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Abstract  20 

Smoking is a significant risk factor for the development of metabolic diseases. Due to social 21 

pressures to quit smoking, many pregnant women are vaping as an alternative nicotine source. 22 

However, the metabolic consequences of replacing tobacco cigarettes with e-cigarettes during 23 

pregnancy are unknown. Therefore, in the mothers and their offspring, we investigated the 24 

metabolic and hepatic impacts of replacing cigarette smoke with e-vapour during pregnancy.  25 

Female BALB/c mice were either air-exposed or cigarette smoke-exposed (SE) from six weeks 26 

before pregnancy until lactation. At mating, a subset of the SE mice were instead exposed to 27 

e-vapour. Markers of glucose and lipid metabolism were measured in the livers and plasma, 28 

from the mothers and their male offspring (13 weeks).  In the SE mothers, plasma insulin levels 29 

were reduced, leading to downstream increases in hepatic gluconeogenesis and plasma non-30 

esterified fatty acids (NEFA). In the e-vapour replacement mothers, these changes were not as 31 

significant. In the SE offspring, there was impaired glucose tolerance, and increased plasma 32 

NEFA and liver triglyceride concentrations. E-vapour replacement restored lipid homeostasis 33 

but did not improve glucose tolerance. Therefore, e-cigarette replacement during pregnancy in 34 

a low dose setting seems to ameliorate the adverse impact of cigarette smoke exposure on 35 

maternal and offspring liver metabolic profile in mice; while future research needs to focus on 36 

higher doses to verify such effects.  37 

Keywords: maternal smoking; e-cigarette; vaping; pregnancy; glucose tolerance; liver steatosis  38 
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Abbreviations 39 

ATGL   Adipose triglyceride lipase 40 

AUC   Area under the curve 41 

CPT1a  Carnitine palmitoyltransferase Ia 42 

FASN   Fatty acid synthase 43 

FOXO1  Forkhead box protein O1 44 

GLUT   Glucose transporter 45 

IPGTT  Intraperitoneal glucose tolerance test  46 

NEFA  Non-esterified fatty acid 47 

PFK   Phosphofructokinase 48 

PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 49 

PPAR-γ  Peroxisome proliferator-activated receptor gamma 50 

SEM  Standard error of the mean   51 
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1. Introduction 52 

Type 2 diabetes is a primary global health concern, affecting approximately 400 million 53 

individuals worldwide and contributing to 3.7 million deaths each year 1. Smoking is a 54 

significant risk factor, estimated to increase the risk of Type 2 diabetes by 30-40% 2. 55 

Furthermore, smoking during pregnancy restricts intrauterine resources and primes the foetus 56 

to develop insulin resistance 3 and hepatic steatosis 4 later in life. Thus, smoking cessation 57 

during pregnancy will optimise the health outcome of the next generation 5. However, smoking 58 

cessation can be difficult to achieve, especially since nicotine replacement therapy is mostly 59 

ineffective during pregnancy 6. 60 

Driven by health advice to quit smoking, many pregnant smokers switch to e-cigarettes upon 61 

learning of their pregnancy 7, especially since vaping is less stigmatised than smoking 8. E-62 

cigarettes are marketed as a smoking cessation aid, supposedly delivering inhaled nicotine 63 

without the harmful by-products of tobacco combustion 4. The popularisation of replacement 64 

vaping is mostly derived from safety perceptions compared to smoking, among pregnant 65 

women 8,9 and even some obstetricians 10. During pregnancy, ever use of e-cigarettes ranges 66 

from 13% to 15% 11,12, making them more prevalent than other forms of nicotine replacement 67 

therapy 8,13.  68 

While it is clear that vaping is not safe 14, switching from smoking to vaping may be beneficial 69 

among long-term smokers 15. However, there are no reports on the impacts of switching during 70 

pregnancy, due to the recent emergence of e-cigarettes on the market. In mouse models, we 71 

have previously shown that intrauterine e-vapour exposure during pregnancy altered 72 

inflammatory responses in multiple organs (lungs 16, brain 17,18 and kidneys 19). Furthermore, 73 

replacing tobacco cigarettes with e-cigarettes during pregnancy was less harmful to the brains 74 
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and kidneys compared to continuous cigarette smoke exposure throughout gestation and 75 

lactation 18-20.  76 

The increased risk of type 2 diabetes due to in-utero cigarette smoke exposure makes it 77 

essential to investigate the metabolic impacts of e-cigarette replacement during pregnancy. The 78 

liver is a major metabolic hub, contributing to systemic glucose and lipid homeostasis which 79 

becomes dysregulated in metabolic diseases, such as type 2 diabetes 21. Using a Balb/c mouse 80 

model, we aimed to investigate the impacts of replacing cigarette smoke with e-cigarette 81 

vapour during pregnancy on systemic and hepatic metabolic profiles in both the mothers and 82 

their offspring.  83 

2. Methods 84 

2.1. Animals 85 

The animal experiments were approved by the Animal Care and Ethics Committee of the 86 

