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Abstract
Climate change, with increased temperatures and varied rainfall, poses a great challenge to food
security around theworld. Appropriately assessing the impacts of climate change on crop productivity
and understanding the adaptation potential of agriculture to climate change are urgently needed to
help develop effective strategies for future agriculture and tomaintain food security. In this study, we
studied futuremaize yield changes under 1.5 °C (2018–2037) and 2 °C (2044–2063)warming
scenarios and investigated the adaptation potential across China’sMaize Belt by optimizing the sowing
date and cultivar using the APSIM-Maizemodel. In comparison to the baseline scenario, under the
1.5 °Cand 2 °Cwarming scenarios, we found that without adaptation,maize yields would increase in
the relatively cool regions with a single-cropping systembut decrease in other regions. However, in
comparisonwith the baseline scenario, under the 1.5 °Cand 2 °Cwarming scenarios with adaptation,
maize yields would increase by 11.1%–53.9% across the study area. Across themaize belt, compared
with the baseline scenario, underwarming of 1.5 °C, the potential sowingwindowwould increase by
2–17 d, and underwarming of 2 °C, this sowingwindowwould increase by 4–26 d. The optimal
sowingwindowwould also be significantly extended in the regions with single-cropping systems by an
average of 10 d under the 1.5 °Cwarming scenario and 12 d under the 2 °Cwarming scenario. Late-
maturing cultivar achieved higher yield than early-middlematuring cultivars in all regions except the
north part ofNortheast China. Adjusting the sowing date by increasing growth-period precipitation
contributedmore (44.5%–96.7%) to yield improvements than shifting cultivars (0%–50.8%) and
climate change (−53.1% to 23.0%) across allmaize planting regions except in thewet southwestern
parts of themaize belt. The differences among themaize planting regions in terms of high adaptation
potential provide invaluable information for policymakers and stakeholders ofmaize production to
set out optimized agricultural strategies to safeguard the supply ofmaize.

1. Introduction

Global grain demand is likely to increase further to
safeguard food security with the rapidly growing

human population (Regmi and Meade 2013, Keating
et al 2014, West et al 2014, Ehrlich and Harte 2015).
However, global climate change poses significant
pressure on crop production, especially because rising
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temperatures shorten the crop growth period and
therefore decrease the accumulation of photosynthetic
assimilation (Liu et al 2014, Hunt et al 2019). There-
fore, climate change is a key challenge for increasing
harvested grain.

Maize (Zea mays L.) is a staple grain and feed crop
with the greatest world production (IPCC 2014).
China is the second largest maize producer in the
world, accounting for 17.7% of the total worldwide
maize planting area and 18.6% of worldwide produc-
tion (FAO 2017). Achieving high maize yields and
maintaining maize yield stability are of vital impor-
tance in China due to the high demand for maize pro-
duction for a population of more than 1.3 billion
(Huang et al 2017). However, the mean annual air
temperature in China has increased by 1.2 °C since the
1960s (Piao et al 2010, Yu et al 2018), which becomes a
major obstacle to safeguard the supply of maize due to
its negative impacts on maize production (Lobell et al
2011, Wang et al 2014, Li et al 2016, Liang et al 2018).
Although the impacts of climate change on maize
yields depend on local climate conditions, climate
warming has decreased maize yields in most maize
planting regions of China mainly by shortening the
maize growth period (Mo et al 2016, Liu et al 2017,
Chen et al 2018,Huang et al 2018).

Climate change could have positive impacts on
maize production if effective adaptation options are
used (Asseng et al 2019, Hunt et al 2019). Many studies
have investigated the impacts of various climate
change adaptation options on maize yield and found
adjusting sowing date and selecting suitable cultivars
were two cost-effective adaptation options (Wang et al
2012, Tachie-Obeng et al 2013, Zhao et al 2015, Abbas
et al 2017). In general, planting maize cultivars with
longer growth periods could compensate for the nega-
tive impact of rising temperatures on maize yield
(Wang et al 2014, Bu et al 2015, Huang et al 2018).
Earlier maize sowing was recommended for adapting
to climate change in most maize planting regions in
China (Tao and Zhang 2010, Liu et al 2013). This
approach is recommended because adjusting the sow-
ing date could help reduce the risk of high tempera-
tures and droughts during the key growth stages to
maize yields (Rahimi-Moghaddam et al 2018).

Temperature is projected to further increase in the
future (Harrison et al 2014). Therefore, the impacts of
future climate change on maize production have been
investigated worldwide (Rurinda et al 2015). In China,
simulation studies have shown that future climate
change would further increase maize yields in the
northern part of the northeast spring maize planting
region due to an elevated CO2 concentration andmore
precipitation events (Xiong et al 2007,Wang et al 2011,
Xu et al 2014, Liang et al 2018), while climate change
characterized by rising temperature would decrease
maize yields in other maize planting regions mainly by
shortening the crop growing period (Xiong et al 2007,
Tao and Zhang 2011, Lin et al 2017, Chen et al 2018).

