
“©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



> IEEE Transactions on Fuzzy Systems 
 

1 

  
Abstract—Transfer learning is gaining increasing attention due 

to its ability to leverage previously acquired knowledge to assist in 
completing a prediction task in a related domain. Fuzzy transfer 
learning, which is based on fuzzy systems and particularly fuzzy 
rule-based models, was developed due to its capacity to deal with 
uncertainty. However, one issue with fuzzy transfer learning, even 
in the area of general transfer learning, has not been resolved: how 
to combine and then use knowledge when multiple source domains 
are available. This study presents new methods for merging fuzzy 
rules from multiple domains for regression tasks. Two different 
settings are separately explored: homogeneous and heterogeneous 
space. In homogeneous situations, knowledge from the source 
domains is merged in the form of fuzzy rules. In heterogeneous 
situations, knowledge is merged in the form of both data and fuzzy 
rules. Experiments on both synthetic and real-world datasets 
provide insights into the scope of applications suitable for the 
proposed methods and validate their effectiveness through 
comparisons with other state-of-the-art transfer learning methods. 
An analysis of parameter sensitivity is also included. 
 

Index Terms—Transfer learning, fuzzy systems, domain 
adaptation, machine learning, regression  
 

I. INTRODUCTION 
achine learning [1] has deeply affected the great 

achievements gained in many areas of data science, 
including computer vision [2], biology [3], medical imaging 
[4], and business management [5]. However, fundamentally, 
many well-known machine-learning algorithms, such as neural 
networks, SVM, and Bayesian network, are supervised 
processes, which means the performance and generalizability 
of the resulting models tend to rely on massive amounts of 
labeled data. Unfortunately, in some fields, especially in new 
and emerging areas of business, gathering enough labeled data 
to train a model properly is difficult, even impossible. Without 
enough labeled data, the accuracy and generalizability of a 
model suffers. Thus, transfer learning [6] has emerged as a 
potential solution. 

Transfer learning, in general, addresses the problem of how 
to leverage previously acquired knowledge to improve the 
efficiency and accuracy of learning in one domain that in some 
way relates to the original domain. The first survey, which is 
state-of-the-art, on transfer learning [6] provides important 
definitions in transfer learning. As part of this review, transfer 
learning studies are categorized into multi-task learning [7], 
domain adaptation [8], and cross-domain learning [9]. 
 

Manuscript received Nov 5, 2019. This work was supported by the 
Australian Research Council under DP 170101632.  

J. Lu, H. Zuo, and G. Zhang are with the Decision Systems & e-Service 
Intelligence Lab, Centre for Artificial Intelligence, Faculty of Engineering and 

However, as this area has attracted many researchers, more 
methods are being developed to handle transfer learning 
problems, and survey papers are beginning to focus on precise 
areas, e.g., visualization [10], reinforcement learning [11], 
activity recognition [12], computational intelligence [13], and 
collaborative recommendation [14]. The current applications 
for transfer learning techniques are extensive – from image 
processing [15] to text categorization [16] to natural language 
processing [17] to fault diagnosis [18] and beyond. 

Yet, while these existing methods have had some success in 
handling domain adaptation issues, most ignore the inherent 
phenomenon of uncertainty – a crucial factor during the 
knowledge transfer process [19]. There is a clear co-
dependency between the level of certainty in learning a task and 
the amount of information that is available. Problems with too 
little information have a high degree of uncertainty. If there are 
too few data with labels in the target domain, only a finite 
amount of information can be extracted, and this leads to a high 
degree of uncertainty. However, the emergence of fuzzy 
systems has shown promising results in overcoming this 
problem [20].  

The integration of fuzzy logic with transfer learning has 
drawn considerable attention in the literature. For example, 
researchers have applied fuzzy sets to represent linguistic 
variables when feature values cannot be precisely described 
numerically, while fuzzy distances assist the retrieval of similar 
cases [21]. Transferring implicit and explicit knowledge from 
similar domains is hidden and uncertain by nature, so using 
fuzzy logic and fuzzy rule theory to handle the associated 
vagueness and uncertainty is apt and can improve transfer 
accuracy. Hence, many scholars have turned to fuzzy systems 
as a solution to transfer learning problems with promising 
results. Deng et al. [22, 23] proposed a series of transfer 
learning methods using a Mamdani-Larsen-type fuzzy system 
and a Takagi-Sugeno-Kang (TSK) fuzzy model coupled with 
novel fuzzy logic algorithms that include definitions for two 
new objective functions. Further, they applied their methods to 
scenarios with insufficient data, such as recognizing 
electroencephalogram signals in environments with a data 
shortage. Behbood et al. [24, 25] proposed a fuzzy-based 
transfer learning approach to long-term bank failure prediction 
models with source and target domains that have different data 
distributions. Liu et al. [26] focused on unsupervised 
heterogeneous domain adaptation problems, presenting a novel 
transfer learning model that incorporates n-dimensional fuzzy 
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geometry and fuzzy equivalence relations. A metric based on n-
dimensional fuzzy geometry is defined to measure the 
similarity of features between domains. Shared fuzzy 
equivalence relations then force the same number of clustering 
categories given the same value of α, which means knowledge 
can be transferred from the source domain to the target domain 
in heterogeneous space through the clustering categories. 

Despite these advancements in fuzzy system-based transfer 
learning methods, there is still the main issue that has not been 
solved: how to merge and transfer knowledge when multiple 
source domains are available. This case is quite common in the 
real world. For example, a company needs to determine the 
price for a new type of computer entering the Australian market 
but has very little data on consumer responses to the product. 
However, data for two other types of computers sold in 
Australia are available. So, how might these two datasets 
(source domains) be used to support the pricing decision at hand 
(target domain)? 

There have already been some studies on multiple-source 
domain adaptation problems. Yao et al. [27] proposed two new 
algorithms, MultiSource-TrAdaBoost and TaskTraAdaBoost, 
which extend the boosting framework for transferring 
knowledge from multiple sources. These algorithms reduce 
negative transfers by increasing the number of sources. Tan et 
al. [28] presented a novel algorithm to leverage knowledge 
from different views and sources collaboratively by letting 
different views from different sources complement each other 
through a co-training style framework to reduce the differences 
in distribution across different domains. Beyond transferring 
the source data, Zhuang et al. [29] discovered a more powerful 
feature representation of the data when transferring knowledge 
from multiple source domains to the target domain. Here, 
autoencoders are used to construct a feature mapping from an 
original instance to a hidden representation, and multiple 
classifiers from the source domain data are jointly trained to 
learn the hidden representation and classifiers simultaneously. 
However, these approaches were developed for classification 
tasks and, thus far, combining knowledge from multiple sources 
cannot be translated into fuzzy systems, which are superior at 
handling uncertainty in domain adaptation problems. 

Some of our own previous research has focused on 
developing the domain adaptation ability of fuzzy rule-based 
models with regression tasks [30, 31]. We proposed a set of 
algorithms for two different scenarios, where the datasets for 
the source domain and target domain were homogeneous [32] 
and heterogeneous [33]. In this paper, we explore the ability of 
fuzzy systems to deal with transfer learning problems when 
multiple source domains are available based on these previous 
works.  

The specific contribution of this paper is to advance the 
domain adaptation ability of fuzzy rule-based systems in 
multiple-source environments for regression tasks. The current 
transfer learning methods cannot deal with the regression tasks 
with multiple sources. In principle, sometimes a single source 
transfer is better than multi-domains and sometimes multi-
domain transfer is better than single domain, which determines 
the “similarity” between source domains and the target domain. 

This paper, in fact, aims to identify which source domains(s) 
are more suitable than others to transfer knowledge to a given 
target domain. We propose two algorithms to handle knowledge 
transfer from multiple source domains to one target domain for 
regression tasks, and the use of fuzzy systems confers the model 
the capacity to handle uncertainty in an information insufficient 
environment and improves the prediction accuracy. 

 The remainder of this paper is structured as follows. Section 
II presents the preliminaries of this work, including some 
important definitions in transfer learning, and the main 
prediction model applied, i.e., the Takagi-Sugeno fuzzy model. 
Section III presents a 4-step algorithm for the domain 
adaptation process using multiple source domains in 
homogeneous space. Section IV presents an algorithm for 
multiple source domain knowledge transfer in heterogeneous 
situations, which includes two approaches implemented 
simultaneously – one with 4 steps and one with 5 steps. Sections 
V and VI present the validation tests of the two proposed 
algorithms using both synthetic and real-world datasets. The 
final section concludes the paper and outlines future work. 

