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Abstract: Short text is widely seen in applications including Internet of Things (IoT). The appropriate
representation and classification of short text could be severely disrupted by the sparsity and shortness
of short text. One important solution is to enrich short text representation by involving cognitive
aspects of text, including semantic concept, knowledge, and category. In this paper, we propose a
named Entity-based Concept Knowledge-Aware (ECKA) representation model which incorporates
semantic information into short text representation. ECKA is a multi-level short text semantic
representation model, which extracts the semantic features from the word, entity, concept and
knowledge levels by CNN, respectively. Since word, entity, concept and knowledge entity in the same
short text have different cognitive informativeness for short text classification, attention networks
are formed to capture these category-related attentive representations from the multi-level textual
features, respectively. The final multi-level semantic representations are formed by concatenating all
of these individual-level representations, which are used for text classification. Experiments on three
tasks demonstrate our method significantly outperforms the state-of-the-art methods.

Keywords: short text representation; semantic representation; short text classification; knowledge
graph; convolutional neural network; attention network

1. Introduction

With the development of Internet of Things (IoT) [1], various information can be found online
and IoT networks in the form of short text, such as short descriptions, social media, news description,
product review, and instant messages, and so forth. Unlike long-textual documents, one piece
of short text only contains few sentences or even just a few words. For example, Twitter limits
its tweet length to 280 characters. Sparsity and shortness are the two intrinsic characteristics of
such short text. Lacking enough word co-occurrences and shared context, it is difficult to extract
representative and informative features from short text. Therefore, document representation and word
embedding methods, which heavily rely on the word frequency or shared context, may not capture
sufficient information from short text in IoT networks and perform well in downstream tasks such as
short text classification.

The semantic enhancement of short text representation is a common way to address the
problems aforementioned. To implement the semantic enhancement, external knowledge bases
like DBpedia and Microsoft Concept Graph are usually adopted as a complement for short text
semantic enhancement. There are several reasons why external knowledge bases are chosen.
First, mining the entity relationships from the knowledge base can enhance the short text
semantic representation. As demonstrated in Figure 1, in the knowledge graph, Cristiano Ronaldo
and Lionel Messi have a lot in common—both of them won the Ballon d’Or, UEFA Champions League
and La Liga; they share the same career as a football player, and so forth. These common entities
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in the knowledge graph are highly correlated with the same category Sport. With the extra entity
relationships from the knowledge graph, short text representation can be enhanced. Second, the entity
level representation can help to disambiguate terms which have the same spelling. For example, both
sentences “WHO has named the disease COVID-19, short for Corona Virus Disease 19.” and “Corona is
the best beer I have ever drunk.” have the same term Corona. According to our common sense, the first
one refers to Coronavirus, and the named entity is Corona_Virus; and the second one stands for the
famous beer brand Corona, and its entity is Corona_beer. Hence, at the entity level, we can obtain more
precise representation instead of the same word embedding at the word level. Third, the concept level
representation is more abstract compared with both word and entity levels of representations. Hence,
the concept representation can enhance short text semantic representation. A concept can be regarded
as a set or class of entities or “things” within a domain [2]. It is a higher perspective of description
of a “thing”. Those higher perspective descriptions can strengthen the semantic representation.
For instance, giving a piece of news “Dunga will attend the award ceremony”, according to the keywords
Dunga and ceremony, it would be difficult to identify which category this piece of news belongs to,
as the meaning of the keyword Dunga is not clear here. If the news title changes to “Brazilian football star
will attend the award ceremony”, it is easy to point out that this is a sport news. Dunga was the captain
of Brazilian football team which won the 2002 FIFA world cup, and the “Brazilian football star” is the
concept of term Dunga. This example show that it would be easier to determine the category of short
text by involve word-related concepts. Accordingly, we believe that the concept level representation is
a significant supplement for short text representation based on keyword and entity.

Figure 1. Illustration of C.Ronaldo and Messi connected through knowledge entities.

Owing to the convenience of integrating extra knowledge into neural networks,
deep learning-based short text representation forms the common method for short text classification.
Among a majority of neural network types, Kim [3] first introduced CNN to the text classification.
CNN is good at extracting local features through the convolution layer. To capture the informative
information from the text, Vaswani et al. [4] proposed an attention network in NLP. The improvement
of combining knowledge bases for downstream deep short text classification tasks has been verified
in recent research [5–7]. Although such methods gain more accurate short text representations,
limitations exist such as on the way of combining extra knowledge bases, that is, they still suffer
from making full use of external knowledge bases. They consider only one aspect (only the entity or
concept information) from knowledge bases to enrich the short text representation.