Limited studies in Northeast China and the North
China Plain showed that adjusting the sowing date and
cultivar shifting could be used to adapt to future cli-
mate change (Tao and Zhang 2010, Lin et al 2015).
However, the adaptation potential of maize produc-
tion to future climate change, especially under the tar-
get warming of within 1.5 °C and 2 °C across the
whole maize growing regions of China, has not been
investigated. The contrasting climates and cropping
systems across themaize belt imply that there could be
large regional differences in the adaptation potential of
maize production to climate change. Moreover, the
relative contribution rates of adjusting sowing dates
and shifting cultivars need to be identified to under-
stand the adaptation mechanism of maize production
to future warming of 1.5 °C and 2 °C. Overall, under-
standing the adaptation potential of agriculture to cli-
mate change and the adaptation mechanism could
help in the development of effective strategies tomain-
tain grain security and design futuremaize production
layouts inChina.

The objectives of this study are to (1) explore the
impacts of climate change on maize yields under two
warming scenarios, (2) determine the optimal sowing
windows and suitable cultivars in six maize growing
regions of China under baseline and warming scenar-
ios, (3) investigate the adaptation potential of adjust-
ing the sowing date and shifting the cultivar in
response to climate change, and (4) identify the rela-
tive contribution rates of adjusting the sowing date
and shifting the cultivar to yield increases under cli-
mate change.

2.Materials andmethods

2.1. Study area, historical climate, crop and soil data
China’s Maize Belt was divided into six maize planting
regions (figure 1) based on geographic location and
different cropping systems (table 1). We focused on
163 weather stations with observed climate data in the
belt for rainfed maize plantings. Historically observed
daily climate data of 163 weather stations from 1980 to
2016 were available from the China Meteorological
Administration to drive themaizemodel and calculate
the thermal time of different growing seasons and
maize cultivars, including maximum temperature
(°C), minimum temperature (°C), precipitation (mm)
and sunshine hours (h). Daily solar radiation
(MJm−2) was estimated using the Angstrom equation
with sunshine hours (Wang et al 2015a). Observed
phenological data during 1980–2011 by 100 agro-
meteorological observational sites across China’s
Maize Belt were used to set the actual maize sowing
date and derive the potential sowing window.
Observed data on maize cultivar, phenology (e.g.
sowing, flowering, and maturity dates), yield and field
management practices from 12 experimental sites
were used to calibrate and validate the maize model.
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These field experiments were conducted across Chi-
na’s Maize Belt to investigate the responses of maize
growth and development to sowing date. Detailed
information on soil data can be found in supplemen-
tary S1 and table S1 is available online at stacks.iop.
org/ERL/15/024015/mmedia.

2.2. Future climate change scenarios
Future time series of daily temperature, precipitation
and solar radiation data for the study area were
statistically downscaled frommonthly gridded climate
data (with the resolution of 2°×2.5°) obtained from
the GISS-E2-H-CC (GE2) global circulation model
(GCM), using NWAI-WG downscaling model (Liu
and Zuo 2012). The spatial inverse distance-weighted
(IDW) interpolation method was used to downscale
gridded monthly data to sites, followed by bias-
correction using qq-plotting approach by comparing
observed and theGCMprojected data for the period of
1960–1999. Then, the modified WGEN stochastic
weather generator was used to downscale the bias-
corrected monthly data to daily data. These climate
outputs based on this downscaling approach have
been extensively applied in climate change impact
studies (Liu et al 2014, Anwar et al 2015, Wang et al
2016, 2017, 2018, Feng et al 2019, Yao et al 2020). In
this study, we selected the GE2 model because it is
superior in its ability to capture historical climate for
China compared to the ability of other GCMs (Yang
et al 2019).

To generate warming scenarios of 1.5 °C and 2 °C,
1986–2005 was set as the baseline period given that
1986–2005 is 0.61 °C warmer than the preindustrial
period (IPCC 2013, UNFCCC 2015). The 1.5 °C and
2 °C warming scenarios were derived using 20 year

time slice periods following the methods of previous
studies (Gosling et al 2017, Leng 2018). Using the
20 year moving mean temperature method, 1.5 °C
and 2 °C warming scenarios, additional warming of
0.89 °C and 1.39 °C above the baseline were antici-
pated during 2018–2037 and 2044–2063, respectively,
for the GE2model under representative concentration
pathway (RCP) 4.5 (Schleussner et al 2016), which
represents a moderate greenhouse gas emission sce-
nario which is more closely to meet 1.5 °C and 2.0 °C
target under current socio-economic conditions. Sup-
plementary S2 and table S2 showed projected climate
change during themaize growing season.