II. PRELIMINARIES 
This section begins with some basic definitions of transfer 

learning, followed by an introduction to the Takagi-Sugeno 
(TS) fuzzy model, which is the basic prediction model used in 
our multiple-source domain adaptation method.  

A. Definitions 
Definition 1 (Domain) [6]: A domain is denoted as 𝐷 =
{𝐹, 𝑃(𝑋)} , where 𝐹  is a feature space, and 𝑃(𝑋) , 𝑋 =
{𝑥,,⋯ , 𝑥.} are the probability distributions of the instances. 

Definition 2 (Task) [6]: A task is denoted as 𝑇 = {𝑌, 𝑓(∙)}, 
where 𝑌 ∈ 𝑅 is the output, and 𝑓(∙) is an objective predictive 
function. 

Definition 3 (Transfer Learning) [6]: Given a source domain 
𝐷5, a learning task 𝑇5, a target domain 𝐷6 , and a learning task 
𝑇6 , transfer learning aims to improve learning of the target 
predictive function 𝑓6(∙) in 𝐷6  using the knowledge in 𝐷5 and 
𝑇5 where 𝐷5 ≠ 𝐷6 or 𝑇5 ≠ 𝑇6 . 

In short, transfer learning aims to use previously acquired 
knowledge (from a source domain) to assist prediction tasks in 
a new, but related domain (the target domain). 

B. Takagi-Sugeno (TS) Fuzzy Model 
A fuzzy system, in this case a TS model, comprises a set of 

IF-THEN fuzzy rules in the following form:  
 

If 𝒙 is 𝐴:(𝒙, 𝒗:), then 𝑦 is 𝐿:(𝒙, 𝒂:)       𝑖 = 1,… , 𝑐 (1) 
 
where 𝒗: are the prototypes, and 𝒂: are the coefficients of the 
linear function.  

This TS fuzzy model is built using a set of instances 
{(𝒙,, 𝑦,),… , (𝒙C, 𝑦C)}  using a sequence of two procedures 
[34]: from the conditions 𝐴,,… , 𝐴D  through fuzzy clustering, 
and from the optimized parameters of the linear functions 
𝐿:(𝒙, 𝒂:). 
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The TS fuzzy model could also be rewritten in the form of a 
neural network with the structure illustrated in Fig.1. The first 
layer represents the input data, and each neuron in the second 
layer represents a cluster, which also represents the condition 
of a fuzzy rule. The third layer contains the corresponding 
consequences of the fuzzy rules, i.e., the output. 

 
Fig. 1.  The TS fuzzy model in a neural network structure 

The output of the TS fuzzy model is calculated by  
 

𝑦 = 	∑ GH(𝒙,𝒗H)
∑ GI(𝒙,𝒗I)J
IKL

	 ∙D
:M, 𝐿:(𝒙, 𝒂:) (2) 

III. FUZZY TRANSFER LEARNING USING MULTIPLE SOURCES 
IN HOMOGENEOUS SPACE 

This section presents a method for transferring knowledge 
from multiple source domains to the target domain in 
homogeneous space. The multiple-domain adaptation problem 
with a fuzzy rule-based model is outlined first with formulas. 
And the specific challenge with implementing knowledge 
transfer in such cases is described. Second, the procedures in 
the proposed method are described in detail.  

A. Problem Statement 
Consider there are ℎ source domains with large amounts of 

labeled data and a target domain with very little labeled data.  
The datasets in multiple source domains are denoted as 
𝑺,,… , 𝑺P:  

 
𝑺, = {(𝒙,5,, 𝑦,5,),⋯ , Q𝒙CRL

5, , 𝑦CRL
5, S}  

…. 
𝑺P = {(𝒙,5P, 𝑦,5P),⋯ , Q𝒙CRT

5P , 𝑦CRT
5P S} (3) 

 

Q𝒙U
5V, 𝑦U

5VS is the 𝑘th input-output data pairs in the 𝑗th source 
domain, where 𝒙U

5V ∈ 𝑅.  (𝑘 = 1,⋯ ,𝑁5V, 𝑗 = 1, … , ℎ	) is an 𝑛-
dimensional input variable, the label 𝑦U

5V ∈ 𝑅 is a continuous 
variable, and 𝑁5V indicates the number of data pairs.  

The dataset in the target domain 𝑻 consists of two subsets: 
one with labels and one without: 

 
𝑻 = {𝑻\,𝑻]} = {^(𝒙,6 , 𝑦,6),⋯ , Q𝒙C_L

6 , 𝑦C_L
6 S`, ^𝒙C_LaL

6 ,⋯ , 𝒙C_
6 `} (4) 

 
where 𝒙U6 ∈ 𝑅.  (𝑘 = 1,⋯ ,𝑁6)  is the 𝑛 -dimensional input 
variable, 𝑦U6 ∈ 𝑅 is a label that is only accessible for the first 
𝑁6, data. 𝑻\ contains the instances with labels, and 𝑻] contains 
the instances without labels. The numbers of instances in 𝑻\ 

and 𝑻]  are 𝑁6, and 𝑁6 − 𝑁6,, respectively, and satisfy 𝑁6, ≪
𝑁6, 𝑁6, ≪ 𝑁5,,…, 𝑁6, ≪ 𝑁5P. 

In each source domain, a well-performed prediction model 
could be built since there is a sufficient amount of labeled data 
and, hence, corresponding sets of fuzzy rules can be obtained. 

In homogeneous space, the dimensionality of the input space 
in the ℎ source domains and the target domain are the same, and 
the input variables have exactly the same meanings. The 
datasets 𝑺,,…,	𝑺P, and 𝑻 are distinguished from each other due 
to discrepancies in their distributions. Therefore, the rules in the 
source domains cannot be directly used to solve prediction 
problems in the target domain. 

Many general transfer learning methods are easily able to 
solve single-domain transfer problems, but there are two main 
issues when using fuzzy rule-based models to solve problems 
that involve multiple source domains. First, brute force methods 
that combine all the rules in the source domains lead to 
redundancy. Additionally, accumulating all the rules increases 
the number of parameters to optimize, which in turn increases 
the computational complexity. However, a fuzzy rule-based 
multiple-source transfer learning method can overcome these 
problems. The details are proposed in the next section. 

B. Multiple-source Domain Adaptation in Homogeneous 
Space 

The method of transferring knowledge from multiple source 
domains to a target domain can be summarized in four steps: 

Step 1: Combine all the rules in the source domains. 
Given ℎ  source domains 𝑺, ,…, 	𝑺P , ℎ  sets of fuzzy rules 

would be obtained, denoted as 𝑅5,,…, 𝑅5P: 
 

𝑅5, = {𝑟(𝒗,5,, 𝒂,5,	), 𝑟(𝒗e5,, 𝒂e5,),… , 𝑟(𝒗D,5,, 𝒂D,5,	)}  
… 
𝑅5P = {𝑟(𝒗,5P, 𝒂,5P	), 𝑟(𝒗e5P, 𝒂e5P),… , 𝑟Q𝒗DP5P, 𝒂DP5P	S} (5) 
 
where 𝑟Q𝒗:

5V, 𝒂:
5V	S , (𝑖 = 1,… , 𝑐𝑗) , represents a rule in the 

source domain 𝑺V , 	𝑗 = 1, … , ℎ , 𝒗U
5V  is the prototype, i.e., the 

center of the data clusters, and 𝒂U
5V are the coefficients of the 

corresponding linear functions. The rule 𝑟Q𝒗U
5V, 𝒂U

5V	S  is 
represented as:  
 
If 𝒙U

5V is 𝐴:Q𝒙U
5V,𝒗:

5V	S, then 𝑦U
5V is 𝐿:Q𝒙U

5V, 𝒂U
5V	S  

                                                                     𝑖 = 1,… , 𝑐𝑗         (6) 

In homogeneous cases, there is an assumption that the source 
data is not accessible after constructing the model, and only the 
rules are available. This could preserve the privacy of the source 
data. 

