mindlin hypothesis, the displacement field of an FGM plate can be given as 

                             (12) 

                            (13) 

                                 (14) 
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The strains are given by 

                        (15a) 

   .             (15b) 

The stresses are 

                    (16a) 

                      (16b) 

where  

              (17) 

The internal forces are 

                          (18a) 

                         (18b) 

                             (18c) 

where  is the shear correction factor. According to Efraim and Eisenberger [46], the shear correction 

factor of FGM plates can be expressed as 

,                          (19) 

where  and  denotes the volume fraction of each materials. The stiffness components are defined 

as 
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      (21) 

The virtual kinetic energy is 

    (22) 

where the subscript 1, 2 denotes the left sub-plate and right sub-plate; ,  and  are inertia terms  

                        (23) 

By using the Hamilton principle,  

                               (24) 

the governing equations of cracked FGM plates are derived as 
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                      (29) 

The boundary conditions satisfy 

                (30a) 

                        (30b) 
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         (34) 

               (35) 

                  (36) 

      (37) 

      (38) 

The boundary conditions can be expressed in dimensionless form as 

                          (39) 
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at ; 

                 (44a) 

                 (44b) 

                 (44c) 

                 (44d) 

                           (44e) 

at ; 

                     (45a) 

                     (45b) 

                     (45c) 

                     (45d) 

                          (45e) 

at , where i=1, 2, for the cantilever cracked FGM plate (CFFF). 

The compatibility conditions at  or , can be rewritten in dimensionless form as  
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                (46d) 

                (46e) 

                (46f) 

                (46g) 

.                              (46h) 

4. Methodology 

The differential quadrature (DQ) method is able to find approximate solutions of partial differential 

equations [47]. The displacement and their r1-th and r2-th partial derivatives, respectively, can be denoted 

in discretized domain as 
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        (48) 
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 are the Lagrange interpolation polynomials;  and  are weighting coefficients which 

are calculated by the recursive functions as shown in Ref. [47]. In the discretized domain, grid points are 

placed based on the Chebyshev–Gauss–Lobatto distribution, i.e., 

                    (49) 

                    (50) 

The discretized governing equations are given as 
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where the second partial derivative about the dimensionless time  is represent by the two over dots. 

The boundary conditions are discretized as follows:  

                      (56) 

at  and , where  is equal to 1 and N when  and , respectively; 

                      (57) 

at , where  is equal to 1 and M when  and , respectively, for CCCC cracked 

FGM plate; 

      (58a) 

                        (58b) 

at  and , where  is equal to 1 and N when  and , respectively; 

      (59a) 

                       (59b) 

at , where  is equal to 1 and M when  and , respectively, for HHHH cracked 

FGM plate; 

                      (60) 

at ; 

    (61a) 

     (61b) 

    (61c) 

    (61d) 
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                      (61e) 

at ; 

    (62a) 

    (62b) 

    (62c) 

    (62d) 

                     (62e) 

at , where  is equal to 1 and M when  and , respectively, for CFFF cracked FGM 

plate. 

The compatibility conditions at the crack location are rewritten in dimensionless form as  
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    (63f) 

    (63g) 

.                  (63h) 

The unknown quantities in the vector form are written as 

         (64) 

where 

                   

Substituting the boundary and compatibility conditions of the discrete dimensionless form into 

discretized governing equations Eqs. (52)-(56), then, the system of equation is obtained as 

,                                  (65) 

where  is mass matrix;  represents stiffness matrix. 

For the vibration analysis, substituting  into Eq. (65), the eigenvalue equations can be 

obtained as 

                              (66) 
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the dimensionless and dimensional frequencies is given in Eq. (33d). 
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treated as an input signal. 

An input signal  to be transformed into the wavelet transform coefficients  by 

using CWT, i.e., [49] 

                   (67) 

where the star  represents the convolution of two functions; the mother wavelet function  is 

transformed to a series of wavelet function  by the translation parameter b and 

scale parameter s; and  denotes the complex conjugate of  that satisfies 

      ,                           (68) 

where  is the Fourier transform of the wavelet function . Eq. (70) implies that  has a 

zero average,  

                                   (69) 

For crack identification, the mode shapes of cracked FGM plates are decomposed into wavelet 

coefficients by CWT along the x- and y-axes, respectively. The wavelet coefficients are defined by 

                (70) 

