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ABSTRACT Electromagnetic metasurfaces are planar two-dimensional metamaterials, typically of sub-
wavelength thickness. Unit cell elements of different shapes have been widely explored, including electric
and magnetic dipoles, patches, arbitrary geometries and pixelated surfaces. Although pixelated metasurfaces
have a great advantage of geometric versatility, their design and analysis requires algorithmic approach. One
of the techniques for their design is via evolutionary simulation-driven optimization. Since full-wave
electromagnetic simulations are time-consuming, optimization methods with fast convergence properties
are preferable. In this article, we demonstrate the application of the cross-entropy optimization method to
design of artificial magnetic conductors (AMCs) and thin printed phase shifters. Single-frequency AMCs
at 10 GHz (X band) and dual-frequency AMCs at 8 and 12 GHz (X and Ku band) were produced that
are more manufacturing-friendly, and thus cost effective, than previously reported AMCs. We also show
that phase-shifting unit cells with transmission magnitudes over 0.9 (linear) can be designed using the
proposed optimization technique. Other potential applications of these unit cells are in phase-correcting
and beam-steering metasurfaces.

INDEX TERMS Binary electromagnetic structures, beam steering, cross-entropy optimization, electromag-
netic metamaterials, evolutionary computation, maximum likelihood estimation, metasurfaces, microwave

propagation, optimization methods, phase shifters.

I. INTRODUCTION

Electromagnetic surfaces, also called metasurfaces, are pla-
nar structures of finite thickness that are composed of sub-
wavelength periodic or nonperiodic unit cells. A unit cell
usually consists of one or more layers of dielectric mate-
rials with metallic patterns printed on their opposite sides.
The prominent feature of such structures is a simultane-
ous control of the magnitude, phase and polarisation of
electromagnetic (EM) waves. Interesting properties such as
single- or dual-frequency narrowband or broadband anti-
reflection, absorption and polarisation conversion [1], [2]
can be achieved through manipulation of their reflection and
transmission characteristics. The applications of EM surfaces
in antenna and microwave engineering include absorbers [3],
multiband spatial filters [4], conformal antenna radomes [5],
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reflectarrays [6] and transmitarrays [7], EM shieleding [8]
and radar cross section reduction [9], to name a few.

Often, frequency-selective surfaces (FSSs), partially-
reflective surfaces, high-impedance surfaces and artificial
magnetic conductors (AMCs) are realised using metallic
squares, loops, cross-type elements and their combina-
tions [10]-[13]. The required reflection and transmission
characteristics of an EM surface can be obtained by find-
ing the appropriate geometrical parameters of the ele-
ment in a unit cell. When designing either a band-pass or
band-stop FSS, the choice of the element may be of utmost
importance [10].

An alternative approach is to use a pixelated unit cell with
discretised conductive layers and obtain the desired perfor-
mance by optimizing the pixel pattern. The advantage of
pixelated unit cells is the versatility of the geometry that is not
limited to any canonical shape. Optimization of pixelated EM
surfaces has been previously conducted by encoding a pattern

VOLUME 8, 2020


https://orcid.org/0000-0002-3314-8883
https://orcid.org/0000-0002-3681-0086
https://orcid.org/0000-0001-5091-2567

M. Kovaleva et al.: Cross-Entropy Method for Design and Optimization of Pixelated Metasurfaces

IEEE Access

of “metal-air” inclusions into a binary string. Using genetic
algorithms (GAs) with their inherent binary representation of
design variables were the first methods applied to such opti-
mization. Using GAs, a variety of printed pixelated structures
have been designed, such as a microwave absorber composed
of multiple dielectric layers with FSS screens [3], a partially-
reflective surface of an RCA for high-Q resonant cavity [14],
periodic metamaterials [15] and a double-sided AMC [16].
Apart from GAs, other methods have also been implemented
for the optimization of pixelated printed EM surfaces, such
as particle swarm optimization, wind driven optimization and
simulated annealing [17]-[19].

Recently, a new optimization method called the
cross-entropy (CE) method has been introduced to EM com-
munity [20]-[22] for direct optimization. It showed simple
handling of continuous and mixed-variable variables, versa-
tile sampling under design constraints and comparatively fast
convergence. Therefore, it is worth investigating the perfor-
mance of the CE method in application to the design of binary
EM problems, such as pixelated metasurfaces. Previously,
the possibility of using CE for binary EM problems has been
explored in array synthesis [23] but no results have been
demonstrated for simulation-driven optimization.