The rules in 𝑺,,…, 𝑺P are combined and denoted as 𝑅5: 
 

𝑅5 = ^𝑟(𝒗,5,,𝒂,5,),… , 𝑟(𝒗D,5,,𝒂D,5,	),… , 𝑟Q𝒗,5P,𝒂,5PS,… , 𝑟Q𝒗DP5P,𝒂DP5P	S	`
 (7) 
which can be rewritten as: 

 
𝑅5 = {𝑟(𝒗,5, 𝒂,5), 𝑟(𝒗e5 , 𝒂e5),… , 𝑟(𝒗D55 , 𝒂D55 	)	} (8) 
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where 𝑐𝑠 = 𝑐1 + ⋯+ 𝑐ℎ. 
Due to the different distributions of the source and target 

data, the rules in 𝑅5 will have poor prediction accuracy for the 
target data. 

Step 2: Determine the number of fuzzy rules in the target 
domain. 

To effectively use the rules in the source domain, it is 
important if not crucial to determine the number of clusters or 
the number of fuzzy rules in target domain to inform how many 
(and which) rules to select for the target domain in the next step. 
Here, an infinite Gaussian mixture model (IGMM) is used to 
explore the data structure of the target domain and determine 
the number of fuzzy rules. 

IGMM simulates the distribution of the target data by using 
{𝒙,6 ,⋯ , 𝒙C_

6 }  in an unsupervised learning manner. Fig. 2 
illustrates the probability of finding various data structures in a 
dataset in histogram form. The x-coordinate represents the 
number of Gaussian distributions, i.e., the number of clusters, 
and the y-coordinate represents the number of times the dataset 
has been divided into the corresponding clusters. As the figure 
shows, in 2000 iterations of IGMM, the dataset was divided into 
three clusters more than 1000 times, into four clusters about 500 
times, into one cluster about 250 times, and into two or five 
clusters less than 100 times. Therefore, we can conclude, with 
high probability, that the dataset is composed of three Gaussian 
distributions (clusters). 

 
Fig. 2.  Example of the results for IGMM 
 

Applying the technique IGMM, the number of rules in the 
target domain is determined based on {𝒙,6 ,⋯ , 𝒙C_

6 }  , and 
denoted as 𝑐𝑡. Additionally, this step lays the basis for the next 
step where the number of clusters needs to be provided in 
advance. 

The unlabeled target data are used in this step, and the labeled 
target data are used in Step 4 to optimize the mappings by 
modifying the existing rules. 

Step 3: Select the appropriate rules for the target domain. 
How the source rules in 𝑅5  are merged is the key step in 

implementing domain adaptation with multiple sources.  We 
have adopted the method of selecting the most appropriate rules 
from 𝑅5 based on the center of the clusters in the target data. 

First, fuzzy C-means is applied to {𝒙,6 ,⋯ , 𝒙C_
6 } to find the 

center of the clusters in the target data, denoted as:  
 

𝒗,6 , 𝒗e6 ,… , 𝒗D66  (9) 

 
Then based on the obtained centers, the 𝑐𝑡 rules that satisfy  
 

𝑅6 = 	 ^𝑟(𝒗:5, 𝒂:5) ∈ 𝑅5|𝑑𝑖𝑠𝑡(𝒗:5, 𝒗U6 ) ≤ 𝑑𝑖𝑠𝑡Q𝒗V5,𝒗U6 S, ∀𝑗 ∈
{1, … , 𝑐𝑠}, 𝑘 = 1,… , 𝑐𝑡` (10) 
 
are selected from 𝑅5. 

 The distances between each element in {𝒗,6 , 𝒗e6 ,… , 𝒗D66 } and 
all the centers in the source domains {𝒗,5, 𝒗e5 ,… , 𝒗D55 }  are 
measured, and the corresponding rule with the smallest distance 
is selected. Therefore, the 𝑐𝑡 rules in 𝑅5 for the target domain 
are selected after calculating the distances for all the elements 
in {𝒗,6 , 𝒗e6 ,… , 𝒗D66 }. For simplicity, assume the first few 𝑐𝑡 rules 
in 𝑅5 are the ones selected, denoted as: 

 
𝑅6 = 	 {𝑅(𝒗,5, 𝒂,5),… , 𝑅(𝒗D65 , 𝒂D65 )} (11) 

 
Step 4: Modify the selected rules to fit the target data. 
The selected rules in 𝑅6  cannot be used to solve the 

regression tasks in the target domain because they have 
different data distributions. Thus, some techniques we 
presented in a previous paper [32] are used to modify the fuzzy 
rules by changing the input/output spaces through mappings. 
Fig.3 shows the modifications to the TS model.  

 

 
Fig. 3.  Modified TS model with changed inputs and outputs 

Comparing the structure of the TS models shown in Fig.1 
versus Fig. 3, two modifications have been made, i.e., the input 
space and output space use the mappings Φ  and Ψ , 
respectively, for the dotted lines.  

The idea of changing the input space is supported by the 
notion that each input variable is assumed to be determined by 
some hidden compared features. As such, the different 
distributions of the input variables in the two domains must be 
due to either different hidden features or different weights of 
those features. Therefore, changing the input variables 
effectively adjusts the number and weight of these hidden 
features, so the input distribution is more compatible with the 
target data. 

Unlike classification tasks, where the results largely depend 
on the distribution and structure of the data, regression 
prediction tasks rely on more complicated factors. For instance, 
in a TS fuzzy regression model, the data distributions only 
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determine the conditions of the fuzzy rules, i.e., whether or not 
each instance adheres to a particular fuzzy rule. The 
conclusions and the linear functions are governed by other 
factors that have a more critical impact on the final output. This 
is also the main reason that unsupervised domain adaptation is 
not feasible for regression tasks where only unlabeled data are 
available.  Thus, changing the output space as a consequence of 
the fuzzy rules in regression tasks is both essential and 
effective. 

The method to construct mappings for the input and output 
space are the same. The nonlinear functions are used to build 
the mappings. The nonlinear function is constructed through a 
network that is composed of 𝑃 nodes in the hidden layer and a 
single node in the output layer. The transformation of the 𝑗th 
input variable of data 𝒙U6  is shown in Fig. 4 as an example of the 
nonlinear mapping for each input variable. 

 

 
Fig. 4.  Nonlinear mappings structure 

 
The active functions of the nodes in the hidden layer are 

sigmoid functions, which are dominated by two parameters. 
Therefore, as shown in Fig. 4, the graphical representation of 
the transformed 𝑗th input variable of data 𝒙U6  is:  

 
ΦVQ𝒙UV6 	S = 	∑ 𝑤Vp ∗ 𝒛UV6s

pM,  (12) 
 
where 𝑤Vp indicates the weights of the 𝑝th node’s contribution 
to the output, and 𝒛UV6 = ,

,uv
wxIy(𝒙zI

_ w{Iy)
, 𝑗 = 1,… , 𝑛 , 𝑝 =

1, … , 𝑃, 𝛼Vp > 0. 
There are three ways to change the TS model: changing the 

input space, changing the output space, and changing both the 
input and output spaces. The application of these methods is 
discussed in our previous paper [32]. But, in summary, we have 
found that using one specific method does not always produce 
the best performance. Rather, specific datasets are generated to 
simulate different cases of fuzzy rule-based domain adaptation, 
and the corresponding approach is applied to modify the TS 
model. For example, one may generate two datasets that have 
the same input distributions but different linear functions that 
change the output space. Overall, changing the input space is 
superior in cases where the source and target data have different 
input distributions and linear functions due to the optimization 
process for modifying an input or output space. But sometimes 
optimizing the mapping parameters for the output space can 
cover the gap between the input data. Therefore, selecting the 

best method for modifying the TS model is problem-oriented 
and depends heavily on the datasets.  

Following our previous findings, we suggest the strategy of 
trying the three methods and choosing the one with the best 
performance. The small number of parameters in Φ  and Ψ 
make optimizing and constructing the transformation mappings 
highly efficient, even when the three approaches are 
implemented simultaneously. 

After the transformation mapping, the rules in 𝑅6 will take 
on a new representation: 

 
if 𝒙U6  is Φ(𝐴:(𝒙U6 ,𝒗:5)), then 𝑦U6  is Ψ(𝐿:(𝒙U6 , 𝒂:5))    𝑖 = 1,⋯ , 𝑐𝑡
 (13) 
 

The overall algorithm for domain adaptation using multiple 
sources in homogeneous space is provided in Algorithm 1. 