The wavelet coefficient modulus may show sudden changes at the crack location and boundaries. The 

large value at the boundaries results in the confusion for crack identification, namely, edge effect [50]. The 

maximum value of the wavelet coefficient modulus always occurs at the crack location when the scale 

parameter varies. In certain scale  and spatial position ,  is referred to be the wavelet 

coefficient maxima if it satisfies 
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Utilizing the character about the maxima of wavelet coefficient modulus, the damage index (DI) for 
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where  and are the minimum and maximum scale parameter, respectively; 

        (73) 

The vanishing moment of wavelet function have important effect on crack detection [51]. The 

symlets wavelet with 8 vanishing moment is selected as the mother wavelet function to conduct the crack 

localization in FGM plates. The peak of DI indicates the existence of crack and its location. Meanwhile, 

the merit of the present method is that the edge effect is significantly decreased by introducing the DI. 

 

6. Results and discussion 

The numerical results of the vibration and crack identification of cracked FGM plates with various 

boundary conditions are presented in this section. Unless otherwise stated, the parameters of FGM plates 

are assumed as h = 0.01 m, =0.1 m and =0.1 m. The top and bottom surfaces of FGM plates are 

fabricated by SUS304 and , respectively, and their properties are given in Table 1. In the ABAQUS 

modeling of SIFs, the FGM layer is discretized into 31 sub-layers. The total numbers of the grid points N 

and M are taken as N=M for simplicity. 

 

6.1 Comparison and convergence study 

To validate linear spring model, the mode I SIFs in the isotropic homogeneous layer and FGM layers 

with the exponential varying properties are calculated to compare with the reported results. The layer 

slenderness ratio is considered as 10. The thickness and length of the layer are assumed as 24 mm and 240 

mm, respectively. Table 3 compares the present normalized SIFs  for a homogeneous layer with 

results given by Tada et al. [52]. The Young’s modulus and Poisson’s ratio of each layer are constant: 

 and . Our results are in good agreement with the results in [52]. 

For the graded layer with exponentially varying Young’s modulus,  

                               (82) 

where  and  is the Young’s modulus at . Table 4 compares the present SIFs 
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with results given by Erdogan and Wu [53] and Song et al. [54]. The Young’s modulus of the top surface is 

equal to  and Poisson’s ratio is constant, . Again, a good agreement is achieved. 

Table 5 shows the convergence of the dimensionless fundamental frequency ( ) for the intact 

FGM plates made of SUS304/ . The parameters of the intact FGM plate are taken as =0.1 m, 

=0.1 m, h = 0.01 m and n = 2. By increasing grid points N, the accuracy of results is improved, and the 

results are converged to Zhao et al.’s results [55] when N is greater than 13 for all boundary conditions. 

Hence, N=13 is applied in the later numerical simulation.  

Table 6 lists the fundamental frequencies ( ) of cracked homogeneous plates with Lx=3m, 

Ly=2m, a/h=0.5 and h/Ly=0.2. The parameters in this example are used as n=0, =0.3 and =0.86667. 

The results given by Hosseini-Hashemi et al. [56] are also given for comparison. It shows a good 

agreement again. 

 

6.2 Vibration analysis 

The effect of the graded index n on the relationship of the dimensionless fundamental frequency  

versus the crack location  for cracked FGM plates is depicted in Fig. 3 with a/h=0.3. It is found 

that the frequency  reduces when the graded index changes from 0 to 2. The crack location has marked 

influence on the frequency of FGM plates with different boundary conditions. The frequency curves are 

symmetric for the FGM plate with symmetric boundary conditions, such as CCCC and HHHH plates. The 

curves have the turning points at = 0.2, 0.5 and 0.8 for the CCCC plate, at = 0.2 and 0.6 for 

the CCHH plate, and at = 0.5 for the HHHH plate. The fundamental frequency of the CFFF FGM 

plate becomes larger as the crack moves from the clamped edge to the free edge. 

Fig. 4 shows the effect of the graded index n on the relationship of the fundamental frequency  

versus the crack depth a/h for cracked FGM plates with L1/Lx=0.5. It is seen that the frequency is very 

sensitive to crack depth. The frequency reduces with increasing crack depth. Figs. 5-8 highlight the mode 

shape of intact and cracked CFFF, HHHH, CCHH, CCCC FGM plates with a/h=0.3, L1/Lx=0.5 and n=2, 

respectively. A slight difference between the intact and cracked plates is observed for CFFF, HHHH, 
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CCHH, CCCC FGM plates.  