2.3.Derivation of cultivar parameters in theAPSIM-
Maizemodel
The Agricultural Production Systems sIMulator
(APSIM) maize model (version 7.7) was used to
investigate the future climate change adaptation
potential of maize production by adjusting the sowing
date and shifting the cultivar. APSIM simulates maize
growth, development and yield formation in response
to solar radiation, temperature, photoperiod, soil
water and nitrogen (Keating et al 2003, Holzworth et al
2014).Maize phenology is determined by temperature
together with photoperiod sensitivity of a given
cultivar. Daily aboveground biomass accumulation is
calculated by daily solar radiation interception and
radiation use efficiency, reduced by soil water and
nitrogen stress. Grain yield of maize is determined by
grain number, daily grain-filling rate and assimilate
re-translocation. Precipitation affects crop biomass
accumulation and yields significantly by impacting soil
water content in the APSIM. APSIM has been well
evaluated and applied in China’s Maize Belt and

Figure 1. Six planting regions across China’sMaize Belt and the distribution of the 163weather stations, 100 agro-meteorological sites
and 12 experimental sites.
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Table 1.Division of themaize planting regions and cropping systems across China’sMaize Belt.

Region Location Cropping system Growing season Number of weather station Number of agro-meteorological site Number of experimental site

I Northeast China Single 1/May–30/September 17 10 1

II Northeast China Single 1/May–30/September 12 11 1

III Northeast China Single 1/May–30/September 20 13 1

IV Northwest China Single 1/May–30/September 9 8 3

V NorthChina Plain Double 1/June–30/September 49 36 3

VI Southwest China Mixed 1/April–30/September 56 22 3
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performed well in capturing the impacts of changes in
climate and agronomicmanagement practices on crop
growth, development and yield (Liu et al 2013, Wang
et al 2014, Bu et al 2015, Dai et al 2016). Here, we
further evaluated the performance of the APSIM-
Maize model in simulating the phenology and yield of
maize in terms of different cultivars, sowing dates and
regions across China’s Maize Belt. The statistical
metrics for model evaluation were shown in supple-
mentary S3.

Three representative cultivars at different cultivar
maturities (early-, middle- and late-maturing) were
selected for each maize planting region to minimize
the possible spatial heterogeneity in local cultivars
(table 2). For regions I–III, the same representative
cultivars were used due to similar cropping system and
management options. Genetic parameters for four
cultivars used in the APSIM were referenced directly
from the literature, and the genetic parameters of the
other eight cultivars were derived bymodel calibration
and validation based on experimental field data with
‘trial-and-error’ method. Genetic parameters for
maize phenology were determined by comparing
observed and simulated flowering and maturity dates
while genetic parameters for maize yields were deter-
mined by comparing observed and simulated maize
yields. We also referenced the traits of maize cultivars
given by breeders to ensure the physiological means of
parameters. Experimental field data from the litera-
ture were extracted using WebPlotDigitizer software
(https://automeris.io/WebPlotDigitizer/) from the
figures in the literature. To calibrate and validate the
APSIM-Maize model, field experimental data were
separated into independent calibration and validation
data by different sowing dates and years.

2.4. Setting up simulations inAPSIM
To evaluate the adaptation potential of maize produc-
tion to climate change, long-term simulations driven
by projected daily climate data including solar radia-
tion, maximum and minimum temperatures and
precipitation, for the baseline scenario and 1.5 °C and
2 °C warming scenarios were conducted without any
nitrogen stress during the maize growth period under
rainfed conditions. Nitrogen fertilizer was applied
automatically within 50 cm depth in the soil to keep
mineral nitrogen no less than 300 kg ha−1 to avoid of
anynitrogen stress.All simulationswere conductedunder
rainfed conditions. For single-cropping maize planting
regions (I–IV), the simulation of the first 10 years was
discarded as a ‘spin up’ period to minimize the effect of
the initial condition (Teixeira et al 2015, Tang et al 2019).
For the double-cropping system (V–VI), the initial soil
water content at the maximal root depth at sowing was
reset at 30% and 81%of the plant available water holding
capacity for regions V and VI, respectively, according to
the observed historical averaged initial soil water content
at sowing from agro-meteorological experimental sites.

For all maize planting regions, themaize planting density
was set as 67 500 plant ha−1. The planting depth and row
spacing were set as 5 cm and 60 cm, respectively. Our
study also considered the impact of an increase in CO2

concentrationonmaize (supplementary S4). ForC4 crop,
the elevated CO2 concentration mainly affects plant
transpiration. Pervious study has showed that transpira-
tion efficiency was increased linearly by 37% with CO2

concentration increasing from 350 to 700 ppm (Lobell
et al 2015), and therefore we nested this function into
APSIM-Maizemodel.

2.5. Sowingwindow and cultivar with andwithout
adaptation
In the case of without adaptation options, actual
sowing date at each weather station used the average
sowing date from historically observed values at each
nearest agro-meteorological sites and actual maize
cultivar was selected from local typical cultivars in
table 2 based on the heat condition at the planting
region (supplementary S5 and table S3).