 
Algorithm 1. Homogenous Domain Adaptation using 
Multiple Sources 
Input: 𝑅5,,… , 𝑅5P, and 𝑻 
Output: 𝒀] for 𝑻] 
 
1. Combine all the rules in 𝑅5,,… , 𝑅5P to get 𝑅5. 
2. Determine the number of rules 𝑐𝑡 in 𝑻 using IGMM. 
3. Select the rules from 𝑅5 to get 𝑅6 for target domain. 

3.1 Find the centers of clusters in 𝑻: {𝒗,6 ,… , 𝒗D66 } 
3.2 For each 𝒗U6 , calculate 𝑑𝑖𝑠𝑡Q𝒗V5, 𝒗U6 S, find the smallest 

distance and get the corresponding rule 
3.3 Obtain the selected rules 𝑅6 

4. Modify the selected fuzzy rules to fit target data. 
4.1 Chang the input space 
4.2 Change the output space 
4.3 Change the input and output spaces 
4.4 Compare the above three models and choose one with 

the best performance 
5. Use the modified and optimized rules to predict labels 𝒀]  
for 𝑻] 

 

IV. MULTIPLE-SOURCE DOMAIN ADAPTATION IN 
HETEROGENEOUS SPACE 

This section discusses domain adaptation problems involving 
multiple sources in heterogeneous space. The symbol 
representations of the heterogeneous domain adaptation 
problem are provided first to illustrate the method more clearly 
in the following discussion. Then, the proposed method of 
implementing multiple domains knowledge transfer is 
discussed with detailed procedures. 

A. Problem Statement 
Suppose the datasets in ℎ  source domains and a target 

domain are 𝑺,,… , 𝑺P, and 𝑻: 
 

𝑺, = {(𝒙,5,, 𝑦,5,),⋯ , Q𝒙CRL
5, , 𝑦CRL

5, S}  
… 
𝑺P = {(𝒙,5P, 𝑦,5P),⋯ , Q𝒙CRT

5P , 𝑦CRT
5P S}  

𝑻 = {𝑻\,𝑻]} = {^(𝒙,6 , 𝑦,6),⋯ , Q𝒙C_L
6 , 𝑦C_L

6 S`, {𝒙C_LaL
6 ,⋯ , 𝒙C_

6 }} (14) 
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Unlike homogeneous cases, the number of features in 

𝑺,,…, 𝑺P are different from those in 𝑻, i.e., the dimensions of 
the input data in {𝒙,5,,… , 𝒙CRL

5, },…,  {𝒙,5P,… , 𝒙CRT
5P }  are not 

identical to {𝒙,6 ,… , 𝒙C_
6 }. In this work, particularly, we have 

concentrated on cases where the ℎ source domains share the 
same feature space, but the feature distributions are different. 

Since the dimensions of the input data in the source domains 
are different from the target domain, it is impossible to apply 
the models built for the source domains to solve regression 
tasks in the target domain. Further, merging and transferring 
knowledge from multiple domains is a more challenging 
problem. This section presents the multiple-source transfer 
learning method for heterogeneous space. The specific 
procedures are described in detail in the next subsection. 

B. Transfer Learning with Multiple Source Domains in 
Heterogeneous Space 

Since the knowledge transfer in heterogeneous space is much 
more complicated and challenging, knowledge in the source 
domains needs to be transferred in more than one way to 
guarantee optimal results. We have incorporated two different 
forms of knowledge transfer in our method: data transfer and 
rules transfer. 

The processes for using knowledge from the source domains 
in the form of data and rules are shown in Figs. 5 and 6, 
respectively. For simplicity, ℎ is equal to two as an example. 

The approach for transferring knowledge in the form of data 
comprises four steps. 

Step A.1 Combine all the data in ℎ  source domains 
indistinguishably, denoted as 𝑺:  

 
𝑺 = {(𝒙,5, 𝑦,5),⋯ , Q𝒙CRLa⋯aCRT

5 , 𝑦CRLa⋯aCRT
5 S} (15) 

 
Step A.2 Extract the latent feature space 𝑳5 of the combined 

source and target domains using Canonical Correlation 
Analysis (CCA). CCA connects two sets of variables by finding 
linear combinations of variables that maximally correlate. 
Typically, CCA has two purposes: data reduction by explaining 
the covariation between two sets of variables using a small 
number of linear combinations; and data interpretation by 
finding features (canonical variates) that are important for 
explaining covariation between sets of variables. Therefore, we 
have applied CCA here to extract a latent feature space by using 
the source and target data with unsupervised learning. Two 
mappings are then learned to map the source and target data to 
a new latent feature space with data distributions from all 
domains that are quite similar. The data takes on new 
representations as follows: 

 
𝑺� = {(𝒙�,5, 𝑦,5),⋯ , Q𝒙�CRLa⋯aCRT

5 , 𝑦CRLa⋯aCRT
5 S}  

𝑻� = {𝑻�\,𝑻�]} = {^(𝒙�,6 , 𝑦,6),⋯ , Q𝒙�C_L
6 , 𝑦C_L

6 S`, {𝒙�C_LaL
6 ,⋯ , 𝒙�C_

6 }} (16) 
 

Step A.3 Construct the source model using the source data 
with the new representation. 

Based on the combined source dataset 𝑺�, a TS fuzzy model 

is built and a set of fuzzy rules is obtained: 
 

if 𝒙�U5  is 𝐴:(𝒙�U5 ,𝒗�:5), then 𝑦U5 is 𝐿:(𝒙�U5 ,𝒂�:5)        𝑖 = 1,⋯ , 𝑐t (17) 
 
where 𝑐t is the number of clusters in the target data (IGMM 
applied). 
 

 
Fig. 5.  Transfer learning based on combined data 
 

 
Fig. 6.  Transfer learning based on combined rules 

 
Step A.4 Transfer the fuzzy rules from the combined source 

domain to the target domain. 
The fuzzy rules of the source domain obtained from Step A.3 

are modified by changing the input or output space, and the 
transformation mapping parameters are optimized using 𝑻�\.   

The rules are transferred to fit the target data.  
 

if 𝒙U6  is 𝚽(𝐴:(𝒙U6 , 𝒗�:5)), then 𝑦U6  is Ψ(𝐿:(𝒙U6 , 𝒂�:5))   𝑖 = 1,⋯ , 𝑐𝑡
 (18) 
 

The approach for knowledge transfer in the form of rules 
contains five steps: 
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Step B.1 Extract the latent feature space from the source 
domains separately. 

Based on each source data {𝒙,
5V,… , 𝒙CRI

5V }  (j=1,…,h) and 
target data {𝒙,6 ,… , 𝒙C_

6 }, apply CCA and extract a latent feature 
space 𝑳5V, and the data in 𝑺V and 𝑻 are converted to 

 
𝑺�V = {Q𝒙�,

5V, 𝑦,
5VS,⋯ , �𝒙�CRI

5V , 𝑦CRI
5V �}  

𝑻�V = ^	𝑻�\
V,𝑻�]

V ` = {�Q𝒙�,
6V, 𝑦,

6VS,⋯ , �𝒙�C_�
6V , 𝑦C_�

6V �� , {𝒙�C_�aL
6V ,⋯ , 𝒙�CI

6V }} (19) 
 

Note that, with this technique, the dimensions of the ℎ latent 
feature spaces must be the same. 

Step B.2 The TS fuzzy models for the ℎ source domains are 
built in the new latent feature space separately. And, ℎ sets of 
fuzzy rules are constructed correspondingly. Suppose the 
obtained fuzzy rules are:  

 
𝑹𝑺�, = {𝒓�,5,, 𝒓�e5,,… , 𝒓�D,5,}  
… 
𝑹𝑺�P = {𝒓�,5P, 𝒓�e5P,… , 𝒓�DP5P} (20) 
 

The rules in 𝑹𝑺�V  (j=1,…,h) are represented as: 
 

if 𝒙�U
5V is 𝐴:(𝒙�U

5V, 𝒗�:
5V), then 𝑦U

5V is 𝐿:(𝒙�U
5V, 𝒂�:

5V)   𝑖 = 1,⋯ , 𝑐𝑗  
(21) 

where 𝑐𝑗  is numbers of clusters in the 𝑗 th source domains, 
respectively. 