University of Technology Sydney (ACEC2014-638 and ETH15-0025) and performed 87 

according to the Australian National Health & Medical Research Council Guide for the Care 88 

and Use of Laboratory Animals. Virgin female BALB/c mice (7 weeks old, Animal Resource 89 

Centre, WA, Australia) had ad libitum access to standard laboratory chow and water while 90 

housed at 20±2 °C and maintained on a 12-h light, 12-h dark cycle (lights on at 06:00 h). 91 

Female breeders were acclimatised for a week prior to the exposure treatments detailed below.  92 

Female breeders were either room air exposed (Sham group, n=8) or cigarette smoke exposed 93 

(SE group, n=16) to 2 cigarettes (Winfield Red, ≤16 mg tar, ≤1.2 mg nicotine, and ≤15 mg of 94 

CO; VIC, Australia) twice daily, 6 weeks before mating and throughout gestation and lactation. 95 

In a subset of the SE mice, cigarette smoke was replaced with e-vapour generated from 96 

commercial e-liquid (50% propylene glycol/50% vegetable glycerine, tobacco flavour, Vaper 97 
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Empire, VIC, Australia) containing 18mg/mL nicotine (Replacement group, n=8) from mating 98 

until the pups were weaned, as previously described 16. Aerosols were generated by a human-99 

use e-cigarette (KangerTech NEBOX, 30 Watts, 0.5 Ohms, KangerTech, Shenzen, China) as 100 

we have previously published in the same model 16. Offspring plasma cotinine (a major, stable 101 

nicotine metabolite) concentrations were measured in previous studies 16,22 and were similar in 102 

the SE and Replacement groups. This nicotine dose represents mothers who are light smokers 103 

23.  104 

Dams were removed from their home cages and whole-body exposed to cigarette smoke or e-105 

cigarette vapour. Sham dams were placed in identical exposure chambers without any smoke 106 

or vapour. Male breeders and pups were not exposed. Male offspring were weaned at postnatal 107 

day 20 and maintained without additional intervention. At 12 weeks of age, an intraperitoneal 108 

glucose tolerance test (IPGTT) was performed as previously described 24. After 5 hours of 109 

fasting, baseline blood glucose levels were measured followed by glucose injection (2g/kg, IP). 110 

Blood glucose was measured at 15, 30, 60, and 90 minutes post-injection. The area under the 111 

curve (AUC) of the blood glucose curve was calculated for each mouse. We euthanised dams 112 

(at weaning) and male offspring (at 13 weeks old) after deep anaesthesia (2% isoflurane).  113 

Livers were harvested, weighed and then either snap frozen and stored at -80°C, or fixed in 114 

10% formalin for further analyses. Liver weights (%) were calculated as a fraction of body 115 

weight. Blood was collected via cardiac puncture, and glucose levels were measured (Accu-116 

Chek(R), Roche, CA, USA). Plasma was separated and stored at -20°C for further analysis.  117 

In the offspring, the average body and liver weight data of each litter was calculated before 118 

statistical analysis. One male offspring from each litter (n=8) was used for all further 119 

experiments.  120 
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2.2. Bioassays  121 

Plasma insulin concentration was measured using an Insulin (mouse) ELISA Kit (Abnova, 122 

Taiwan) according to the manufacturer’s instructions. Samples were analysed in duplicate, and 123 

the intra-assay coefficient of variance was below 10%.  124 

Liver lipids were extracted using the Folch method 26, as previously described 24. Plasma, liver 125 

extracts and glycerol standards (Sigma-Aldrich, MO, USA) were incubated with 126 

triacylglycerol reagent (Roche Diagnostics, Basel, Switzerland) using an in-house assay 24. 127 

Plasma nonesterified free fatty acid (NEFA) concentrations were measured using a NEFA kit 128 

(WAKO, Osaka, Japan).  129 

2.3. rt-PCR 130 

Total mRNA was extracted from frozen liver tissue with TriZol reagent (Life Technologies, 131 