When considering adaptation strategies, the opti-
mal combination of sowing date and maize cultivar
was selected from three typical cultivars in table 2 and
the sowing date within the potential sowing window
for each planting region. The potential sowing win-
dow for each region was defined as the period between
the earliest and latest planting dates for the early-
maturing cultivar at each planting region. The earliest
planting date was set as the first day when the five-day
moving average of daily average temperature was
>8 °C, which is the baseline temperature for maize
used in the APSIM-Maize model and is based on a lit-
erature review (Sánchez et al 2014) in regions I–IV. In
region V, with a double-cropping system, the earliest
planting date constrained by the harvesting date of the
previous crop was set 3 d after harvesting the previous
crop recorded in agro-meteorological sites. In region
VI, with a mixture of a single-cropping system and a
double-cropping system, the earliest planting date was
set as the recorded averaged maize planting date from
agro-meteorological sites. The latest planting dates in
regions I–IV were set as the last day maize could
mature before the first frost day calculated as the daily
minimum temperature below 0 °C. In regions V–VI,
the latest planting date was set as the day maize could
mature at 7 d before sowing the next crop. Maize was
harvested when one of the following three conditions
was achieved: (1) at the physiologicalmaturity date, (2)
before the first frost day and (3) 3 d before sowing next
season crop.

The optimal sowing window was prescribed as the
sowing dates that achieve over 80%of the highest yield
within the potential sowing window. Cultivar har-
vested the highest yield was chosen as the optimal cul-
tivar for a given region.
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Table 2.Detailed information on cultivar, cultivarmaturity, calibration and validation data, experimental site, and different sources of genetic parameters obtained across sixmaize planting regions.

Maize planting

region Cultivar Maturity Calibration (day/month/year) Validation (day/month/year)
Observed data for calibration

and validation Experimental site and data source

Genetic parameter

source

I–III Jidan120 E 4/5/1998, 6/5/1999 1/5/2002, 1/5/2004 Flowering andmaturity dates,

grain yield

Huadian agro-meteorological site, Liu

et al (2012)
Liu et al (2012)

Zhengdan958 M 7/5/2012, 15/5/2013,15/

5/2014

27/4/2012, 17/5/2012, 8/5/2013, 22/

5/2013, 8/5/2014, 22/5/2014

Flowering andmaturity dates,

grain yield

Lindian experimental site, Han et al

(2016)
This study

Danyu39 L 30/4/2012, 30/4/2013 20/4/2012, 10/5/2012, 20/4/2013, 10/

5/2013

Flowering andmaturity dates,

grain yield

Jinzhou experimental site, Cui (2017) This study

IV Shaandan9 E 14/6/1990, 19/6/1991 14/6/1992, 19/6/1993 Flowering andmaturity dates,

grain yield

Wugong agro-meteorological site This study

Shaandan609 M 10/4/2012, 10/4/2013 16/4/2012, 28/4/2012, 16/4/2013, 28/

4/2013

Flowering andmaturity dates,

grain yield

Changwu experimental site, Lu et al

(2017)
This study

Nongda108 L 2/5/2003, 28/4/2004, 30/

4/2005

2/5/2006, 4/5/2017, 6/5/2008 Flowering andmaturity dates,

grain yield

Xiyang agro-meteorological site This study

V Yunong704 E 28/5/1981 2/6/1982, 6/6/1984 Flowering andmaturity dates,

grain yield

Nanyang agro-meteorological site,

Xiao et al (2016)
Xiao et al (2016)

Yedan22 M 15/6/1998, 15/6/1999, 15/6/

2000, 15/6/ 2001

15/6/2003, 15/6/2004, 15/6/2005 Flowering andmaturity dates,

grain yield

Yucheng experimental site,

Chen (2009)
Chen (2009)

Nongda4 L 21/5/2010, 21/5/2012 30/4/2010, 11/6/2010, 30/4/2012, 11/

6/2012

Flowering andmaturity dates,

grain yield

Wuqiao experimental site, Zhu (2013) This study

VI Luodan5 E 6/4/2005, 3/5/2006 21/5/2007 Flowering andmaturity dates,

grain yield

Mengzi agro-meteorological site, Dai

et al (2016)
Dai et al (2016)

Chendan30 M 26/3/2015, 10/4/2015 25/4/2015, 10/5/2015, 25/5/2015 Flowering andmaturity dates,

grain yield

Nanchong experimental site, Dou et al

(2017)
This study

Zhongyu3 L 5/5/2016, 15/5/2016 25/5/2016, 4/6/2016, 14/6/2016 Flowering andmaturity dates,

grain yield

Zhongjiang experimental site, Ren et al

(2017)
This study

E,M andL represent early-,mid- and late-maturing cultivars, respectively.
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2.6. Simulated yield change analyses
There were four types of simulated yield changes (%)
in our study compared with that of the baseline
scenario: (1) ΔY1.5/2.0 was the yield change under the
1.5 °C or 2.0 °C warming scenarios compared with
baseline, (2)ΔY1.5/2.0,s was the yield change caused by
climate change from baseline to 1.5 °C or 2.0 °C
warming scenarios and the adjusting sowing date, (3)
ΔY1.5/2.0,c was the yield change caused by climate
change from baseline to 1.5 °C or 2.0 °C warming
scenarios and the shifting cultivar, and (4)ΔY1.5/2.0,s&c
was the yield change when considering climate change
from baseline to 1.5 °C or 2.0 °C warming scenarios,
changing the sowing date and shifting the cultivar.