Step B.3 Combine the fuzzy rules in the source domains. 
Since the dimensions of the ℎ  latent feature spaces are 

identical, the fuzzy rules for the source domains can be easily 
combined, denoted as 𝑹𝑺 = {𝒓,5, 𝒓e5 ,… , 𝒓D,u⋯uDP5 }. Each rule in 
𝑹𝑺 is subsequently represented as: 

 
if 𝒙�U5  is 𝐴:(𝒙�U5 ,𝒗�:5), then 𝑦U5 is 𝐿:(𝒙�U5 ,𝒂�:5) 
                                                       𝑖 = 1,⋯ , 𝑐1 +⋯+ 𝑐ℎ (22) 

Step B.4 Modify the fuzzy rules in 𝑹𝑺 to suit the target data 
using the same process as in Step A.4. 

Step B.5 Select the 𝑐t rules from 𝑹𝑺 using formula (10) and 
modify the rules. 

In homogeneous situations, not all rules in the combined set 
are used in the knowledge transfer process. Rather only some 
rules are selected and then modified for the target domain. In 
heterogeneous situations, transferring features from the original 
space into the new latent feature space will inevitably result in 
some information loss, giving rise to uncertainty in the domain 
adaptation process. Therefore, to guarantee the best quality 
transfer, a strategy that uses all the combined rules and a 
strategy that only relies on selected rules should be tested, and 
the strategy with the best results should be chosen. 

In the two approaches, Step A.1 to Step A.4 and Step B.1 to 
Step B.5, a latent feature space is used to transform all the data 
into a unified dimensional space so as to convert the 
heterogeneous transfer learning problem into a homogeneous 
transfer learning problem. Therefore, applying the rules 
adaptation method in Algorithm 1 to implement the following 

rules transfer means this procedure does not have to be repeated 
in Steps A.4 and B.5. 

The algorithm for domain adaptation using multiple sources 
in heterogeneous space is provided in Algorithm 2. 

 
Algorithm 2. Heterogeneous Domain Adaptation using 
Multiple Sources 
Input: 𝑺,,… , 𝑺P  and 𝑻 
Output: 𝒀] for 𝑻] 
 
1. Apply data-based multiple-source transfer 

1.1 Combine 𝑺,,… , 𝑺P to 𝑺 
1.2 Extract 𝑳5  using 𝑺 and 𝑻, and convert 𝑺 and 𝑻 to 𝑺� 

and 𝑻� 
1.3 Train fuzzy rules using 𝑺� 
1.4 Modify rules using 𝑻�\ 
1.5 Get labels for 𝑻\  

2. Implement rule-based multiple-source transfer 
2.1 Extract 𝑳5V using 𝑺V and 𝑻, j=1,…,h 
2.2 Convert 𝑺V to 𝑺�V, and train rules 𝑹𝑺�V  
2.3 Combine 𝑹𝑺�,,…, 𝑹𝑺�P to get 𝑹𝑺 
2.4 Modify the rules in 𝑹𝑺 by constructing mappings 
2.5 Select rules from 𝑹𝑺 and modify them 
2.6 Get labels for 𝑻\ 

3. Compare the results in 1.5 and 2.6, and select the better 
model 
4. Predict labels for 𝑻] 

V. EXPERIMENTS IN HOMOGENEOUS SPACE 
We executed a set of experiments to validate and analyze the 

presented method in dealing with domain adaptation problems 
when multiple source domains are available. Section 5.1 
explains how the synthetic datasets were designed and 
implemented to simulate multiple-source scenarios, along with 
our experiments for verifying the effectiveness of this new 
method and a discussion on the application scope for multiple 
sources. The experiments in Section 5.2 involve real-world 
datasets and compare the performance of our method with 
several state-of-the-art methods on multiple-source domain 
adaptation problems. The sensitivity of the parameters is also 
analyzed with practical cases.  

A. Experiments on Synthetic Datasets 
Several synthetic datasets were generated to simulate 

different multiple-source transfer learning scenarios. Although 
the real cases may be quite different from the scenarios we 
created using the synthetic datasets, the results and patterns 
obtained do provide some guidance in knowledge transfer for 
practical cases. 

There are two intuitive baselines for transfer learning 
problems with multiple sources. The first baseline is a model 
that contains all the fuzzy rules from all source domains. The 
second is a single source domain model.  We evaluated the 
performance of our method with three models: no-transfer 
models, single-source transfer models, and multiple-source 
transfer models. A no-transfer model means the source model 
is used directly to solve the target task. A single-source transfer 
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model indicates that only one domain has been used as the 
source, and a multiple-source transfer model obviously means 
that knowledge is leveraged from multiple source domains to 
support regression tasks in the target domain. 

In our experiments, all models were tested on unlabeled 
target datasets 𝑻]  to verify the models’ ability to solve 
regression tasks in the target domain.  

In this set of experiments, we generated four datasets with 
two, three, four, and five clusters. More details about how the 
datasets were generated can be found in our previous paper 
[35]. For each experiment, we chose two datasets to serve as the 
source domains and one to serve as the target domain. Table I 
lists the datasets used for each experiment with each dataset 
denoted by the number of clusters it contains. For example, in 
Experiments 1-3 the dataset with two clusters is selected as the 
target domain, and two of the remaining three datasets are 
selected as the source domains, which results in three 
configurations. Similar operations were conducted for 
Experiments 4-6 and 7-9. The reason that the dataset with five 
clusters was not chosen as the target domain is that the aim is 
to construct an environment where there are less rules in the 
target domain than in the combined source domains. A 
sufficient number of rules is beneficial in the selection process 
and also creates a guarantee of model performance in the target 
domain. As such, nine different experimental configurations are 
shown in Table I, and nine groups of results are shown in Table 
II.   

Table I. Datasets used in each of the nine experiments 

Domain 

Experiment No. 

1 2 3 4 5 6 7 8 9 

Source 1 4 5 5 2 5 5 5 2 5 

Source 2 3 3 4 4 2 4 2 3 3 

Target 2 2 2 3 3 3 4 4 4 

 
We tested these nine dataset configurations in Table II with 

three types of models – no transfer, single transfer, and multiple 
transfer. The “No-transfer model” actually contains two 
models, one prediction model for each of the two source 
domains. Similarly, the “Single-source transfer” involves two 
models. The “Multiple-source transfer” models also contain 
two models: one is the TS model with all the fuzzy rules from 
both source domains; the other is the model built using our 
proposed method. Root mean square error (RMSE) is used to 
measure the regression performance. All models were 
constructed using five-cross validation; therefore, the results 
are shown in the form of “mean±variance”. The results with the 
best performance are in highlighted in bold. 

The results show that the no-transfer method returned high 
mean values, which represents the gap between the source 
domains and the target domain. Comparing the two forms of 
multiple-source transfer, selecting a set of appropriate rules 
worked better than the brute force method of combining all the 
rules, which serves as a clear indication that combining every 
fuzzy rule leads to redundancy and inferior results. For the most  

part, the multiple-source method also worked better than single-
source transfer. Exp No. 8 and 9 were the exceptions. Upon 
further analysis, we attribute the success of the single-source 
method in these two cases to the poor selection of rules, but this 
does highlight that multiple-source transfer has some 
limitations.  

Hence, in the following part, we explore the scope of 
applications to provide some guidance for practical uses of 
multiple-source transfer learning. 

Three experiments are implemented in this part. The input 
datasets in each experiment are shown in Fig. 7-9. Each figure 
represents a different input data scenario, where the points in 
blue indicate input data from Source Domain 1, yellow 
indicates Source Domain 2, and red indicates the target input 
data. The linear functions used to generate these datasets are the 
same in the source and target domains. 

In Scenario A, the distributions of all three domains are quite 
dissimilar, and both Source Domain 1 and Source Domain 2 are 
very different from the target data, as shown in Fig.7. The 
results in Table III show that our method of combining rules 
from multiple source domains has the best performance in this 
case.  

Scenarios B and C are two special cases that are more 
applicable to a single-source transfer method. However, they 
require a strict condition – the data structures in all the domains 
must be identified.  