In this article, we propose an optimization approach and
implement the CE on the design of thin composite EM meta-
surfaces. Pixelated patterns printed on both sides of a thin
dielectric material have been optimized targeting various fre-
quency responses. By controlling the phase and magnitude of
the EM wave reflected from both sides of the metasurface and
the transmission properties, AMCs and planar phase shifters
have been designed.

This article is organized as follows. In Section II,
a method of analysis is described, along with a tech-
nique to improve the reliability of EM surface design.
In Section III, an optimization strategy using the CE method
is given in detail. Section IV-VI provide the results of
optimized single-frequency and dual-frequency AMCs and
phase-correcting metasurfaces. Section VII concludes the
article.

Il. METHOD OF ANALYSIS

In order to efficiently optimize an EM structure, an accurate
simulation model with minimal computational burden has to
be established. The method of analysis and some simplifica-
tions that have been introduced in this work in order to reduce
the overall optimization time are described below.

A. PERIODIC ANALYSIS AND SYMMETRY PLANES

A two-dimensional periodic structure is created by translating
aunit cell in x and y directions, as shown in Fig. 1. According
to Floquet-Bloch theory, it is sufficient to analyse the fields
in a single unit cell in order to predict the characteristics of
the infinitely large periodic EM surface. Periodic boundary
conditions should be applied around the unit cell to imi-
tate the infinite dimensions of the structure. The waveguide
simulation method in conjunction with time-domain analysis
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FIGURE 1. Illustration of a periodic structure having a pixelated unit cell
with n = 8. By assuming perfect walls surrounding a single unit cell,
infinite repetitions in the x and y directions are realised.

in CST MWS has been used to predict the reflection and
transmission characteristics of all the cases presented in
the following discussion. Illumination by a normal plane
wave from two opposite ports with the E-field aligned with
x-axis was considered, and perfect electric and perfect mag-
netic boundary conditions were assigned to model an ideal
parallel-plate waveguide. Taking xz-plane as a plane of inci-
dence, the applied plane wave is TE-polarized.

A square unit cell, shown in Fig. 1, consists of a dielectric
material of thickness d with two pixelated patterns printed
on its opposite sides. The printed surface on both sides of a
unit cell have equal side length a and level of pixelation n
(number of columns/rows). Each pattern (both top and
bottom) is represented by a matrix of n? elements that can take
value either “1”” or “0”, where ““1”* corresponds to “metal”
and “0” to “air”.

The design variables are expressed as:

X11 X12 X13 ... XlIn

X21 X22 X23 ... X2n
Xe=| . . . . s

Xnl Xn2 Xp3 ... Xpn

where k = 1 and 2 correspond to the top and bottom pattern,
respectively. Therefore, a unit cell is represented by a binary
vector X = [X], X»] of 2 % n? elements. The optimization
problem is to find the binary combination in X that cor-
responds to the unit cell with the desired transmission and
reflection characteristics.

To further reduce the computational cost of the optimiza-
tion problem, we impose symmetry within the unit cell.
As shown in Fig. 2, a quarter of a unit cell can be transformed
to a full pattern using three types of symmetries, i.e. reflec-
tional, rotational and translational. Although there are other
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FIGURE 2. A quarter of a unit cell can be converted into three different
configurations by applying different symmetry planes. Reducing the unit
cell to a quarter decreases the dimensionality of the optimization
problem by a factor of four.

possible ways to reduce the number of variables in a unit cell,
a 90-degree rotational symmetry not only reduces the number
of design variables by a factor of four, but also ensures polar-
isation independence of the structure. Thus, in the designs
presented further, a 90-degree rotational symmetry in the unit
cell will be applied.

B. VERTICES-REMOVAL TECHNIQUE

Pixelated surfaces are known for the fabrication issue related
to the undesired interconnections of the diagonal pixels.
There are two types of possible connections between square
pixels: vertex to vertex and edge to edge. The problem occurs
because in numerical analysis, pixels with a vertex junction
are often treated as not electrically connected. In manufac-
tured prototypes, these vertices can sometimes become phys-
ically connected, allowing current to flow between the pixels.
This causes disagreement between predicted and measured
results.