D = - ´Y Y Y Y% 100 11.5 2.0 1.5 2.0 bl bl( ) ( ) ( )// /

D = - ´Y Y Y Y% 100 21.5 2.0,s 1.5 2.0,s bl bl( ) ( ) ( )// /

D = - ´Y Y Y Y% 100 31.5 2.0,c 1.5 2.0,c bl bl( ) ( ) ( )// /

D = - ´Y Y Y Y% 100,

4
1.5 2.0,s&c 1.5 2.0,s&c bl bl( ) ( )

( )
// /

where subscripts s and c represent adjusting sowing
date and shifting cultivar, respectively. Ybl/1.5/2.0 was
the simulated average yield for baseline or under
warming of 1.5 °C or 2 °C without adaptation,
Y1.5/2.0,s was the simulated yield with the adjusted
sowing time alone under warming of 1.5 °C or 2 °C,
Y1.5/2.0,c was the simulated yield with the shifted
cultivar alone under warming of 1.5 °C or 2 °C, and

Y1.5/2.0,s&c was the simulated yield with the adjusted
sowing date and shifted cultivar under warming of
1.5 °Cor 2 °C.

2.7. The relative contribution rate of adjusting the
sowing date and shifting the cultivar to yield change
ΔYs,ΔYc andΔYs&c (intermediate variables)were the
yield changes that occurred after adjusting the sowing
date, shifting the cultivar and combining the adjusted
sowing date and shifted cultivar under the 1.5 °C or
2.0 °C warming scenarios compared with the yield
under the baseline scenario. The relative contribution
rate of climate change (ΔR1.5/2.0), change in sowing
date (ΔRs), change in cultivar (ΔRc), and combined
change in sowing date and cultivar (ΔRs&c) on yield
changewas calculated as follows:

D = - ´Y Y Y Y% 100 5s 1.5 2.0,s 1.5 2.0 bl( ) ( ) ( )// /

D = - ´Y Y Y Y% 100 6c 1.5 2.0,c 1.5 2.0 bl( ) ( ) ( )// /

D = - ´Y Y Y Y% 100 7s&c 1.5 2.0,s&c 1.5 2.0 bl( ) ( ) ( )// /

D = D D ´R Y Y% 100 81.5 2.0 1.5 2.0 1.5 2.0,s&c( ) ( )// / /

D = D D ´R Y Y% 100 9s s 1.5 2.0,s&c( ) ( )/ /

D = D D ´R Y Y% 100 10c c 1.5 2.0,s&c( ) ( )/ /

D = D D ´R Y Y% 100. 11s&c s&c 1.5 2.0,s&c( ) ( )/ /

Figure 2.Comparison of simulated and observed duration from sowing to flowering (days after sowing), duration from sowing to
maturity (days after sowing) and grain yield ofmaize. Flowering andmaturity dates are defined as 50%plants flowering and 80%
plantsmaturity. The dashed line and solid line are the 1:1 line and regression line, respectively. Thisfigure shows calibration and
validation results for eight cultivars in this study, and the parameters of other four cultivars are directly referenced from the literature.
The calibration is shown in thefirst rowwith one group of experimental data (n=18), and the validation is shown in the second row
with another group of experimental data (n=29).
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3. Results

3.1. Performance of theAPSIM-Maizemodel across
China’sMaize Belt
Figure 2 shows the comparison of the simulated and
observed phenology and yield ofmaize for eight typical
local cultivars across China’s Maize Belt. APSIM-
Maize simulated the duration from sowing to flower-
ing and from sowing tomaturity well with root-mean-
square error (RMSE) values of 2.1 and 4.1 d for the
calibration period and 2.9 and 3.9 d for the validation
period, respectively. The simulated maize yield was
in good agreement with the observed maize yield with
an R2 of 0.89 for the calibration and 0.79 for the
validation period. For the calibration period, the RMSE
was 0.97 t ha−1, the NRMSE was 9.9%; for the
validation period, the RMSE was 1.38 t ha−1, and the
NRMSEwas 17.7%.All cultivar parameterswere shown
in table S4.

3.2. Futuremaize yield change under different
scenarios
The simulated average rainfed yield without adapta-
tion was 5.8–10.0 t ha−1 across China’s Maize Belt
under the baseline climate scenario, with the highest
yield in region III and the lowest yield in region IV
(figure 3). In comparison with the baseline scenario,
without adaptation, warming of 1.5 °C and 2 °Cwould
increase maize yields by 0.9%–4.9% and 2.6%–7.9%
in regions I–IV, respectively, and would reduce maize

yields by 6.3%–7.6% and 0.1%–12.5% in regions
V–VI, respectively. The factors resulting in yield
change varied with region. An increasing CO2 concen-
tration would lead tomaize yield increases in regions I,
II and IV (figure 4 and table S5). For region III, the
combined increase in growing period precipitation
and CO2 concentration would increase maize yield.
However, a decrease in growing period precipitation
would decrease maize yield in region V. A decrease in
growing period solar radiation and an increase in
growing period temperature would decrease maize
yield in regionVI.