CA, USA) and first strand cDNA was generated using M-MLV Reverse Transcriptase, RNase 132 

H, Point Mutant Kit (Promega, WI, USA). Target gene expression was quantified with 133 

manufacturer pre-optimised and validated TaqMan primers and probes (Table 1, Thermo 134 

Fisher, CA, USA) and standardised to 18s RNA. The probes of the target genes were labelled 135 

with FAM and those for housekeeping 18s RNA were labelled with VIC. The average of the 136 

Sham group was assigned the calibrator against which all other results were expressed as fold 137 

changes. 138 

2.4. Statistical Analysis 139 

Results are expressed as mean ± standard error of the mean (SEM) and were analysed using 140 

one-way ANOVA with Fisher’s Least Significant post hoc test if the data were normally 141 

distributed. If the data were not normally distributed, they were log transformed to achieve 142 

normality of distribution before analysis (GraphPad Prism 7.03, CA, USA). P<0.05 was 143 

considered the threshold for statistical significance. 144 
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Table 1. TaqMan Probe sequence (Life Technologies, CA, USA) used for rt-PCR. 145 

Gene NCBI references Probe Sequence ID 

ATGL NM_025802.3 CCAAGACTGAATGGCTGGATGGCAA Mm00503040_m1 

CPT1a NM_013495.2  TTCCAGGAGAATGCCAGGAGGTCAT Mm01231183_m1 

FASN NM_007988.3 AGCAATTGTGGATGGAGGTATCAAC Mm00662319_m1 

FOXO1 NM_019739.3 TCGGCGGGCTGGAAGAATTCAATTC Mm00490671_m1 

GLUT2 NM_031197.2 CCGCCTCCCCCGGCGCGCACACACC Mm00446229_m1 

GLUT4 NM_009204.2 TGGCTCTGCTGCTGCTGGAACGGGT Mm00436615_m1 

PFK NM_008826.4 GCGGTGATGCGCAAGGTATGAATGC Mm00435587_m1 

PGC1a NR_027710.1 CTGGAACTGCAGGCCTAACTCCTCC Mm01208835_m1 

PPAR-γ NM_0011273330.1 ATGCTGTTATGGGTGAAACTCTGG Mm01184322_m1 

ATGL: Adipose triglyceride lipase, CPT1a: Carnitine palmitoyltransferase 1a, FASN: Fatty 146 

acid synthase, FOXO1: Forkhead box protein O1, GLUT2: Glucose transporter 2, GLUT4: 147 

Glucose transporter 4, PFK: phosphofructokinase, PGC1a:  Peroxisome proliferator-activated 148 

receptor gamma coactivator 1-α, PPAR-γ: Peroxisome proliferator-activated receptor gamma.  149 

3. Results  150 

3.1. Dams 151 

After continuous exposure to tobacco cigarette smoke, smoke exposed (SE) dams had lower 152 

body weights (P<0.05 vs Sham, Table 2). Liver weights expressed as a percentage of body 153 

weight were higher in the SE dams (P<0.05 vs Sham, Table 2). When the cigarette smoke was 154 

replaced by nicotine-containing e-vapour (Replacement), the reduction in body weight was 155 
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partially prevented, but liver weight remained higher when expressed as a percentage of body 156 

weight (P<0.05 vs Sham, Table 2).  157 

Plasma glucose levels were not different among the groups (Table 2). However, plasma insulin 158 

levels in the SE dams were decreased compared to the Sham dams (P<0.05, Table 2). There 159 

was an increase in the hepatic expression of glucose metabolic markers in the SE dams, 160 

including Glucose Transporter (Glut)4 (P<0.05 vs Sham, Figure 1b), Peroxisome Proliferator-161 

Activated Receptor (PPAR)-γ (P<0.01 vs Sham, Figure 1d), PPARG coactivator (PGC)-1α 162 

(P<0.01 vs Sham, Figure 1e) and Forkhead box protein O1 (FOXO1, P<0.05 vs Sham, Figure 163 

1f). Plasma insulin levels were reversed in the Replacement dams compared to the SE dams 164 

(P<0.01, Table 2). While the expression of Glut4 was increased in the Replacement dams 165 

compared to the Sham dams (P<0.05, Figure 1b), the expression of other glucose metabolic 166 

markers (PPAR-γ, PGC-1α, and FOXO1) were nearly restored to Sham levels. 167 

While there were no differences in plasma triglyceride levels, plasma non-esterified fatty acid 168 