A number of techniques have been proposed to overcome
with this issue. In [24], [25], a vertex breaking technique
separating the vertices of diagonal pixels by the finite distance
of 0.04 mm has been applied. The disadvantage of this tech-
nique is that geometry modification is required for every gen-
erated pattern, which with the numerous simulations required
by the optimization, might substantially increase the com-
putational time. A geometry refinement technique proposed
in [26], [27] eliminates the designs with diagonal connec-
tions of square pixels by analysing the geometry of every
solution. However, by disregarding many potential solutions,
this approach considerably reduces the search space available
for the optimizer. Another approach called the nonuniform
overlapping scheme, which ensures electrical connection of
diagonal pixels by overlapping them, has been proposed
in [28] and [29]. The idea is to intentionally overlap the metal-
lic pixels in the simulation model by shifting the diagonally
adjacent pixels in the y direction. This ensures the existence
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of the electrical connection in both numerical analysis and
the fabricated prototype. Again, this scheme introduces an
additional step to the overall optimization flow.

In this article, the described problem is eliminated by
using octagonal pixels instead of rectangular pixels. This
can be easily achieved by truncating each square pixel. This
approach has the advantage of not adding any complementary
steps to the optimization procedure, as the conversion is only
done once even before the initiation of the optimization. The
proposed solution comes at a cost of an increased mesh size
of the structure in the numerical analysis. To be specific,
the number of meshcells increases from 14 000 with square
pixels to 22 500 with octagonal pixels due to the need for a
finer resolution. However, due to the short evaluation time
(approximately 60 sec for each unit cell), the overall opti-
mization time is still acceptable.

lIl. OPTIMIZATION TECHNIQUE

A. SAMPLING BINARY VARIABLES

The main principle of the CE method in search of the global
optimal solution is to consecutively adapt the shape parame-
ters of the sampling probability distributions [20], [22]. It is
the nature of the design variables that guides the choice of
the probability distribution used for sampling. For example,
for optimization problems with design variables that have
only two possible values (binary), a Bernoulli distribution
can be used. Bernoulli distribution is a discrete probability
distribution of a random variable that takes the value 1 with
probability p and the value 0 with probability (1 — p). The
probability mass function f(x; p) of a Bernoulli distribution
over possible outcomes x is

fesp)=p a1 —p', (1)

where x is either 1 or 0, meaning thatf (x; p) = pwhenx = 1,
and f(x; p) = (1 — p) whenx = 0.

Therefore, if encoding a pixelated unit cell into a binary
string, the CE method with the Bernoulli sampling distri-
bution can be used for its optimization. Using a 90-degree
rotational symmetry in a unit cell with n = 6, the quarter of
the pattern on top of the dielectric layer is represented by a
probability distribution matrix P :

P11l P12t P13
p211 P21 P31 | s )
P311 P321 P331

P =

and the quarter of the pattern on the bottom of the dielectric
layer is represented by P5:

P12 pP122 pi132
= | p212 P22 P232 |, 3)
P312 D322 P332

where the superscripts 7 and B refer to the top and bottom of
the unit cell, respectively. The probability p;j is the proba-
bility that the pixel located at row i = 1,...,n/2, column
j = 1,...,n/2 and side k = {I; 2} is filled with metal.
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The quarter of a unit cell is, therefore, sampled using the
sampling distribution parameter matrix P = [P PB] with
number of elements D = 2 x (n/2)2 = 18 for n = 6, where
n is the number of pixels in each row/column of a unit cell.
The number of parameters D in the quarter matrix P is the
dimensionality of the optimization problem. Fig. 3 illustrates
that the difficulty of binary optimization problems increases
exponentially with the number of dimensions. If D = 1, there
are only two possible outcomes (straight line), that represent
either “air” or “metal”. If D = 2, the number of outcomes
equals the number of vertices of a rectangle, i.e., 22 — 4. For
D = 3, the number of outcomes is 2° = 8. In the examples
in this article n = 6, thus, the binary optimization problem
with 18 design variables has 2P = 2!3 = 262 144 possible
outcomes.

011 111
01 11 010 110
0 1
00 10 000 100

FIGURE 3. lllustration of the exponential increase in the complexity of
binary optimization problems.