Considering adaptation to climate change through
the optimization of the sowing date and cultivar, the
simulated averagemaize yield would increase under all
scenarios (figure 3 and table S6). Across China’s Maize
Belt, simulated average maize yield would increase by
11.1%–53.9%, with the highest increase in regions II
and IV and the lowest increase in region VI. Com-
pared with the baseline scenario, under the warming
scenarios, only adjusting the sowing date could
increase the yield by−0.5% to 40.7%, while only shift-
ing the cultivar could increase the yield by −1.8%
to 24.9%.

Contribution rate of 44.5%–96.7%onyield improve-
ment by adjusting the sowing date was higher in compar-
ison with that of shifting the cultivar (0%–50.8%) and
climate change (−53.1% to 23.0%) in most maize plant-
ing regions, except in regions III andVunderwarming of
2 °C and in region VI under both warming scenarios

Figure 3. Simulated 20 year averagemaize yieldwithout adaptation, with optimal sowing date, with optimal cultivar and combined
adaptation of sowing date and cultivar under the baseline scenario (1986–2005) and the 1.5 °C (2018–2037) and 2 °C (2044–2063)
warming scenarios in sixmaize planting regions. Error bars show the standard deviation of the simulatedmaize yield at different
weather stations in each planting region.
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(table 3). Optimal cultivar would not change in region I
implying rising heat resource under future scenarios of
warming 1.5 °C and 2 °C could still notmeet the thermal
time required by middle-late maturing cultivars. The
contribution rate of shifting the cultivar to yield improve-
ment would increase with climate change in all maize
planting regions. The combined effect of sowing date and
cultivar shifting was not equal to the sum of their indivi-
dual impacts in regions II–VI, suggesting an interaction
effect between changing the sowing date and shifting the
cultivar onmaize yield change.

3.3. Potential sowingwindow, optimal sowing
window and cultivar across China’sMaize Belt
Figure 5 shows the potential sowing window, the
optimal sowing window and the optimal maize
cultivarmaturity level across China’sMaize Belt under
the baseline scenario and the 1.5 °C and 2 °Cwarming
scenarios. The earliest potential sowing date started in
mid-April in regions III and IV, while the latest
potential sowing date started in early June in region V
under the baseline scenario. The longest potential
sowing window was in region VI, with an average of

Figure 4.Relationships between simulated yield change (%)without adaptation and the changes in growing period total precipitation
(%), total solar radiation (%) and average temperature (°C) in sixmaize planting regions. The bar plot showsmaize yield without
adaptation under an elevatedCO2 concentration andwithout an elevatedCO2 concentration for each scenario. The solid line is the
regression line. *P<0.05; **P<0.01; ***P<0.001.

Table 3.The individual and combined contribution rates of climate change, adjusted sowing date and shifting
cultivar in differentmaize planting regions.

Planting region Climate change scenario ΔR1.5/2.0 (%) ΔRs (%) ΔRc (%) ΔRs&c (%)

I 1.5 °C 3.3 96.7 0 96.7

2 °C 23.0 77.0 0 77.0

II 1.5 °C 14.9 61.7 32.4 85.1

2 °C 13.8 60.9 35.0 86.1

III 1.5 °C 17.1 44.5 37.9 82.9

2 °C 9.3 46.6 49.2 90.7

IV 1.5 °C 6.1 76.3 40.6 93.9

2 °C 6.3 69.1 39.9 93.7

V 1.5 °C −53.1 92.0 38.0 153.1

2 °C −0.5 47.9 50.8 100.5

VI 1.5 °C −48.3 73.2 86.7 148.3

2 °C −112.7 108.6 117.1 212.7

Note:ΔR1.5/2.0,ΔRs,ΔRc andΔRs&c are the relative contribution rates of climate change, change in sowing date,

cultivar shift, and combined change in sowing date and cultivar onmaize yield change, respectively.
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68 d, while the shortest potential sowing window was
only 6 d in region I under the baseline scenario. With
climate warming, the earliest potential sowing date
advanced for all the maize planting regions except
those in regions V and VI, where sowing dates were
constrained by the harvest of the previous crop. The
latest potential sowing date was delayed for all the
maize planting regions. Therefore, the potential sow-
ing window increased by 2–17 d under warming of
1.5 °C and 4–26 d under warming of 2 °C across the
maize belt with a higher extension rate in higher
latitude regions (e.g. regions I–III). The change in the
optimal sowing window under climate change was
consistent with the change in the potential sowing
window. Significant advances in the start date of the
optimal sowing window occurred in region I by 8 d
and in region II by 10 d, while the end date of the
optimal sowing window was delayed in all the maize
plating regions, with a more significant delay in
regions I–IV under the warming scenarios compared
with under the baseline scenario. Therefore, climate
warming would significantly lengthen the optimal
sowing window, especially in regions I–IV, by an
average of 10 d under warming of 1.5 °C and by 12 d
under warming of 2 °C relative to under the baseline
scenario. The actual sowing windows in regions I–II
and VI occurred slightly earlier than the optimal
sowing window, while they were close to the optimal