In Scenario B, the distributions of all the three domains are 
quite similar, but the discrepancies between the two source 
domains and the target domain are different, as shown in Fig. 8. 
The results show that the single-source transfer methods are 
superior to the multi-source transfer methods, and that the 
single-source transfer methods based on Source Domain 2 
performed the best. This is because the data in both source 
domains have similar distributions to the target domain, and 
Source Domain 2 is more similar to the target domain than 
Source Domain 1.  

In Scenario C, only one source domain, Source Domain 1, 
has a similar data structure to the target data, while Source 
Domain 2 has a dissimilar data structure, as shown in Fig. 9. 
Thus, the single-transfer method with Source Domain 1 would 
be superior to the other methods. 

The results of implementing transfer learning with different 
models are shown in Table III. The results with the best 
performance are indicated in bold. 

Analyzing the results from the above three scenarios, we can 
draw two conclusions. First, if all the source domains have a 
dissimilar structure to the target domain or the relationships of 
data structures between domains are implicit, then selecting an 
appropriate subset of rules from multiple source domains would 
be the optimal choice. Second, if a source domain exists with a 
data structure that is similar to the target data, the single transfer 
method will likely provide the best performance. Further, the 
closer the source domain to the target domain, the better the 
transfer result. Since, in real-world applications, it is difficult to 
identify the structure, especially in high-dimensional datasets, 
our method could play a significant role in practical multiple-
source cases. 
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Table II. RMSE of three types transfer learning (no, single, and multiple)  

Exp No. No-transfer Single-source transfer Multiple-source transfer 
Source 1 Source 2 Source 1 Source 2 All rules Our method 

1 4.16±0.00 2.46±0.00 0.85±0.30 0.74±0.00 1.51±0.00 0.47±0.00 
2 6.46±0.00 1.89±0.00 0.86±0.00 0.57±0.00 1.15±0.00 0.45±0.02 
3 7.12±0.00 3.45±0.00 0.73±0.00 1.35±0.03 1.43±0.00 0.35±0.01 
4 1.51±0.00 1.63±0.00 0.91±0.01 1.38±0.01 1.37±0.01 0.65±0.00 
5 5.80±0.00 1.97±0.00 0.78±0.00 0.84±0.01 2.11±1.06 0.62±0.00 
6 6.67±0.00 1.64±0.00 1.52±0.00 0.75±0.02 1.60±0.00 0.61±0.00 
7 4.29±0.00 3.65±0.00 0.84±0.00 0.93±0.00 1.10±0.03 0.84±0.03 
8 3.23±0.00 1.75±0.00 0.98±0.01 1.07±0.00 1.02±0.02 1.08±0.02 
9 3.80±0.00 2.56±0.00 1.73±0.45 0.64±0.01 1.49±2.40 0.88±0.00 

Table III. Transfer performances of three scenarios in Figures 7 to 9 
Exp. No. 

 
No-transfer Single-source transfer Multiple-source transfer 

Source 1 Source 2 Source 1 Source 2 All rules Our method 
A 3.06±0.00 2.81±0.00 1.52±0.33 1.16±0.08 1.50±0.41 0.67±0.03 
B 0.75± 0.00 0.48± 0.00 0.39± 0.01 0.33± 0.00 1.53± 0.06 0.60± 0.05 
C 1.35± 0.00 3.63± 0.00 0.29±0.00 0.55± 0.00 0.86± 0.18 0.57± 0.00 

In all the above experiments, for simplicity, the source 
domains are designed to have the same number of data. Please 
note that unbalanced data in multiple source domains will not 
affect the performance of the method, since the performance of 
the source model can be guaranteed as long as the source data 
covers all the clusters. 

 
Fig. 7.  Scenario A: different distributions in three domains 

 
Fig. 8.  Scenario B: similar distributions in three domains 

 
Fig. 9.  Scenario C: similar distributions in Source 1 and Target, but different 
in Source 2 

 

B. Experiments on Real-world Datasets 
In this section, we used real-world datasets to validate the 

effectiveness of the proposed multiple-source transfer method. 
Since the studies on domain adaptation with regression 
problems are scarce, there are no public datasets for these 
scenarios. We, therefore, turned to five datasets from the UCI 
Machine Learning Repository and modified them to simulate a 
range of multiple-source transfer learning scenarios. Since how 
the datasets were modified is crucial, a detailed description 
follows using two datasets as examples. 

The “Condition-based maintenance of naval propulsion 
plants” (CBM) dataset contains 14 features, such as ship speed, 
gas turbine shaft torque, and so on. These features were used to 
predict gas turbine decay state coefficients. We split the data 
according to ship speed; speeds greater than 10 knots formed 
the source domains (7500 instances), and the remaining 3500 
instances were used as the target domain. The source instances 
were further divided into 4000 for Source 1 and 3500 for Source 
2. All instances in the source domains were labeled with only 
10 labeled instances in the target domain. 

The “Combined cycle power plant” (CCPP) dataset contains 
four attributes: temperature, ambient pressure, relative 
humidity, and exhaust vacuum, which were used to predict the 
net hourly electrical energy output. 6800 instances with a 
temperature of not greater than 25 degrees formed Source 
Domains 1 and 2, evenly split into groups of 3400. The 
remaining 2500 instances formed the target domain. Again, all 
source instances were labeled, and 10 target instances were 
labeled. 
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Table IV. Comparison of our method with TSK, TCA, SA, and GFK 
Dataset TSK TCA SA GFK Our method 
Istanbul 2.85±37.72 0.08±0.00 0.08±0.00 0.09±0.00 0.07±0.00 

Air quality 2.43±28.47 0.20±0.00 0.19±0.00 0.20±0.00 0.09±0.00 
CCPP 0.10±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.07±0.00 
CBM 3.61±0.54 3.69±0.04 12.54±0.07 5.51±1.80 0.31±0.00 
Airfoil 0.28±0.00 0.35±0.00 0.34±0.00 0.38±0.00 0.17±0.00 

Table V. Performance with varying numbers of clusters (rules) in target domain 
clusters Istanbul Air quality CCPP CBM Airfoil 

2 0.08±0.00 0.09±0.00 0.07±0.00 0.31±0.00 0.18±0.00 
3 0.07±0.00 0.10±0.00 0.07±0.00 0.31±0.00 0.18±0.00 
4 0.07±0.00 0.09±0.00 0.07±0.00 0.31±0.00 0.27±0.02 
5 0.07±0.00 0.10±0.00 0.07±0.00 0.60±0.04 0.23±0.00 
6 0.07±0.00 0.12±0.00 0.07±0.00 0.85±0.16 0.17±0.00 
7 0.07±0.00 0.11±0.00 0.07±0.00 1.24±0.52 0.47±0.02 

The other three datasets are “Istanbul stock exchange 
dataset”, “Air quality dataset”, and “Airfoil self-noise dataset”. 
For more details, please refer to the UCI Machine Learning 
Repository. 

We performed two groups of experiments to both validate 
our method and analyze the impact of the number of clusters. 
In the first set of experiments, we compared our method with 
some state-of-the-art methods in transfer learning, i.e., TSK 
[36], TCA [37], SA [38], and GFK [39]. All these methods are 
able to solve both classification and regression tasks but have 
not been presented as solutions for multiple-source situations. 
To be fair, we used these methods with combined data from all 
source domains for knowledge transfer.  

Although there are some methods and heuristic algorithms 
for determining the number of clusters, it is often difficult to 
identify the number of clusters to use when constructing a TS 
model with real-world data – especially those with high-
dimensional data. Hence, in the second set of experiments, we 
treated the number of clusters as a hyperparameter and discuss 
its impact on the transfer learning results.  

The results of the two groups of experiments are shown in 
Tables IV and V. The results show superior performance by our 
proposed method on all five datasets. Table V shows there is no 
obvious impact on prediction accuracy with a different number 
of clusters. However, in most cases, the best performance 
appeared with fewer clusters. 

Beside the five datasets, we also applied a new, large and 
more complex problem of predicting PM 2.5 concentration in 
different cities to further validate our transfer learning method 
in multiple-source scenario. The dataset contains PM 2.5 data 
and related meteorological data in five big cities (Beijing (BJ), 
Shanghai (SH), Guangzhou (GZ), Chengdu (CD) and Shenyang 
(SY)) in China from year 2013 to 2015. Beside the values of 
PM 2.5, there are thirteen main attributes to describe the data: 
year, month, day, hour, season, dew point, temperature, 
humidity, pressure, combined wind direction, cumulated wind 
speed, hourly precipitation, and cumulated precipitation. The 
thirteen attributes are used as the inputs to predict PM 2.5 
concentration. 