B. CE ALGORITHM FOR OPTIMIZATION OF BINARY
PROBLEMS

The main idea of the CE optimizer is the minimization of
the cross-entropy between two probability distributions: an
empirical distribution describing the current elite subpopula-
tion and a sampling distribution which is used to sample a
new population. At each iteration, two important steps must
be taken to implement this idea:

o Generate a random population of solutions x’ with
Njop candidates from the sampling distribution f (x'; p’),
where p' are the distributional parameters at the ¢-th
iteration, and choose the N,; best-performing candidates
for the elite subpopulation by evaluating the fitness
function.

« Update the shape parameters p't! of f(x'*!; p+1) by
minimising its cross-entropy with the empirical distribu-
tion g(x’; w') describing the current elite solutions using
the maximum likelihood estimation of w'.

The flowchart of the proposed optimization scheme for
the design of pixelated printed surfaces by the CE method
with a Bernoulli sampling distribution is given in Fig. 4.
The optimization begins by setting the parameters of the CE
method, such as population size Ny, proportion of elite
subpopulation p = N,;/Np,p and smoothing parameter os.
Also, it is required to set the parameters of the optimization
problem, such as the number of rows N, and the number of
columns M,, in the probability matrices P’ and PZ. The initial
unit cell patterns X are generated by sampling from the
uniform probability mass function P° with all probabilities
equal 0.5. At each iteration ¢, the new population is generated
by independently setting xl.’jk = 1 with probability p and
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FIGURE 4. The flowchart for optimization of binary problems using the
CE method.

xfjk = 0 with probability (1 — p), where “1”* corresponds to
perfect electric conductor and “0” corresponds to vacuum.

The next step is to obtain the performance parameters
via EM simulation and evaluate the fitness functions for
each candidate. If the fitness function is to be maximized,
the results are sorted in descending order, and if minimized,
in ascending order. In either case, the first p% = N -
100% /Npop constitute the elite subpopulation. These N,; can-
didates are used to generate new probability mass functions
PU*Dto increase the probability that the best-performing
candidates occur in the next generation. This is achieved
by maximum likelihood estimation, which for the Bernoulli
distribution is simply the mean of the best-performing candi-
dates [30]:
Npop

Xe. 4)

-~ 1
P =

N,
poP =1

An optional smoothing procedure described in [31] has been
applied. The termination condition has been defined as the
diversity of the elite subpopulation. If the variance of the elite
candidates equals to or goes below the threshold, the opti-
mization stops. For binary variables, the threshold is § = 0,
which implies that optimization stops when the elite subpop-
ulation has converged to the same solution.

IV. SINGLE-FREQUENCY AMC SURFACES

The first AMC design was optimized for X-band operation
at 10 GHz. The side length of the unit cell was a = 8 mm
with each octagonal pixel having the height 7 = 1.3 mm
with one side of an octagon being 0.754 and another 0.15h.
The dielectric material Rogers RO4003 with ¢, = 3.55 and
thickness d = 1.58 mm was used to account for losses. The
target phase and magnitude (on a linear scale) of the reflection
and transmission coefficients at the required frequency are the
following:

£S11 =0°, LSy = 180°,|S21| < 0.3. 4)

The optimization goal was to minimise the objective
function F'.F ., which is the sum of three terms:

F.F.=F+ F,+ 100 x F3, (6)
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where
Fi =10° — ZS1 %, (7
Fy = [180° — LSx|?, (®)
0, if [S71] < 0.3
S = | 21|. ©)
|S21], otherwise.

As the transmission coefficient magnitude |Si2| of 0.3 is
sufficient, all the designs with |S12| < 0.3 have F3 = 0.

The parameters of the CE method were set to the following
values: population size Ny, = 30, elite subpopulation size
Ny = 10 and smoothing parameter g = 0.6. The time
required for a single simulation is between 30 and 60 s
using a PC with Intel Core i7-4790 processor and 32 GB of
memory. Five optimization runs were conducted to keep the
balance between the statistical certainty of the results and the
computational cost.

The best obtained solution has F.F. = 6.8 and is repre-
sented by the following solution matrix:

101
100
011

The top and bottom patterns of the surface with 3 x 3 unit
cells, obtained after CE optimization for the goal given in (5),
are shown in Fig. 5. To construct the geometry of a periodic
EM surface from the optimized unit cell, the image theory
has been applied. The mirror image of a current element
flowing parallel (perpendicular) to the PEC boundary should
be formed in the opposite (same) direction. The image of a
current element flowing parallel (perpendicular) to a PMC
boundary is formed in the same (opposite) direction [32].