In this paper, we involve multiple cognitive aspects [8–10] of short text including concept,
knowledge and category into short text representation, and propose a multi-level Entity-based Concept
Knowledge-Aware (ECKA) representation model for enhancing short text semantic representations.
We first extract the named entities from short text, and then retrieve the corresponding concepts and
knowledge graph entities through Microsoft Concept Graph and DBpedia, respectively. Short text
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representation learned from ECKA is very informative since it is the combination of four-level
representations, that is, from word, entity, concept to knowledge levels. Specifically, the word-level
representation refers to the pretrained word embedding. The entity-level representation represents
the identified named-entity embedding. The knowledge-level representation, which is learned and
transformed from a knowledge graph, stands for the external knowledge correlation. The concept-level
representation refers to a higher perspective of descriptive embedding. Secondly, we apply CNN
to extract the local features on different levels, respectively. Lastly, since different items (i.e., words,
entities, concepts and knowledge) in one short text contribute differently to the downstream short
text classification, the category of short text may be determined by the category-related words.
For example, in the aforementioned sentence “Brazilian football star will attend the award ceremony”,
football is the category-related word for ‘Sport’. Similarly, the category of short text may be determined
by the category-related features. Therefore, we further apply the attention network to learn the
category-sensitive weights of each item set in the four-level representation, respectively.

The main contributions of this paper are summarized as follows:

• We propose a novel multi-level model to learn the short text representation from different
aspects respectively. To capture more semantic information, We use the named entity-based
approach to obtain the external knowledge information—entity, concept, and knowledge graph.
Such external knowledge information is utilized to enrich the short text semantic representation.

• To capture the category-related informative representation in terms of multi-level features,
we build a joint model by using CNN-based Attention network to capture their respective
attentive representations, and then the embeddings learned from different aspects are
concatenated for the short text representation.

• We conduct extensive experiments on three datasets for short text classification. The results show
that our model outperforms the state-of-the-art methods.

The rest of this paper is organized as follows—Section 2 summarizes a brief review of the
related work; Section 3 presents the details of the proposed method; Section 4 presents the experiments
and analysis; lastly, Section 5 concludes the paper and outlines the future work.

2. Related Work

Short text classification is an important task of NLP . Many traditional methods like BoW, SVM and
KNN, and so forth, have been explored for this task. In recent years, deep neural networks have
been increasingly employed in the short text analysis. For example, Kim [3] first introduced the
Convolutional Neural Network (CNN for short) to the text classification. CNN is used to extract local
and position-invariant features. Recurrent Neural Network (RNN for short) is another approach for
the text processing. Unlike CNN, RNN is good at processing long range semantic dependency rather
than local key-phrases. Yang [11] proposed an attention model to process the problem of different
words in a document with informative difference.

The deep models aforementioned are flexible to some extent in the short text classification.
However, due to the shortness and sparsity of short text, it is quite difficult for them to capture enough
semantic information with limited words in the text content. From this perspective, how to enrich
the short text semantic information with extra knowledge or common sense borrowed from other
sources becomes a hot topic in this area. Concept is an aspect which is extensively used for text
semantic enhancement. The Microsoft Concept Graph is a big graph of concepts, researchers have
utilized it for the semantic enhancement. Wang et al. [2] proposed a ’Bag-of-Concept’ (instead of word)
approach for the short text representation and constructs a concept model for each category, they then
conceptualize the short text to a set of relevant concepts. Wang et al. [7] proposed a deep convolutional
neural network model, which utilizes the concept, word and character for short text classification.
To measure the importance of each concept from the concept set, Chen et al. [6] proposed a knowledge
powered multiple attention networks for text classification, it applies two attention mechanisms to



Appl. Sci. 2020, 10, 4893 4 of 13

measure the importance of each concept from two aspects: the concept towards short text attention
and the concept towards concept set attention.

In addition, knowledge graph is another effective way to enhance the text semantic representation.
A typical knowledge graph describes the structured and unstructured information with a Resource
Description Framework (RDF). Information in the knowledge base is stored in the form of
entity-relation-entity triples. There are many knowledge graph—DBpedia [12], Wikidata [13],
Freebase [14] and YAGO [15]. They are widely employed in recent research on semantic enhancement
for short text. Wang et al. [16] devised a multi-channel CNN by fusing the word and knowledge graph
levels of representations for news text representation. Gao et al. [17] proposed a word and knowledge
level-based self-attention mechanism for the text semantic enhancement.