To simulate the multi-source transfer learning scenario, four 
groups of experiments have been designed in the new version 
to implement and validate our method in handling multiple 

sources. The transfer performance of these four groups 
experiments are shown in Tables VI to IX. The first group 
experiments execute the knowledge transfer among five cities 
in year 2013, and Table VI displays the transfer performance 
(RMSE). The third column in Table VI indicates the city that is 
selected as the target domain, and the second column shows the 
two cities that are chosen from the remaining cities as the source 
domains. Two types of transfer learning methods: single-source 
transfer and multiple-source transfer are implemented. Here, 
the “Single-source transfer” involves two models: one is 
transferred with fuzzy rules from Source Domain 1, and the 
other is transferred with fuzzy rules from Source Domain 2. The 
“Multiple-source transfer” contains three models: a) combining 
all the data across the source domains, b) combining the rules 
from the source domains, and c) selecting rules from the source 
domains using our proposed method. Similarly, experiments on 
Tables VII and VIII implement transfer learning in five cities in 
year 2014 and 2015. The Last group of experiments in Table IX 
use the data from years 2013 and 2014 to predict the PM 2.5 
concentration in year 2015. 

The RMSE shown in Tables VI to IX indicates that our 
proposed method is superior to the single transfer leaning 
methods and the other two multiple-source transfer learning 
methods. This further validates the effectiveness of our method. 

VI. EXPERIMENTS IN HETEROGENEOUS SPACE 
Our experiments in heterogeneous settings also involved 

synthetic and real-world datasets. 

A. Synthetic Datasets 
We designed two groups of experiments: one with three-

dimensional data in the source domains and two-dimensional 
data in the target domain; the other with four-dimensional data 
as the source and three-dimensional data as the target. Ten 
experiments were executed in each group. The settings for one 
of the ten experiments are provided in Tables X and XI as an 
example to illustrate the data structures in the three domains. 
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Table VI. Transfer performance (RMSE) in five cities in year 2013 
Exp No. Datasets setting Single-source transfer Multiple transfer 

Source 
domains 

Target 
domain 

Source 1 Source 2 Combined data Combined 
rules 

Selected rules 
(ours) 

1 SH, BJ GZ 14.62±4.06 15.23±0.31 14.13±0.85 16.97±0.32 12.47±1.08 
2 SH, GZ CD 34.11±24.34 30.38±4.99 29.03±6.35 42.85±8.74 24.02±5.58 
3 BJ, SY SH 27.84±11.92 26.67±17.00 28.68±7.27 35.99±6.72 18.17±3.11 
4 GZ, CD BJ 36.68±32.35 33.47±52.27 34.09±8.78 42.62±14.21 29.30±13.38 
5 BJ, CD SY 25.71±3.52 27.81±6.99 27.61±6.35 33.32±12.20 19.80±0.46 

Table VII. Transfer performance (RMSE) in five cities in year 2014 
Exp No. Datasets setting Single transfer Multiple transfer 

Source 
domains 

Target 
domain 

Source 1 Source 2 Combined data Combined 
rules 

Selected rules 
(ours) 

1 CD, GZ SH 19.08±2.47 17.55±12.39 25.61±27.18 28.13±9.91 14.80±7.06 
2 SY, GZ BJ 23.68±15.04 30.35±16.90 35.53±4.58 41.41±42.58 22.40±0.42 
3 BJ, SH CD 29.47±12.00 31.52±5.36 32.14±13.80 43.32±48.17 28.46±7.59 
4 BJ, GZ SY 45.18±11.56 45.37±5.19 47.52±23.61 48.38±11.86 39.34±8.54 
5 BJ, SH GZ 16.03±3.08 18.89±2.04 17.45±9.63 22.46±15.21 12.65±1.34 

Table VIII. Transfer performance (RMSE) in five cities in year 2015 
Exp No. Datasets setting Single transfer Multiple transfer 

Source 
domains 

Target 
domain 

Source 1 Source 2 Combined data Combined 
rules 

Selected rules 
(ours) 

1 CD, GZ SH 19.47±5.10 12.91±5.98 21.08±3.43 22.53±5.70 10.57±2.28 
2 SH, CD BJ 42.17±54.56 33.24±7.26 41.05±64.72 77.12±116.80 29.25±4.44 
3 BJ, GZ CD 20.57±2.92 27.46±6.57 22.96±24.84 36.86±110.92 16.17±3.36 
4 SY, BJ GZ 25.30±36.61 16.54±1.10 20.11±10.50 28.47±76.09 12.56±8.69 
5 SH, BJ SY 86.22±532.65 154.0±424.2 523.5±7656 51.32±100.11 27.82±6.76 

 
Table IX. Transfer data from years 2013 and 2014 to 2015

Exp No. City Single transfer Multiple transfer 
Source 1 (year 

2013) 
Source 2 (year 

2014) 
Combined data Combined rules Selected rules 

(ours) 
1 SH 11.70±3.19 12.16±4.81 12.75±4.57 15.57±2.34 10.04±1.29 
2 SY 34.23±23.81 31.09±35.60 32.34±13.63 44.21±132.23 30.28±14.98 
3 CD 17,16±5.66 17.10±8.01 19.84±28.48 24.22±39.53 16.91±16.16 
4 GZ 12.16±5.15 10.92±10.35 10.61±7.93 16.11±1.37 6.44±0.09 
5 BJ 36.69±24.54 44.69±41.14 47.18±82.94 59.10±60.12 29.37±7.36 

 

Table X. The dataset with 3-D source data and 2-D target data 
 Source 1 Source 2 Target  

Cluster centers [1 3 5; 
3 2 4; 
4 1 3] 

[1.5 3 5; 
 3.5 2 4; 
 4 1.5 3] 

[3 5; 
 3.5 4; 
 4 3] 

Linear functions [1 1 1 2; 
2 1 3 4;  
1 3 1 3]; 

[1 1 1 2; 
2 1 3 4;     
1 3 1 3]; 

[3 3 2; 
 2 1 5; 
 4 2 3]; 

 
Table XI. The dataset with 4-D source data and 3-D target data 

 Source 1 Source 2 Target  

Cluster 
centers 

[2 4 1 3; 
1 3 5 2; 
3 1 4 2]; 

[2.3 4.1 1.2 3.2; 
1.3 3.2 4.8 2.3; 
3.1 1.3 3.7 2.4]; 

[2.5 4.2 1.3; 
1.4 3.5 5.2; 
3.3 1.1 3.9]; 

Linear 
functions 

[1 1 1 1 2; 
2 1 1 3 4; 
1 3 2 1 3]; 

[2 3 1 4 2;  
1 3 4 2 5; 
4 1 2 2 3]; 

[1 1 1 1; 
2 1 3 4; 
1 3 2 3]; 

 
The parameters in Tables X and XI show that, although the 

source and target domains have different dimensions, there are 
always some shared features with similar values, which 
represent the relevance between the domains. However, there is 
always a domain that has quite different linear coefficients than 
the other two. 

Table XII implements the experiments where data in the 
source domains are three-dimensional and data in the target 
domain are two-dimensional. And in Table XIII, the source data 
are four-dimensional and the target data are three-dimensional. 
Tables XII and XIII show the RMSE of the ten experiments for 
each group using the single-source transfer method plus three 
variations of the multiple-source transfer method: combining all 
the data across the source domains, combining the rules from 
the source domains, and selecting only some rules from the 
source domains. The best results are indicated in bold. 

Table XII shows the best results in eight of the experiments 
were obtained by combining all the data from the source 
domains. Combining all the rules from both source domains 
worked best in the remaining experiments. However, Table 
XIII shows that only selecting some rules was advantageous in 
most of the experiments, while two experiments benefited from 
combining all the data in the source domains. 