(NEFA) concentration was increased in the SE dams (P<0.05 vs Sham, Table 2). Liver 169 

triglyceride concentration and lipid metabolic markers, fatty acid synthase (FASN), adipose 170 

triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1A (CPT1a) were not 171 

significantly changed in the SE dams (Table 2, Figure 1g-i). Plasma NEFA levels in the 172 

Replacement dams were nearly restored to Sham levels (Table 2), and liver ATGL expression 173 

in the Replacement dams was increased compared to the SE dams (P<0.01, Figure 1h). 174 
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Table 2. Parameters of the dams.  175 

 Sham SE P 

(vs Sham) 

Replacement P  

(vs Sham) 

P  

(vs SE) 

Body weight (g) 26.1±0.38 23.1±0.84 P<0.05 24.9±0.51 NS NS 

Liver weight (g) 1.55 ± 0.07 1.53±0.06 NS 1.68±0.11 NS NS 

Liver weight (%) 5.93±0.22 6.62±0.13 P<0.05 6.74±0.32 P<0.05 NS 

Blood glucose (mM) 9.42 ± 0.83 8.43 ±0.70 NS 9.98±0.43 NS NS 

Plasma insulin (ng/mL) 0.70 ±0.05 0.50 ± 0.01 P<0.05 0.88 ± 0.11 NS P<0.01 

Liver triglyceride (mg/g liver) 4.0±0.57 4.1±0.71 NS 3.7±0.34 NS NS 

Plasma triglyceride (mg/mL) 1.22±0.21 1.01±0.26 NS 0.93±0.21 NS NS 

Plasma NEFA (mEq/L) 2.1 ± 0.28 3.65 ± 0.32 P<0.05 2.91 ± 0.23 NS NS 

Results are expressed as Mean ± SEM, n=8. Data were analysed by one-way ANOVA with Fishers LSD post hoc tests. *P<0.05 vs Sham, ##P<0.01 176 

vs SE. NEFA: non-esterified fatty acid; NS: not significant; Replacement: e-vapour replacing SE during gestation; SE: cigarette smoke exposure.  177 
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Figure 1. Hepatic mRNA expression of glucose metabolic markers (Glut2 (a), Glut4 (b), PFK1 180 

(c), PPAR-γ (d), PGC-1α (e), FOXO1 (f)) and lipid metabolic markers (FASN (g), ATGL (h), 181 

CPT1a (i)) in the dams. Results are expressed as Mean ± SEM, n=6. Data were analysed by 182 

one-way ANOVA with Fishers LSD post hoc tests. *P<0.05, **P<0.01 vs Sham, ##P<0.01 vs 183 

SE. Glut: glucose transporter; PFK: Phosphofructokinase; PPAR-γ: Peroxisome proliferator-184 
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activated receptor gamma; Peroxisome proliferator-activated receptor gamma coactivator 1-185 

alpha; FOXO1: Forkhead box protein O1; FASN: Fatty acid synthase; ATGL: Adipose 186 

triglyceride lipase; CPT1a: Carnitine palmitoyltransferase I; SE: cigarette smoke exposure; 187 

Replacement: e-vapour replacing SE during gestation. 188 

3.2. Male offspring (13 weeks old) 189 

Adult SE offspring had lower body weights and liver weights (P<0.01 vs Sham, Table 3). In 190 

contrast, the Replacement offspring had no changes in body (P<0.01 vs SE, Table 3) and liver 191 

weights (P<0.05 vs SE, Table 3). 192 

The AUC for the IPGTT was increased in the SE offspring (P<0.05 vs Sham, Table 3), which 193 

is consistent with our previous studies 20,27. However, there were no changes in fasting blood 194 

glucose or plasma insulin levels in the SE offspring. Furthermore, there were no changes in the 195 

mRNA expression of glucose metabolic markers, including Glut2, Glut4, PFK, PPAR-γ, PGC-196 

1α (P=0.056), and FOXO1 compared to the Sham offspring (Figure 2a-f). Glucose metabolism 197 

was impaired (increased AUC of the IPGTT) in the Replacement offspring (P<0.01 vs Sham, 198 

P=0.071 vs SE, Table 3). No changes were found in fasting blood glucose and plasma insulin 199 

levels. The gluconeogenesis regulator, FOXO1, was significantly increased compared to the 200 

Sham and SE offspring (both P<0.05, Table 3, Figure 2f). 201 

Liver triglyceride concentrations were increased in the SE offspring (P<0.05 vs Sham, Table 202 