As observed in Fig. 4, crack strongly affects the frequency of FGM plates. However, it is difficult to 

use these results for the damage identification of cracked plates. The reason is that the frequency change is 

difficult to provide the effective information for localizing the crack in FGM plates. Moreover, in Figs. 5-8, 

the mode shape cannot be employed directly for the damage identification because it is insensitive to the 

crack. However, the application of the CWT enables the mode shape to provide useful information for the 

damage identification. The next sub-section will use the novel crack identification method based on the 

mode shape and CWT as presented in Section 5. 

 

6.3 Damage identification based on CWT 

Figs. 9-12 present the wavelet coefficients modulus of cracked FGM plates with s=16, a/h=0.3, 

L1/Lx=0.5 and n=2. The deflection data of plates with 501 501 sampling points are analyzed by the sym8 

wavelet. For CCCC, CCHH and HHHH FGM plates in Figs. 10a-12a, the wavelet coefficient modulus 

|Wfx| has the large amplitude at the crack location (L1/Lx=0.5) and boundary ends. For the CFFF FGM 

plate in Fig. 9a, the value of |Wfx| at the free end is too large to observe the sharp transition at the crack 

location. Figs. 9b-12b illustrate the wavelet coefficient modulus |Wfy| only has the large amplitude at 

boundary ends because the crack is along the x-direction. 

Figs. 13-16 show the wavelet coefficient modulus with varying scale parameter s for the cracked 

FGM plates with a/h=0.3, L1/Lx=0.5 and n=2. The modes at y=0.5 and x=0.5 are treated as the input 

signals of the CWT to obtained |Wfx| and |Wfy|, respectively. As can be seen in Figs. 13(a)-16(a), the 

wavelet coefficient modulus |Wfx| is convergent at the crack location and boundary with reducing the scale 

parameter. For varying scale parameter, the maximum wavelet coefficient modulus always occurs at the 

crack location. In particular, the observable peak of the wavelet coefficient modulus |Wfx| does not occur at 

the crack location for the CFFF plate because of the edge effect. Similarly, the wavelet coefficient 

modulus |Wfy| in Figs. 13b-16b does not have clear change at the crack location.  

In Figs. 9-16, we can find that the wavelet coefficient modulus based damage identification does not 

work well because of the edge effect of cracked plates. Therefore, we suggest to use the damage index (DI) 

in Eq. (72) for the damage identification. Fig. 17 gives the DI of cracked FGM plates with a/h=0.3, 

L1/Lx=0.5 and n=2. The range of the scale parameter is taken as 1-32. For all plates, the peak in DI occur at 

the crack location so that the crack can be localized accurately. Furthermore, the edge effect is reduced for 

´
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all types of boundary conditions by using DI. We can see the clear peak at the crack location for the CFFF 

FGM plate, while it is not observed in the method based on wavelet coefficient modulus.   

For the practical measurement, the mode shape may be polluted by the noise. The effect of the noise 

should be considered in the damage detection method [32]. To simulate the noisy condition, white 

Gaussian noise is mixed with the normalized mode shape [57]. Fig. 18 shows the DI of the cracked FGM 

plates with the noisy condition 80 dB. The minimum and maximum scale parameters and the maximum 

scale parameter are taken as  and , respectively. We can see that the proposed method 

performs well under the measurement noise for CFFF, HHHH, CCHH, CCCC FGM plates. 

 

7. Conclusions 

This paper investigates the free vibration and crack identification of FGM plate with a through-width 

edge crack. The mode shapes of cracked FGM plates are decomposed into wavelet coefficients with CWT 

along the x- and y- directions, respectively. Based on maxima of calculated wavelet coefficients modulus 

in the varying scale, a novel damage index is proposed to conduct the crack localization in cracked FGM 

plates. The robustness of the damage index is studied under the noise condition. We can conclude that:  

1. The crack significantly affects the frequency of the FGM plate, while the mode shape is insensitive to 

the crack. 

2. The crack identification is hardly achievable by using the effect of the crack on frequency and mode 

shape directly. 

3. The wavelet coefficient modulus based damage identification does not work well because of the edge 

effect of cracked plates. 

4. The proposed damage index is able to localize cracks accurately and reduce the edge effect. The crack 

location is implied by the maximum damage index. 