For further semantic enhancement, entity is usually utilized together with the knowledge base.
Flisar et.al [5] proposed an entity-based text classification, it utilizes entity and its related attributes for
the short text enhancement. T̈urker [18] proposed a knowledge-based short text categorization, which
utilizes the external knowledge base (Wikipedia) and entity.

3. The ECKA Method

The framework of our proposed ECKA representation is illustrated in Figures 2 and 3 further
shows its semantic information retrieval module. We introduce the architecture of ECKA from
bottom up. Our model consists of three modules—the semantic information retrieval module,
the feature extraction module, and the attention module. The semantic information retrieval module
as illustrated in Figure 3, retrieves the entity, concept, and knowledge graph from an external
knowledge base. The feature extraction module and the attention module are illustrated in Figure 2.
The feature extraction module implemented by CNN is used to extract the local and position-invariant
features from multiple sources. The attention module is used to capture category-related informative
representation from multi-level features respectively. Taking a short text as input, our model first
extracts all the entities implicated in the short text by using the DBpedia Spotlight and then retrieves the
relevant concepts and knowledge graph entities through the Microsoft Concept Graph and DBpedia,
respectively. TransE is employed to get the knowledge graph embedding. We also utilize CNN
with an attention network to capture category-related informative representation from multi-level
features respectively. Finally, these multi-level semantic text representation is concatenated and fed into
a fully-connected layer to get the category probability distribution. We describe the detail as follows.

Figure 2. The framework of Entity-based Concept Knowledge-Aware (ECKA).



Appl. Sci. 2020, 10, 4893 5 of 13

Figure 3. The semantic information retrieval module.

3.1. Semantic Information Retrieval Module

The goal of this module is to retrieve the relevant entities, concepts, knowledge graphs from
the short text. Firstly, we extract the entities from short text. Entity annotation and linkage are the
foundation for our model. Some recently proposed annotation and linking tools, such as the DBpedia
Spotlight, TagMe, and wikify!, can satisfy our need here. In this work, we choose DBpedia as our
knowledge base and DBpedia Spotlight as our annotation tool. With the DBpedia Spotlight, we can link
the extracted named entities in the input short text to the DBpedia resources [19]. Secondly, we obtain
relevant concept for the extracted entities. ConceptNet [20] and Microsoft Concept Graph [21–27]
are the two widely used toolkits to obtain the concept of an object. We choose to use the Microsoft
Concept Graph, which has 5.3 million concepts learned from billions of website pages and search
logs for the conceptualization. Finally, the knowledge graph for the relevant entities can be obtained
through DBpedia. A typical knowledge graph is a collection of relationship triples (h,r,t) in which h
represents head, r represents relation and t represents tail. The structural knowledge graph information
needs to be transformed to the embedding. There are many transform methods that can learn the
low-dimensional vector spaces from the knowledge graph. The comparison of some widely-used
methods, like TransE, TransD, TransH and TransR, can be found in Reference [28]. In our model, we
choose to use TransE as the knowledge graph embedding method.

3.2. Feature Extraction Module

This module utilizes the word, entity, concept and knowledge graph to generate multi-level
semantic short text representations. There are three components in this module: the input layer,
the embedding layer, and the representation layer. The input layer demonstrates how to get the
different sources from the external knowledge bases. The embedding layer shows how to get the
embedding for the input layer and how to translate the different embeddings to the same vector space.
The representation shows how to extract the higher level features from the embedding layer. The details
of each layer are shown as follows.

3.2.1. The Input Layer

The input of each short text in our model consists of four-level sets which are obtained from
different sources, where each set is defined as follows:

• The Word set: The word set contains all the words in each short text. W = {w1, w2, w3, ...wn}.
• The Entity Set: E = {e1, e2, e3, ..en}, en represents the entities extracted from short text through the

DBpedia Spotlight.
• The Concept Set: The concept of each entity is retrieved from the Microsoft Concept Graph,

and the concept set can be represented as C = {c1, c2, c3, ..cn}.
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• The Knowledge set: This set is denoted as KE = {ke1, ke2, ke3. . . ken}, it is the same as the entity
set, but its representation is learned from different aspects respectively.