3), without any changes in plasma triglyceride concentrations. However, plasma NEFA 203 

concentrations were increased in the SE offspring (P<0.01 vs Sham, Table 3). SE offspring 204 

exhibited no changes in the mRNA expression of hepatic lipid metabolic markers, including 205 

FASN, ATGL, and CPT1a compared to the Sham offspring (Figure 2g-i). Increased liver 206 

triglyceride and plasma NEFA concentrations in the SE offspring were not observed in the 207 

Replacement offspring (P<0.01 vs SE, Table 3). In the Replacement offspring, mRNA 208 
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expression of FASN was similar to the Sham offspring level (P<0.05 vs SE offspring, Figure 209 

2g). Replacement offspring had increased hepatic expression of ATGL (P<0.01, Figure 2h) and 210 

CPT1a (P<0.05, Figure 2i) compared to both Sham and SE offspring.211 
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Table 3. Parameters of the offspring  212 

 Sham SE 
P  

(vs Sham) 
Replacement 

P  

(vs Sham) 

P  

(vs SE) 

Body weight (g) 26.4±0.61 24.42±0.29 P<0.01 25.92±0.29 NS P<0.01 

Liver weight (g) 1.34±0.06 1.077±0.02 P<0.01 1.23±0.03 NS P<0.05 

Liver weight (%) 5.06±0.16 4.40±0.09 P<0.01 4.75±0.11 NS P<0.05 

IPGTT AUC (mM•min) 1146±20 1281±41 P<0.05 1435±69 P<0.01 NS 

Blood glucose (mM) 12.58±0.45 11.12±0.44 NS 11.92±0.57 NS NS 

Plasma insulin (ng/mL) 0.50±0.015 0.51±0.016 NS 0.51±0.017 NS NS 

Liver triglyceride (mg/g liver) 3.92±0.45 5.26±0.39 P<0.05 3.65±0.50 NS P<0.01 

Plasma triglyceride (mg/mL) 1.41±0.11 1.52±0.25 NS 1.31±0.09 NS NS 

Plasma NEFA (mEq/L) 4.13±0.47 7.6±0.88 P<0.01 4.42±0.45 NS P<0.01 

Results are expressed as Mean ± SEM, n=8. Data were analysed by one-way ANOVA with Fishers LSD post hoc tests. *P<0.05, **P<0.01 vs 213 

Sham, #P<0.05, ##P<0.01 vs Replacement. AUC: area under the curve; IPGTT: intraperitoneal glucose tolerance test; NEFA: non-esterified fatty 214 

acid; NS: not significant; Replacement: e-vapour replacing SE during gestation; SE: cigarette smoke exposure.215 
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 216 

Figure 2. Hepatic mRNA expression of glucose metabolic markers (Glut2 (a), Glut4 (b), PFK1 217 

(c), PPAR-γ (d), PGC-1α (e), FOXO1 (f)) and lipid metabolic markers (FASN (g), ATGL (h), 218 

CPT1a (i)) in the male offspring at 13 weeks. Results are expressed as Mean ± SEM, n=6. Data 219 

were analysed by one-way ANOVA with Fishers LSD post hoc tests. *P<0.05, **P<0.01 vs 220 

Sham, #P<0.05, ##P<0.01 vs SE. Glut: glucose transporter; PFK: Phosphofructokinase; PPAR-221 

γ: Peroxisome proliferator-activated receptor gamma; Peroxisome proliferator-activated 222 

receptor gamma coactivator 1-alpha; FOXO1: Forkhead box protein O1; FASN: Fatty acid 223 
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synthase; ATGL: Adipose triglyceride lipase; CPT1a: Carnitine palmitoyltransferase I; SE: 224 

cigarette smoke exposure; Replacement: e-vapour replacing SE during gestation 225 