5. The developed method performs well with the measurement noise for the four types of considered 

boundary conditions. 
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Figure captions 

 

Fig. 1. A cracked FGM plate (a) and the massless rotational spring model (b). 

Fig. 2. Multilayer model of cracked FGM strip. 

Fig. 3. The effect of graded index n on relation of the fundamental frequency versus the crack location 

with a/h=0.3: (a) CFFF, (b) CCCC, (c) CCHH, (d) HHHH. 

Fig. 4. The effect of graded index n on relation of the fundamental frequency versus the crack depth with 

L1/Lx=0.5: (a) CFFF, (b) CCCC, (c) CCHH, (d) HHHH. 

Fig. 5. The mode shape of CFFF FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 

Fig. 6. The mode shape of CCCC FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 

Fig. 7. The mode shape of CCHH FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 

Fig. 8. The mode shape of HHHH FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 

Fig. 9. Wavelet coefficient modulus of CFFFF cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and n=2: 

(a) |Wfx| and (b)|Wfy|. 

Fig. 10. Wavelet coefficient modulus of CCCC cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and n=2: 

(a) |Wfx| and (b)|Wfy|. 

Fig. 11. Wavelet coefficient modulus of CCHH cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and 

n=2: (a) |Wfx| and (b)|Wfy|. 

Fig. 12. Wavelet coefficient modulus of HHHH cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and 

n=2: (a) |Wfx| and (b)|Wfy|. 

Fig. 13. Wavelet coefficient modulus of deflection lines of the CFFF cracked FGM plate in the scale space 

(s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a)|Wfx| at y=0.5 and (b)|Wfy| at x=0.5. 

Fig. 14. Wavelet coefficient modulus of deflection lines of the CCCC cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a)|Wfx| at y=0.5 and (b)|Wfy| at x=0.5. 

Fig. 15. Wavelet coefficient modulus of deflection lines of the CCHH cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a)|Wfx| at y=0.5 and (b)|Wfy| at x=0.5. 
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Fig. 16. Wavelet coefficient modulus of deflection lines of the HHHH cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a)|Wfx| at y=0.5 and (b)|Wfy| at x=0.5. 

Fig. 17. Damage index of cracked FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) CFFF, (b) CCCC, (c) 

CCHH, and(d)HHHH. 

Fig. 18. Damage index of cracked FGM plates under 80 dB noise condition with a/h=0.3, L1/Lx=0.5 and 

n=2: (a)CFFF, (b)CCCC, (c)CCHH, and (d)HHHH. 
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Table 1 Material property of the components 

Material  Young’s modulus ( ) Mass density ( ) Poisson’s ratio 

SUS304  207.78 8166 0.3177 

  322.27 2370 0.24 
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Table 2 Normalized SIFs of an FGM ( ) layer with power law distribution 

  n   

 0 0.5 1 2 

0.1 1.0474 0.9239 0.9141 0.9406 

0.2 1.0556 0.9649 0.9404 0.9461 

0.3 1.1244 1.0534 1.0207 1.0104 

0.4 1.2610 1.1989 1.1666 1.1424 

0.5 1.4976 1.4413 1.4055 1.3685 

0.6 1.9145 1.8628 1.8217 1.7729 

0.7 2.7257 2.6726 2.6292 2.5645 
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Table 3 Normalized SIFs of a homogeneous layer containing an edge crack 

 Present Tada et al. [52] 
0.1 1.0474 1.0384 
0.2 1.0556 1.0405 
0.3 1.1244 1.1080 
0.4 1.2610 1.2488 
0.5 1.4976 1.4909 
0.6 1.9145 1.9215 
0.7 2.7257 2.7569 
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Table 4 Normalized SIFs of an FGM layer with exponential distribution 

 

  

Present 
Erdogan and 

Wu [53] 

Song et 

al. [54] 
Present 

Erdogan and 

Wu [53] 

Song et al. 

[54] 

0.1 1.6641 1.6743 1.6823 0.6411 0.6385 0.6469 

0.2 1.5861 1.5952 1.5978 0.6887 0.6871 0.6973 

0.3 1.6011 1.6122 1.6084 0.7791 0.7778 0.7923 

0.4 1.7043 1.7210 1.7082 0.9252 0.9236 0.9450 

0.5 1.9236 1.9534 1.9246 1.1605 1.1518 1.1901 

0.6 2.3385 2.4037 -- 1.5636 1.5597 -- 

0.7 3.1669 3.3536 -- 2.3445 2.3360 -- 
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Table 5 Convergence and comparison studies of the fundamental frequency of the intact FGM plates.  