111
xT = , XB=1011
110

FIGURE 5. A part of the optimized single-frequency AMC with @ = 0.271:
top pattern (left) and bottom pattern (right) of 9 unit cells.

The transmission and reflection results are given in Fig. 6,
where S11 and S»; represent reflections from the top and the
bottom surface, respectively. As required, ZS;; = 0, |S12] =
0.25, which is —12 dB, and /S, = 174° at 10 GHz. There-
fore, the top surface of the designed EM structure behaves
as an AMC at the specified frequency. An in-phase reflection
bandwidth, which is commonly defined as the frequency band
with the phase of the reflection coefficient being within £45°,
is from 9.41 GHz to 10.59 GHz.

It is also worth noting that, to obtain this AMC, a complete
metallic backing was not required. As shown in Table 1,
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FIGURE 6. Transmission magnitude and reflection phase of TE-polarised
incident wave from the top and bottom sides of the optimized AMC with
a= 0.27X0.

TABLE 1. Comparison of the CE-Optimized and the GA-Optimized
Single-Frequency AMC Surfaces.

Ref.  unit cell geometry Method a t PD

Single-frequency AMC

(15] GA 0.1X0 0.08\, No
[16] GA 0.3X0 0.09X\, Yes
This

work CE 0.27X0 0.09A, No

) OO
I/tcl)lrsk rﬁﬁ CE 0.1X0 0.09)\, No
e

in comparison to the pixelated surfaces obtained through
GA in [15], [16], the thickness of this AMC is merely the
same but the level of discretisation is significantly lower,
6 x 6 pixels as opposed to 16 x 16, which is advantageous for
fabrication purposes. The side length of the unit cell in [15]
is 0.1A1¢ at 5 GHz, which is 6.6 mm, and thus the dimensions
of each pixel are 0.4 x 0.4 mm. The table also shows whether
the unit cells are polarisation-dependent (PD). Neither of the
designs from Table 1 have been fabricated due to the focus of
the work being on the optimization methodologies. However,
practical considerations should be taken into account. The
side length @ = 8 mm and coarser discretisation in the unit
cell have been chosen due to anticipated fabrication limits.
The thickness + = 1.58 mm has been considered because
the AMC surface of 10019 x 100X¢ has to be rigid for the
measurement purposes.
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To demonstrate that AMC design with a = 0.1 is also
possible, a unit cell with ¢ = 3 mm and 36 pixels (each
pixel having b=0.5 mm) on each side has been optimized.
The 3 x 3 surface is shown in Fig. 7, and its reflection
and transmission characteristics are given in Fig. 8. The
desired specifications have been satisfied, as |S12| = 0.14,
/811 = 2.2° and Sy = 175.5° at 10 GHz.

FIGURE 7. A part of the optimized single-frequency AMC with @ = 0.11:
top pattern (left) and bottom pattern (right) of 9 unit cells.
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FIGURE 8. Transmission magnitude and reflection phase of TE-polarised
incident wave from the top and bottom sides of the AMC with @ = 0.11.

The best obtained solution is represented by the following
solution matrix:

111 100
xT'=1o10], xB=111
101 011

The optimization of the single-frequency AMC only took
from 8 to 15 iterations, which is three times less computa-
tional effort than that required by GA in [15]. The conver-
gence curve of the optimization of the single-frequency AMC
with a = 0.1X¢ is shown in Fig. 9.

A more detailed visualisation of the fitness function
improvement can be observed in Fig. 10, which compares
the fitness function values calculated by (6) for every can-
didate at the first and the last iteration of the optimization for
a = 0.27A¢g. The candidates are sorted in descending order
of their final F.F. value. Initial score distribution is random
with the highest F.F. = 890. A significant overall reduction
can be seen in the fitness function that indicates convergence.
At the last iteration, the lowest F.F. = 6.8.
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FIGURE 9. Convergence curve for the optimization of a single-frequency
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FIGURE 10. Distribution of the F.F. value (Equation (6)) over all
candidates for the first and the last iteration of the optimization of the
AMC with a = 0.271. Candidates are sorted in a descending order of
fitness at the last iteration.

V. DUAL-FREQUENCY AMC SURFACES

The second AMC design, with the unit cell dimensions
a = 8§ mm and d = 3.16 mm, was optimized to operate at
8 GHz and 12 GHz. The target characteristics were defined
as in (5) at these two frequencies. The optimization goal was
to minimise the objective function

F.F.=F.F 3  p p 12GHz (10)

where F.F3CH: and F.F.126GHz  gare calculated
using (6) — (9).