4. Discussion 226 

E-cigarettes are marketed to smokers as a cessation aid or alternative nicotine source. As a 227 

result, many smokers switch to vaping during pregnancy due to the stigmatisation of smoking 228 

during pregnancy 8, even though the impacts on glucose and lipid metabolism are unknown. In 229 

this study, we found that cigarette smoke exposure during pregnancy affects circulating insulin 230 

and NEFA levels in the dams and caused glucose intolerance and increased circulating NEFA 231 

levels and liver triglyceride concentrations in the offspring. Meanwhile, switching to vaping 232 

during pregnancy seems to benefit the dams but did not improve glucose intolerance in the 233 

offspring.  234 

Here, we confirm the negative impacts of cigarette smoke exposure on glucose and lipid 235 

metabolism in the dams, which mostly did not occur in the e-vapour replacement group. Direct 236 

exposure to cigarette smoke resulted in a decrease in plasma insulin concentrations, consistent 237 

with the adverse impact of smoking on β-cell function 28. Reduced insulin signalling usually 238 

increases PGC-1α, which promotes hepatic gluconeogenesis through the activation of the 239 

transcription factor FOXO1 29. In addition, reduced insulin signalling can increase lipolysis in 240 

adipose tissue, resulting in elevated plasma NEFA concentrations 30, which we observed in the 241 

SE dams. Therefore, direct exposure to tobacco cigarette smoke can result in insulin deficiency, 242 

leading to downstream increases in gluconeogenesis and lipolysis, causing plasma NEFA to 243 

increase.  244 

However, when tobacco cigarette smoke was replaced by e-vapour, plasma insulin 245 

concentrations were restored, with normalised hepatic gluconeogenesis and plasma NEFA 246 
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concentrations. In human smokers, e-cigarette replacement has been shown to improve their 247 

lung function, oral health and cardiovascular outcomes  15,31. Therefore, replacing e-cigarettes 248 

with tobacco cigarettes may benefit the regulation of hepatic glucose and lipid metabolism in 249 

the direct user.  250 

Previously, we found that replacing cigarette smoke with nicotine-containing e-vapour during 251 

pregnancy can normalise brain metabolic regulators in the offspring 18. However, the metabolic 252 

impacts in the offspring are unknown. Intrauterine exposure to cigarette smoke impaired 253 

glucose tolerance in adult offspring, which is consistent with our previous studies and effects 254 

in humans 27,32. Increased liver triglyceride concentration and plasma NEFA concentrations 255 

were also increased in the SE offspring, which is commonly associated with low birth weight 256 

33, a major effect of maternal smoking 4. However, only the main metabolic regulator PGC1α 257 

was reduced in the SE offspring, which may account for glucose intolerance, increased plasma 258 

NEFA and liver triglyceride accumulation. Although plasma insulin concentration and liver 259 

gluconeogenesis marker, FOXO1, were not changed, we cannot rule out the possibility of 260 

impaired insulin release in response to a postprandial glucose surge.  261 

Meanwhile, in the Replacement offspring, hepatic triglyceride and plasma NEFA 262 

concentrations were restored to normal levels. This was likely due to decreased de-novo 263 

lipogenesis (normalised FASN expression) and increased lipolysis and fatty acid β-oxidation 264 

(increased ATGL and CPT-1α expression) within the liver. However, glucose intolerance was 265 

not improved in the Replacement offspring. Thus, replacing tobacco cigarettes with e-cigarettes 266 

during pregnancy restored hepatic lipid metabolism, but did not reduce the risk of type 2 267 

diabetes in the offspring. E-cigarette vapour contains toxins in lower quantities than cigarette 268 

smoke, likely leading to reduced inflammatory responses 34. Therefore, it is not surprising that 269 

e-cigarette replacement during pregnancy was not as detrimental as tobacco cigarette smoke.  270 
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This is the first study to report the metabolic consequences of intrauterine e-vapour exposure, 271 

but there are some limitations. Since only male offspring were used in this study, the impacts 272 

on female offspring are unknown. We also used a whole-body exposure protocol which may 273 

result in oral exposure through grooming. Although we report differences in mRNA expression 274 

in this study, the impact at the protein level is unknown and should be investigated in future 275 

studies. This study used a low exposure regime (nicotine exposure equivalent to light smokers), 276 

and future studies should investigate the impact of higher doses of both cigarette smoke and e-277 

vapour. Furthermore, this study did not examine the impacts of complete smoking cessation 278 

during pregnancy, which may provide an additional benefit compared to e-cigarette 279 

replacement.  280 

In conclusion, replacing tobacco cigarette smoke with e-vapour benefited maternal metabolic 281 

outcomes. In the offspring, e-cigarette replacement improved lipid metabolism but not glucose 282 

homeostasis. Therefore, e-cigarettes may be an alternative nicotine source among pregnant 283 

women who are unable to quit smoking by other means. However, e-cigarette vaping still has 284 

other health risks, which was highlighted by the recent vaping associated deaths in the US 14. 285 

Furthermore, other issues must also be considered regarding vaping, including dual-use and 286 

youth uptake 35.  287 
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