sowing window in regions III–V. The optimal cultivar
maturity level would change from an early-maturing
cultivar under the baseline scenario and warming of
1.5 °C to a late-maturing cultivar in region II under
warming of 2 °C but would not change with climate
change for the early-maturing cultivar in region I and
the late-maturing cultivar in other planting regions.

4.Discussion

China’sMaize Belt is one of theWorld’s GoldenMaize
Belts and therefore is significant to securing global
food safety. However, maize yield was significantly
affected by ongoing climate change. Our simulated
results show that climate change would enhancemaize
yields in regions I–IV mainly due to elevated CO2

concentrations together with the increase in growing
period precipitation. At the same time, future maize
yields in regions V–VI would decrease as a result of the
decline in precipitation and solar radiation due to
warming temperatures accelerating growth phases.
These findings are consistent with the results of
previous studies in all maize planting regions except
Northwest China, where other studies found that
future maize yields would decrease (Xiong et al 2007,
Tao and Zhang 2011, Kang et al 2014, Lin et al 2017,
Liang et al 2018). This inconsistency is possibly

Figure 5.The actual sowingwindow (ASD) and the potential sowingwindow, the optimal sowingwindow and the optimalmaize
cultivarmaturity across China’sMaize Belt under the baseline scenario and the 1.5 °Cand 2 °Cwarming scenarios. DOY in the x-axes
of the timeline plots represents day of year. The green gaps show the actual sowingwindow recorded at the agro-meteorological sites,
and thewhiskers around the green gaps represent the standard deviation of the actual sowing date. The gray gaps show the potential
sowingwindow, and thewhiskers around the gray gaps represent the standard deviation of the earliest and latest potential sowing
dates. The red or yellow gaps show the optimal sowingwindow, and the yellow and red shadings represent the early- and late-maturing
maize cultivars, respectively. The blue dots show the optimal sowing datewith the highest yield.
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because our study considered the impacts of an
increase in CO2 concentration on transpiration effi-
ciency by decreasing stomatal conductance, therefore
relieving water stress during the maize growing period
in Northwest China (Lobell et al 2015, Zhang et al
2018).

Optimizing sowing date is recognized as one of
most effective adaptation options to address climate
change by matching the supply and requirement of
crops to climate resources (Kamara et al 2009, Tsimba
et al 2013) andmitigating climate risks such as drought
and heat stress (Yang et al 2017, Rahimi-Moghaddam
et al 2018, Tian et al 2019). Comparing the current
potential sowing window across six regions, regions I
and V have shorter sowing windows. This result
occurred because region I has a shorter frost-free per-
iod, while themaize growing period of regionV is con-
strained by a double-cropping system. With climate
change, the future potential sowing window was
lengthened because of the advance of the earliest
potential sowing date and the delay of the latest sowing
date across all six regions, which could provide more
opportunities to optimize the sowing date. In addi-
tion, the potential sowing window in higher latitude
regions would be extended more than that in other
regions in our study due to more significant warming
in northern China (Piao et al 2010), which suggests a
large opportunity to adjust the sowing date to adapt to
climate change in northernChina.

We find that late sowing dates in regions I–II, mid-
dle sowing dates in region IV and early sowing dates in
regions III and V–VI can have beneficial impacts on
maize yield increases because of increased precipita-
tion during longer growing periods (table S7). In con-
trast, previous studies recommend early sowing dates
in regions I–II (Liu et al 2013, Bu et al 2015,Huang et al
2018). This difference is caused by the interaction
between the sowing date and cultivar choice. Previous
studies used a late-maturing cultivar in these regions
and therefore recommended early sowing to obtain a
longer growth period. However, we identified early-
maturing cultivars suitable in regions I–II due to the
shortage of thermal time in higher latitude regions.
Late sowing becomes possible under warming scenar-
ios, which could result in addition growth period pre-
cipitation. However, testing the adaptive potential of
early sowing late-maturing cultivars in regions I–II will
be the priority in future work. In contrast, our study
recommended late-maturing cultivars in regions III–VI
to obtain a longer growing period (table S8), which is
consistent with the results of previous studies (Liu et al
2013, Bu et al2015,Huang et al 2018).