Out of five consecutive optimization runs, each with pop-
ulation size Ny,, = 30, elite subpopulation size N,; = 10
and smoothing parameter «g = 0.1, the two best solutions
had almost the same F.F. value and design parameters. The
solution shown in Fig. 11 with F.F. = 41.3 has the following

solution matrix:

XT

—

11 110
o1o0f, xB=(111
100 1 1
The second solution has F.F'. = 35.2, and the only difference
in the solution matrix is a single bit in the bottom pattern,
which has all “1s”. It suggests that for dual-band perfor-
mance, a complete or nearly complete metallic backing is
required.

The transmission and reflection results are given in Fig. 12.
Phase /S5, is 177° and 175°, and |S;3| is —32 dB and —40 dB
at 8 and 12 GHz, respectively. Phase /S is —25° at 8 GHz,

which is within the in-phase reflection bandwidth (£45°),
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FIGURE 11. A part of the optimized dual-frequency AMC showing 9 unit
cells: top view (leff) and bottom view (right) of the optimized patterns.
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FIGURE 12. Reflection phase of TE-polarised incident wave from the top
and bottom sides of the optimized AMC, as well as the transmission
magnitude.

and it passes through 0° at 12 GHz. Therefore, the opti-
mized surface behaves as an AMC at both target frequencies
of 8 and 12 GHz. In comparison to the pixelated surface
obtained through GA in [15], this AMC is electrically thinner,
t = 0.092, versus 0.13X,, and has a larger side length,
a = 0.27Xxq versus 0.11A¢.

As in the previous case, a comparison given in Table 2
shows that the thickness and the side length of this AMC are
merely the same as in [16] but the level of discretisation of the
optimized unit cell is significantly lower due to the fabrication
considerations. The optimization run that produced the design
in Fig. 11 continued for 47 iterations. Its convergence curve
is given in Fig. 13. The best result was obtained after the
27th iteration, and the optimization was terminated after not
producing any better solution for as long as 20 iterations.

VI. THIN PHASE-CORRECTING METASURFACES

Other applications of EM surfaces are found in the
design of low-profile planar phase correcting structures
and beam-steering metasurfaces [33], [34]. Using the
proposed optimization methodology by means of the
CE method, we designed phase-shifting structures made of a
single-dielectric layer with pixelated surfaces printed on the
two sides. The unit cells were optimized to provide a required
phase shift without introducing significant losses to the
transmitted wave. Eleven optimization problems have been
formulated to obtain phase shifters covering a range of phases
from 180° to 360° with 10° to 20° steps.
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TABLE 2. A Comparison Table of the Presented Work With the
GA-Optimized Dual-Frequency AMC Surfaces.

Ref.  unit cell geometry Method a t PD
Dual-frequency AMC

[15] GA 0.1X0 0.08\, No
[16] GA 0.22X0 0.19X, Yes
This
work CE 0.27X0 0.19A, No
700 , .
2 —-Best fitness value
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FIGURE 13. Convergence curves for the optimization of a dual-frequency
AMC. The stopping criterion was satisfied after (a) 47 iterations. The unit

cell with octagonal pixels has the side length a = 8 mm and thickness
t=3.15 mm.

The same unit cell as in the design of AMCs, with 36 pixels
on each side, has been used for realisation of the phase
shifters. Motivated by practical considerations for operation
at 20 GHz (Ag = 15 mm), the side length of the unit cell has
been set to a = 0.319 = 5 mm. In the simulation model,
the pixelated patterns are placed on a commercially-available
dielectric material Taconic TLY-5 with ¢, = 2.2, ¢t =
1.58 mm and loss tangent of 0.0009.

The optimization goal for all phase-shift values has been
defined as:

F.F.=1000-Fp,,, +0.01%Fp,,. (11)

where
0, if [£S1206) — £S12] < 2°
Fphase = LS12,05j — LS12|, otherwise
(12)

and

Fonag = 0, if |512|.2 0.9 (13)

0.9 — |S12], otherwise.
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TABLE 3. Obtained Phase Shifts of the Optimized Pixelated Unit Cells.