3.2.2. The Embedding Layer

Each short text consists of a word level, an entity level, a concept level, and a knowledge level set.
The semantic information retrieval process is demonstrated in Figure 3. We use the pretrained Google
word2vec embedding to obtain the embeddings for the first three sets, which can be represented as
We= {w1e w2e w3e . . . wne}, Ee={e1e e2e e3e . . . ene} and Ce={c1e c2e c3e. . . cne}, n is the entity number in
the short text. The knowledge entity embedding is learned by the following steps. First, the related
entity of each knowledge entity is retrieved from the DBpedia, then the knowledge transforming
method TransE is applied to learn the knowledge graph embedding. Finally, as the word, entity
and concept embeddings with 300 dimensions are learned by word2vec and the knowledge graph
embedding with 50 dimensions is learned from TransE, the two embeddings need to be transformed
to the same vector space. The transformed knowledge entity embedding can be represented as:

t(ke1...n) = [t(ke1) t(ke2) ...t(ken)]. (1)

In our model, we use a nonlinear function to transform the knowledge entity embedding:

t(ke) = tanh(Mke + b), (2)

where M ∈ Rd×k represents the trainable transformed matrix, and b ∈ Rd×1 stands for the
trainable bias. By using this function, the knowledge entity embedding can be mapped to the word2vec
embedding vector space.

3.2.3. The Representation Layer

CNN is a typical model to extract the local-level features from the embedding matrix. We apply
CNN to generate the feature map. For the entity embedding matrix Ee = [e1e, e2e, e3e, . . . ene], firstly,
a convolution operation with the filter w ∈ Rdh, where d is the dimension of the embedding and
h(h ≤ n) represents the filter window size, is applied on the embedding matrix to generate a new
future Ci:

Ci = f (Wc · Xi : i+h−1 + bc), (3)

where h stands for the filter window size, i : i + h− 1 represents the convolution starting from the
ith entity and ending at (i + h− 1)th. Xi : i+h−1 represents the concatenation embedding and f is the
nonlinear function, here we use Relu. bc is the bias.

Filtering is applied in all possible windows, then a feature map is generated:

Ce = [ce1, ce2, ce3. . . cen−h+1]. (4)

Similarly, the feature map for the word, concept, knowledge entity sets can be represented as:

Cw = [cw1, cw2, cw3. . . cwn−h+1] (5)

Cc = [cc1, cc2, cc3. . . ccn−h+1] (6)

Ck = [ck1, ck2, ck3. . . ckn−h+1], (7)

where n represents the entity number and h stands for the window size.

3.3. The Attention Module

Not all items (words, entities, concepts, and knowledge) contribute equally to the representation
of short text. The category of a short text may be determined by the category-related words. Similarly,
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the classification result may be determined by the category-related features. Hence, we apply the
attention network on the feature map generated in the representation layer to obtain the attentive
short text representation for each level. The feature Ci generated by the convolution layer is fed into a
one-layer MLP to vi, which can be treated as a hidden representation of Ci:

vi = tanh(WcCi + bc) (8)

where Wc is a weight matrix and bc is the bias, then the weight β is calculated through a softmax
function as follows:

βi = so f tmax(Wβvi) (9)

where wβ is a weight vector. Then, the entity representation can be calculated as follows:

Cβ =
h

∑
i=1

βiCi. (10)

As there are multiple window sizes of the filter, there are multiple feature maps. A maxpooling
function is applied over each feature map C to get the final pooling vector:

Cβ = argmax(Cβn), (11)

where n is the length of the convolution window. So far, the representations for the words,
entities, concepts and knowledge can be represented as: Rw = argmax(Cβwn), Re = argmax(Cβen),
Rc = argmax(Cβcn) and Rk = argmax(Cβkn).

We concatenate all these different-level representations to get the final short text representation R
as follows:

R = [Rw ⊕ Re ⊕ Rc ⊕ Rk]. (12)

Finally, the short text representation R is fed into the fully-connected softmax layer to get the
category probability distribution.

4. Experiments

Our experiment is implemented in Python Keras and on three widely used datasets.
The computing infrastructure setting is listed as follows—(1) Operating system: Red Hat Enterprise
Linux 7.7; (2) CPU: 8 core Intel(R) Xeon(R) CPU E5-2687W v2 @ 3.40 GHz; and (3) Memory: 32 GB.
We demonstrate the evaluation from two aspects: the accuracy of short text classification result; and the
variants of our model—how the semantic enhancement from different levels (word, entity, concept,
and knowledge graph) affect the performance of our model. The performance is compared with
various classical and the state-of-the-art text classification methods.