N HHHH CCCC CFFF CCHH 

4 5.1183 8.8933 0.4321 7.0740 
6 3.0389 5.1971 0.5464 4.0290 
8 3.0461 5.1870 0.5469 4.0321 
10 3.0460 5.1861 0.5459 4.0312 
12 3.0460 5.1859 0.5454 4.0311 
13 3.0460 5.1859 0.5453 4.0311 
14 3.0460 5.1859 0.5453 4.0311 

Zhao et al. [55] 3.0813 5.2874 0.5576 -- 
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Table 6 Comparison of the fundamental frequencies for homogenous edge-cracked plates. 

L1 / Lx 

HHHH CHCH 

Present Hosseini-Hashemi 

et al. [56] 

Present Hosseini-Hashemi 

et al. [56] 

0.25 12.6349 12.5747 14.8453 14.7806 

0.5 12.3521 12.4089 14.0615 14.2545 
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(a) 

 

 

 

(b) 

Fig. 1. A cracked FGM plate (a) and the massless rotational spring model (b). 
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Fig. 2. Multilayer model of cracked FGM strip. 
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    (a)                                         (b) 

  
 

    (c)                                         (d) 

Fig. 3. The effect of graded index n on relation of the fundamental frequency versus the crack location 

with a/h=0.3: (a) CFFF, (b) CCCC, (c) CCHH, (d) HHHH. 
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    (a)                                        (b) 

 
    (c)                                        (d) 

Fig. 4. The effect of graded index n on relation of the fundamental frequency versus the crack depth with 

L1/Lx=0.5: (a) CFFF, (b) CCCC, (c) CCHH, (d) HHHH. 
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(a) 

 
(b) 

Fig. 5. The mode shape of CFFF FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 
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(a) 

 
(b) 

Fig. 6. The mode shape of CCCC FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 
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(a) 

 
(b) 

Fig. 7. The mode shape of CCHH FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 
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(a) 

 
(b) 

Fig. 8. The mode shape of HHHH FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) intact plate and (b) 

cracked plate. 
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(a) 

 
(b) 

Fig. 9. Wavelet coefficient modulus of CFFFF cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and n=2: 

(a) |Wfx| and (b) |Wfy|. 
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(a) 

 
(b) 

Fig. 10. Wavelet coefficient modulus of CCCC cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and n=2: 

(a) |Wfx| and (b) |Wfy|. 
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(a) 

 
(b) 

Fig. 11. Wavelet coefficient modulus of CCHH cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and 

n=2: (a) |Wfx| and (b) |Wfy|. 
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(a) 

 
(b) 

Fig. 12. Wavelet coefficient modulus of HHHH cracked FGM plates with s=16, a/h=0.3, L1/Lx=0.5 and 

n=2: (a) |Wfx| and (b) |Wfy|. 
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(a) 

 
(b) 

Fig. 13. Wavelet coefficient modulus of deflection lines of the CFFF cracked FGM plate in the scale space 

(s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a) |Wfx| at y=0.5 and (b) |Wfy| at x=0.5. 
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(a) 

 
(b) 

Fig. 14. Wavelet coefficient modulus of deflection lines of the CCCC cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a) |Wfx| at y=0.5 and (b) |Wfy| at x=0.5. 
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(a) 

 
(b) 

Fig. 15. Wavelet coefficient modulus of deflection lines of the CCHH cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a) |Wfx| at y=0.5 and (b) |Wfy| at x=0.5. 
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(a) 

 
(b) 

Fig. 16. Wavelet coefficient modulus of deflection lines of the HHHH cracked FGM plate in the scale 

space (s=1-32) with a/h=0.3, L1/Lx=0.5 and n=2: (a) |Wfx| at y=0.5 and (b) |Wfy| at x=0.5. 
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Fig. 17. Damage index of cracked FGM plates with a/h=0.3, L1/Lx=0.5 and n=2: (a) CFFF, (b) CCCC, (c) 

CCHH, and (d) HHHH. 
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Fig. 18. Damage index of cracked FGM plates under 80 dB noise condition with a/h=0.3, L1/Lx=0.5 and 

n=2: (a) CFFF, (b) CCCC, (c) CCHH, and (d) HHHH. 
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