Desired Obtained Obained Design variables
/812 £S12 |S12] g
T _
180° 184.36° 092 § 5_] 11[101%%%%1]110],
T _
200° 200.83° 0.95 § 5 —ﬁ 10511(2)0110011]110],
T _
220° 222.26° 093 § 2 _] 10[1%%11%%1]110},
T _
240° 239.66°  0.90 § 5 10([)(2)11111001(;011],
T _
260° 257.94° 091 § 5 00[1%0110%111]001},
T _
280° 279.57° 0.90 § 5 7@ 10([)0101%0101(1011],
T _
300° 300.76° 0.95 § 5 *Tl 00[0101010%%1]110},
T _
320° 319.79° 0.93 § s —Tl 01[00101000110?000},
T —
330° 329.11° 0.90 § 5 —Tl 01[00001010001?000},
T —
350° 350.52° 095 § 5 _ ] 01[1%%0111011]111},
T —
360° 365.67° 0.90 § 5 —EJ 11<[311011011%O]10”’
) o5 T .
380 .o.o‘"oo. -=180°
e, —-200°
o - o
340 ‘-'*.'k"*‘*'*'-*‘*-*-*.*ﬂ_*_**_**’*.**‘***::'o .o igigo i
—_ "4-'4-.4."‘ < e R - cm
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FIGURE 14. The phase of the transmission coefficient of the optimized
phase-shifting unit cells with |S;,| > 0.9.

The coefficients in (11) have been chosen to reflect the
relative importance of the phase and magnitude objectives
and to compensate for the difference in their units. The
threshold values 0.9 for magnitude and 2° for phase are
optional, and the target phase shift /512 o5, takes eleven val-
ues: {180°, 200°, 220°, 240°, 260°, 280°, 300°, 320°, 330°,
350°, 3600}.

The optimized results are summarised in Table 3, where
the target transmission-phase /Sj» values and the ones
obtained after optimization can be compared. For all solu-
tions, the magnitude of the transmission phase [S12| is > 0.9
(linear scale), which ensures transmission losses of less than —
1 dB. The largest difference between the desired and obtained
phase shiftis 5.67°, which is assumed to introduce only minor
errors in application to phase correction.

Fig. 14 demonstrates the phase shifts provided by the opti-
mized designs given in Table 3, and the transmission phase
and magnitude of a unit cell with a 200° phase shift is shown
in Fig. 15. It can be seen that a thin double-sided single-layer
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FIGURE 15. Transmission coefficient magnitude and phase of the phase
correcting metasurface. Optimized design meets the target of
ZSII’obj =200°, |Sn| > 0.9 at 20 GHz.

metasurface is capable of providing a 180° phase-shifting
range at 20 GHz.

VII. CONCLUSION

Optimization of pixelated metasurfaces is a binary multi-
dimensional problem. Due to its fast convergence rate and
inherent versatility in handling variables, we applied the CE
method with a Bernoulli sampling distribution to optimize
pixelated metasurfaces. Application of the Floquet-Bloch
theory allowed us to minimize the design space to a single
unit cell with periodic boundary conditions enforced in CST
MWS. Rotational symmetry was assumed in the unit cell
for polarisation independence, which allowed further reduc-
tion in the design space by a factor of four. Each side of
the unit cell was discretised into 36 pixels, resulting in the
total of 18 binary design variables. To eliminate the issue
of poor correlation between simulated and measured results,
we implemented an octagonal pixel shape. Two 10 GHz-
AMCs were produced with a unit-cell side length of 0.1 Ag
and 0.27X¢ that have phase response of a perfect magnetic
conductor and transmission magnitude —17 dB and —12 dB,
respectively. Dual-frequency AMCs for 8 and 12 GHz were
designed using the same method by changing the objective
function. The results with the CE method were obtained after
only around 500-1000 function evaluations, which is much
shorter than typical thousands of evaluations required by
genetic algorithms.

The optimized phase-shifting unit cells with pixelated pat-
terns are half the thickness of the metasurface with square
patches in [34] and can be used to improve the beam-steering
solution by decreasing the profile, weight and complexity of
the turning metasurfaces. The proposed optimization method-
ology and the obtained unit cells can also be used in the design
of transmitarrays [7]. A more precise phase-shifting element
might be obtained by optimizing a unit cell with an increased
level of discretisation. Other phase values can be obtained by
defining the desired /512 ,p; in the optimization goal.
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