4.1. Datasets

The details of the three datasets are listed below.
Google Snippet—This dataset is adopted from Pan [29], snippet refers to the description portion

of a Google search listing, the Google search snippet with eight classes contains 10,060 training and
2180 testing samples. The average length of this data set is 12, and the detail of each category is shown
in Table 1.

Twitter—This dataset is a publicly available dataset collected from Github (https://github.com/
vinaykola/twitter-topic-classifier). There are two categories—sport and politics in the data. It contains
4567 training samples and 1958 testing samples, and the detail of each category is demonstrated in
Table 2.

AG news—This dataset contains four category news, each category contains 30,000 training
samples and 1900 testing samples. Each document contains both title and short description.

https://github.com/vinaykola/twitter-topic-classifier
https://github.com/vinaykola/twitter-topic-classifier
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In our experiment, we only use the title as it can better illustrate the ability of ECKA on short
text classification. The detail is shown in Table 3.

Table 1. The Google Snippet data set.

Category Training Testing Features Value

Business 1200 300 Avg.Len per document 12
Computers 1200 300 Total entity 1,494,181

Cul-Arts-Ent. 1880 330 Total document 12,240
Edu-Sci 2360 300

Engineering 220 150
Health 880 300

Politics-Society 1200 300
Sports 1120 200

Total 10,060 2180

Table 2. The Twitter data set.

Category Training Testing Features Values

Politics 2241 959 Avg.Len per document 18
Sports 2326 999 Total entity 1,586,965

Total document 6,525

Total 4567 1958

Table 3. The AG news data set.

Category Training Testing Features Value

World 30,000 1900 Avg.Len per document 7
Sport 30,000 1900 Total entity 2,270,042

Business 30,000 1900 Total document 127,600
Sci/Tec 30,000 1900

Total 120,000 7600

4.2. Data Preprocessing

A typical data preprocessing pipeline is applied to get the word level representation—

• Tokenization—Tokenization means splitting text into minimal meaningful units. In our model,
the short text will be split into single words.

• Stemming—We use the NLTK’s PorterStemmer for the word’s stemming.
• Stop words removal—Stop words are common but meaningless words. Stop words removal is

done by the NLTK stopwords collection.

4.3. Baselines

To measure the improvement of our model, we compare it with multiple traditional and
state-of-the-art methods below.

BoW+TFIDF—BoW is a traditional text representation method widely used in natural
language processing, the terms in the text can be regarded as a bag of word, and the term frequency in
the dataset is used as weight. In this method, we use TF-IDF instead of term frequency as weight.

CNN—CNN is a classical neural network model for classification task. Kim [3] first introduced
CNN to text classification. Only a word embedding layer is used in this network and we use the same
parameter settings as our proposed model.

LSTM—LSTM [30] is a variant of Recurrent Neural Network. LSTM can capture the long-term
dependency among words in short texts. Only a word embedding layer is used in this network.
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Bi-LSTM—It is a bidirectional LSTM [31], which learns bidirectional long-term dependencies
between time steps of sequence data. Only a word embedding layer is used in this network.

GRU—Gate Recurrent Unit (GRU) [32] is similar with LSTM but has fewer parameters than
LSTM. Only a word embedding layer is used in this network.

Attention—Attention [4] is a mechanism widely used in NLP. Here, we use self-attention in
our experiment. Only a word embedding layer is used in this network.

KBSTC—This method is proposed by T̈urker et al [18], and it utilizes the entity and knowledge
base (Wikipedia) for the short text classification.

WCCNN—This method is proposed by Wang et al [7]. It utilizes word embedding and concept
embedding for the short text classification. We re-implement their code for evaluation on the Twitter
and Google snippet data sets.

4.4. Parameter Setting

We use the Google pretrained 300-dimension word2vec as the word embedding. The knowledge
graph embedding trained by TransE has a dimension of 50. For the Twitter dataset, the kernel window
size of convolutional layer is [2–4]. For Google snippet and AG news, their kernel window size is
changed to [2–6]. The mini-batch size is 64, and the epoch is 10. For the Google snippet and AG news
datasets, we use their standard training and validation datasets. For the Twitter dataset, we split it
manually with 70% for training and 30% for testing. The 10 folder validation is employed on it to
obtain the result.

4.5. Result Analysis

Experimental results are shown in Table 4. We also test the variants of our model and the result is
demonstrated in Table 5. It can be seen from the results that our model significantly outperforms the
state-of-the-art methods.

Table 4. Text classification comparison of different models.