The results support our conclusion with the synthetic 
datasets, i.e., our method, using knowledge from multiple 
source domains, has good performance in dealing with 
multiple-source situations. But, the setting of the two groups of 
experiments cannot cover all cases, and there are some cases 
where a multiple-source method is not suitable. The following 
experiments illustrate such inappropriate situations.  
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Table XII. Heterogeneous transfer with 3-D source data and 2-D target data 
Exp No. Single-source transfer Multiple-source transfer 

Source 1 Source 2 Combine data Combine rules Selected rules 
1 1.66±0.00 1.91±0.01 1.71±0.00 1.62±0.02 2.29±0.02 
2 2.61±0.01 2.55±0.01 1.91±0.01 2.15±0.07 2.42±0.01 
3 2.51±0.08 2.55±0.01 2.00±0.01 2.21±0.05 2.23±0.02 
4 2.61±0.01 2.42±0.02 2.10±0.01 3.24±1.97 2.40±0.15 
5 1.89±0.10 1.69±0.01 1.80±0.01 1.57±0.01 2.30±0.01 
6 2.51±0.08 2.36±0.01 2.08±0.04 3.30±1.06 2.40±0.14 
7 1.75±0.01 1.69±0.01 1.69±0.01 1.81±0.45 2.07±0.02 
8 1.75±0.01 1.78±0.02 1.74±0.01 1.90±0.80 2.27±0.00 
9 2.51±0.08 2.40±0.01 2.12±0.05 3.58±1.75 2.38±0.09 
10 2.84±0.11 2.78±0.05 2.63±0.20 5.35±19.22 5.01±11.58 

Table XIII. Heterogeneous transfer with 4-D source data and 3-D target data 

Exp No. 
Single-domain transfer Multiple-domain transfer 

Source 1 Source 2 Combine data Combine rules Selected rules 
1 3.52±0.00 3.85±0.01 2.37±0.06 4.30±0.34 5.19±0.21 
2 2.04±0.09 2.56±0.01 1.88±0.03 4.07±0.19 3.47±0.01 
3 3.31±0.00 3.34±0.00 3.52±0.08 3.30±0.00 3.18±0.08 
4 4.32±0.10 3.56±0.05 4.20±0.07 4.20±0.67 2.39±0.01 
5 4.03±0.07 3.77±0.04 3.98±0.04 3.74±0.12 2.92±0.06 
6 4.03±0.07 4.14±0.15 4.22±0.13 5.19±0.39 3.38±1.63 
7 5.57±0.12 6.33±0.08 6.11±0.01 7.31±0.16 4.89±0.19 
8 4.32±0.10 3.46±0.59 4.08±0.03 4.39±0.30 2.67±0.03 
9 6.65±0.17 7.04±0.08 7.23±0.32 7.41±0.29 5.06±0.51 
10 4.32±0.10 4.14±0.15 4.32±0.11 4.93±1.21 2.85±0.04 

Table XV. Results of experiments for limitation of multiple-source transfer 

Exp No. Single-domain transfer Multiple-domain transfer 

Source 1 Source 2 Combine data Combine rules Selected rules 
1 2.71±0.17 2.64±0.16 2.76±0.21 4.24±1.04 3.37±0.50 
2 1.98±0.00 1.98±0.01 2.06±0.01 2.35±0.98 2.02±0.00 
3 1.59±0.03 1.67±0.01 1.61±0.00 2.16±0.08 1.87±0.11 
4 1.59±0.03 1.53±0.00 1.55±0.00 2.26±0.29 2.08±0.01 
5 1.43±0.01 1.35±0.00 1.38±0.01 1.60±0.84 1.67±0.03 
6 2.78±0.02 3.17±0.10 2.99±0.67 4.18±1.09 3.80±4.70 
7 1.71±0.00 1.82±0.00 1.72±0.00 2.13±1.21 2.90±0.06 
8 1.77±0.00 2.01±0.01 1.87±0.00 2.33±0.26 2.39±0.13 
9 6.07±0.00 4.71±0.20 5.24±0.41 5.64±0.15 4.85±0.05 
10 6.00±0.00 4.40±0.17 5.32±0.00 5.95±0.41 5.41±0.00 

Following the same procedures, we designed ten experiments 
and provide the data structures for one experiment in Table XIV 
as an example. 

The feature values for all three domains are similar, but the 
most important thing is that the coefficients of linear functions 
in two source domains are exactly the same, and they are also 
almost equal to the target domain.  

The results of these ten experiments are shown in Table XV. 
Table XIV. The dataset for showing limitation of multiple-source transfer 

 Source 1 Source 2 Target  

Cluster centers 
[1 3 5; 
3 2 4; 
4 1 3]; 

[1.2 3.2 4.7; 
3.2 2.3 3.8; 
4.1 1.2 2.8]; 

[1.2 3; 
3.2 2.3;  
4 1.2]; 

Linear functions 
[1 1 1 2; 
2 1 3 4;  
1 3 1 3]; 

[1 1 1 2; 
2 1 3 4;     
1 3 1 3]; 

[1 1 2; 
2 1 3; 
1 3 2]; 

 

As the results show, the multiple-source method was inferior 
to the single-source method in each of these situations and 
highlights that proper domain selection is key to producing 

good results when drawing on multiple source domains to 
transfer knowledge. Selecting an appropriate domain is a 
crucial problem and, therefore, will be studied in future work. 

B. Real-world Datasets 
For this set of experiments, we used the “Airfoil self-noise” 

dataset from UCI, divided according to frequency. Data with a 
frequency of greater than 800 hertz formed the source domains 
(900 instances, split equally between Source 1 and Source 2), 
the remaining 450 instances were used as the target domain. 
Five attributes – frequency, angle of attack, chord length, free-
stream velocity, and suction side displacement thickness, were 
used to predict scaled sound pressure levels. We removed 
suction side displacement thickness in the target domain to 
replicate a heterogeneous setting. All the instances in the source 
domains were labeled;10 instances in the target domain were 
labeled. The results are shown in Table XVI with the best 
results in bold.  

As shown, combining all the data in the source domains gave 
the best performance in half of the experiments and selecting 
some of the rules gave the best performance in the remaining  
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Table XVI. Results for the heterogeneous real-world datasets 

Clusters Single-source transfer Multiple-source transfer 
Source 1 Source 2 Combine data Combine rules Selected rules 

2 0.26±0.00 0.18±0.00 0.167±0.00 0.18±0.00 0.18±0.00 
3 0.23±0.00 0.22±0.00 0.22±0.00 0.58±0.55 0.21±0.00 
4 0.21±0.00 0.17±0.00 0.16±0.00 0.18±0.00 0.15±0.00 
5 0.23±0.00 0.33±0.01 0.18±0.00 0.26±0.00 0.17±0.00 
6 0.44±0.00 0.27±0.00 0.36±0.04 1.25±0.81 0.25±0.00 
7 0.20±0.00 0.24±0.00 0.18±0.00 0.26±0.00 0.23±0.00 

half. Taken overall, we therefore conclude that leveraging 
multiple domains as sources performs better than using a single 
source in heterogeneous situations. 

VII. CONCLUSION AND FURTHER STUDY 
This work explores transfer learning problems when multiple 

source domains are available. In homogeneous space, our 
method is based on combining the fuzzy rules in the source 
domains, selecting some of those rules, and modifying them to 
handle regression tasks in a target domain based on labeled 
target data. We further generalized the idea of using multiple 
source domains to suit heterogeneous space. Unlike 
homogeneous cases, where only fuzzy rules are available for 
transfer, in heterogeneous cases, the source data is also 
available. This data is used to extract a shared latent feature 
space for transfer along with the rules. Both methods rely on the 
same basic procedures. We conducted experiments on synthetic 
datasets to simulate complex cases of knowledge transfer, and 
the results validate that our methods have better performance 
than no-transfer or single-source transfer approaches. Further 
experiments using real-world datasets support our findings and 
show that our method of drawing on multiple source domains 
provides superior performance compared to some state-of-the-
art methods in transfer learning. 

The methods presented in this paper aim to deal with transfer 
learning in situations with multiple source domains, especially 
source domains that share the same feature space. In future 
studies, we plan to study more complicated cases – for example, 
where the dimensions of multiple source domains are also 
different. In addition, we will explore wider applications for 
these transfer learning techniques, such as activity recognition 
and robotics. Lastly, these experiments have revealed that 
source domain selection is a key factor in the methods’ efficacy, 
which we intend to examine as an effective way to avoid 
negative transfer in future studies. 
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