Our study also found that there were significant
interactions between sowing date and cultivar on
maize yield. For example, the optimal cultivar under
the current sowing date in region II is amiddle-matur-
ing variety under warming of 1.5 °C (table S9), but the
optimal cultivar shifts to an early-maturing variety
under an optimal sowing date (figure 5). For regions

IV, late sowing is suitable to the current maize cultivar
(figure S1), while middle sowing with the optimal
maize cultivar harvested higher yields (figure 5)
(Tsimba et al 2013). A middle sowing date interacts
well with the current maize cultivar in regions V–VI
(figure S1), but early sowing with the optimal maize
cultivar results in a higher yield (figure 5). Further-
more, in comparison with shifting the cultivar, adjust-
ing the sowing date contributes more in most planting
regions except region VI because adjusting the sowing
date increases maize yield mainly by increasing grow-
ing period precipitation, while this region is not lim-
ited by precipitation (Lu et al 2017).

Analyzing adaptation potential is helpful for
decreasing yield gaps in different planting regions and
distinguishing effective adaptation options for future
climate change (Guan et al 2017, Rahimi-Moghaddam
et al 2018). Positive adaptation potential indicates that
maize yield can be increased by optimizing sowing
date and cultivar choices in China under warming of
1.5 °C and 2 °C.However, the lower adaptation poten-
tial in regions V–VI than that in the other regions
implies that these areas might be vulnerable to future
climate change andneed to be analyzed further.

The adaptation potential based on our results pro-
vides different opportunities and challenges for maize
production over maize growing regions. For example,
in regions I–III, climate warming lengthens the grow-
ing season making it possible to plant maize cultivars
with longer growing periods (Liu et al 2013, Huang
et al 2018). For region IV, the high yield ofmaize is still
limited by low growing-season precipitation, although
climate change with adaptation would increase maize
yields. Therefore, selecting drought- and heat-resis-
tant cultivars should be further studied to improve
maize yields. As decreased precipitation and limited
growth periods under double-cropping systems are
likely to continue reducing yields in region V, improv-
ing water use efficiency by adjusting the sowing date
and planting late-maturingmaize cultivars in spring as
well as changing the wheat-maize rotation system to a
single-maize cropping system would be feasible adap-
tation strategies (Zhao et al 2018, Sun et al 2019). Low
solar radiation in region VI could be more severe in
the future; thus, breeding new cultivars with higher
radiation use efficiency will alleviate the extent of this
yield loss. The differences in adaptation potential and
adaptation options among different maize planting
regions provide useful information for decision
makers and growers to optimize maize production
layouts and develop effective adaptation strategies
under future climate.

However, there were still some uncertainties in
our study. We did not consider future cultivars,
including rapidly updated higher heat- and drought-
resistant cultivars, which may lead to increased adap-
tation (Singh et al 2014, Guan et al 2017, Tesfaye et al
2017). All simulation assumed under rainfed and no
nitrogen stress conditions. There may be nitrogen
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fertilization and irrigation interactions with sowing
date and cultivar which significantly impact maize
yields. However, in China’sMaize Belt, the application
amounts of nitrogen fertilizer by farmers are always
very high (Xu et al 2014, Xiao et al 2019), which could
meet the requirement of maize growth (Chen et al
2018). Moreover, irrigation is not used frequently dur-
ing maize growing season because precipitation con-
centrates inmaize growing season such as regions I–III
and V–VI or because there is no available irrigation
water resource e.g. in region IV (Wang et al 2010, Yin
et al 2015). Therefore, our assumptions are close to
actual production conditions although optimal sow-
ing dates and cultivars may change with different
amounts of nitrogen fertilization and irrigation. Simu-
lated maize yields are also sensitive to initial soil water
content at sowing especially in the double-cropping
regions implying optimal sowing dates and cultivars
would change with initial soil water content. In addi-
tion, our study used a relatively optimistic climate
change scenario because international efforts have
been implemented tomitigate climate warming to rea-
lize the target of warming within 1.5 °C and 2 °C
according to the Paris Agreement (UNFCCC 2015).
Climate change would decrease maize yields more sig-
nificantly under the more pessimistic climate change
scenarios than under other scenarios (Xiong et al 2007,
Tao and Zhang 2011). However, the design of this
study based on limited scenarios and a single model
could provide feasible guidance for more climate
change impact assessments with multiple global cli-
mate models and multiple crop models (Araya et al
2015, Wang et al 2015b, Rahman et al 2018, Yang et al
2019).

5. Conclusion

Our study explored the impacts of future climate
change on maize yield and investigated the adaptation
potential across China’s Maize Belt by optimizing the
sowing date and cultivar with the validated APSIM-
Maizemodel under warming 1.5 °C and 2 °C scenarios.
Adaptation isnecessary asmaize yielddeclined in region
V–VI without adaptation. With adaptation maize
production keeps stable for increasing yield under
temperature limited warming 2 °C. Adjusting sowing
date increased more yield than shifting cultivar in
regions I–V, and shifting cultivar produced more in
region VI. The late sowing in regions I–II, the middle
sowing in region IV and the early sowing in regions III
and V–VI coupling with current early-maturing culti-
var in regions I and later-maturing cultivar in other
regionsproducedhigher yields.
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