Twitter Google Snippet AG News

BoW+TFIDF 94.25 61.84 72.7
CNN 95.14 85.21 83.97
LSTM 94.99 81.54 83.18

Bi-LSTM 95.10 84.86 83.5
GRU 94.99 80.92 82.98

Attention 94.43 84.73 83.34
KBSTC - 72 67.9

WCCNN 95.09 85.83 85.57
ECKA(proposed) 95.76 87.59 86.93

Table 5. The text classification comparison of ECKA variants.

Variants Twitter Google Snippet Ag News

ECKA with word only 95.19 83.70 84.13
ECKA with word and entity 95.60 86.4 86.75

ECKA with word and concept 95.50 86.28 85.15
ECKA with word and KG 95.65 86.62 84.22

ECKA with word and entity, concept and KG 95.76 87.59 86.93

4.5.1. Multiple Sources vs. Single Source

CNN uses the single source of words as its input, multiple kernels with different sizes are
employed on it. From the result in Table 4, we can see CNN performs best among the baseline methods
which only use a single source. This is because different window sizes of convolution operation is
employed to extract the local features which can enhance the text representation. Our model performs
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better than all the baseline models. The reasons that our model achieves better result than the others
are listed as follows—(i) The model handles the ambiguous term by using named entity technique.
Base on the named entity, the model can get more precise representation on the entity, concept and
knowledge levels. (ii) We enrich the short text representation from different sources. The model learns
the superordinate representation through concept. And the latent semantic representation is obtained
through knowledge entity and its linked entities within the knowledge graph. (iii) We use the CNN
to extract the local features and the attention network to capture the attentive representation from
multi-level features respectively, which better captures category-related informative features for short
text classification.

(a) Accuracy w.r.t. the number of entities, concepts and
knowledge graphs in a text of Google snippet

(b) Accuracy w.r.t. the number of entities, concepts and
knowledge graphs in a text of Twitter

(c) Accuracy w.r.t. the number of entities, concepts and
knowledge graphs in a text of AG news

Figure 4. The distributions of accuracy.

4.5.2. Comparison of ECKA Variants on Multiple Sources

In this section, we compare the variants of ECKA in terms of involving external knowledge
to demonstrate the effectiveness of our model design. The results are listed in Table 5,
which concludes that—(1) In comparison with the baseline which only uses words, the semantic
enhancement by using entity, concept and knowledge graph respectively can boost the performance
for short text classification. This result proves that involving external knowledge can enhance the
semantic representation. (2) Compared to the two-source model, the model with four sources performs
better, which proves that the use of multiple sources from different aspects is another effective way to
improve the short text classification.

4.6. Parameter Sensitivity

In this section, we investigate how different numbers of entities affect the performance of
our model. We use the different numbers of entities in the set [1–8] on the three datasets. The result is
demonstrated in Figure 4. The results show that the best performance is associated with six entities in
Google Snippet and Twitter but five entities in AG news. However, the performance does not increase
when the entity number further increases. This may be because, when the majority of entities are
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involved, our model learns the informative representation from the entities. The learned informative
entities benefit the classification result.

5. Conclusions

IoT networks involve increasing short text, which cannot be handled by document representation
and classic NLP tools. This work involves multiple cognitive aspects of text from entity to concept
and knowledge, and proposes a novel multi-level entity-based concept knowledge-aware model ECKA
to enhance the short text semantic representation. ECKA learns the semantic information of short text
from four different levels: the word level, the entity level, the concept level, and the knowledge level.
CNN is used to extract the semantic features from different levels respectively. To capture the
category-related attentive representations from these multi-level features, attention network is
employed on different levels respectively. Experiments on short text classification demonstrate the
effectiveness and merits of ECKA compared with traditional and state-of-the-art baseline methods.

The improvement made by ECKA is attributed to the entity identification and
knowledge extraction. To further promote ECKA, we will focus on how to improve the accuracy of
entity extraction and employ knowledge-enabled language representation model (e.g., K-BERT) for
the short text representation. We’ll explore ECKA to the data and tasks of IoT-specific systems.
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The following abbreviations are used in this manuscript:

BiLSTM Bidirectional Long Short Term Memory
BoW Bag of Words
CNN Convolutional Neural Networks
ECKA Entity-based Concept Knowledge-Aware model
GRU Gated Recurrent Unit
KG Knowledge Graph
KNN K Nearest Neighbor
LSTM Long Short Term Memory
NLP Natural Language Processing
RNN Recurrent Neural Networks
SVM Support Vector Machine
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