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Abstract 

 The steady growth of an aging population and increased frequency of chronic disease led to the 

development of Smart Health Care (SHC) systems. While patient prioritization is the core of any SHC 

system, handling the response time by medical practitioners is a prevailing challenge. With 

advancements in information technology, the concept of the Internet of Things (IoT) has made it 

possible to integrate SHC systems with the Cloud environment to not only ensure patient prioritization 

according to disease prevalence, but also to minimize response time. In this work, an IoT-based 

scheduling method, called the Hash Polynomial Two-factor Decision Tree (HP-TDT) is proposed to 

increase scheduling efficiency and reduce response time by classifying patients as being normal or in a 

critical state in minimal time. The HP-TDT scheduling method involves three stages including the 

registration stage, the data collection stage, and the scheduling stage. The registration phase is carried 

out through Open Address Hashing (OAH) model for reducing the key generation response time. Next, 

the data collection stage is performed using the Polynomial Data Collection (PDC) algorithm. By 

incorporating PDC, computation overhead is reduced because a number of operations are considered 

during data collection. Finally, scheduling is performed by applying two-factor, entropy and 

information gain according to a decision tree. With this, scheduling efficiency is improved due to the 
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classification of patients as being normal or in a critical state. The proposed method minimizes response 

time, computational overhead, and improves essential scheduling efficiency. 

Keywords: Smart Health Care, Internet of Things, Cloud environment, Hash Polynomial, Two-factor, 

Decision Tree 

 

1. Introduction  

In today’s world of highly challenging and swiftly progressing conditions, senior citizens are 

experiencing several challenges predominantly associated with health. Recently, the world’s population 

has reached greater influence on global and regional public health action. The evolution of the Internet 

of Things (IoT) makes it feasible for medical institutes to ensure quality, convenient, and pervasive 

healthcare services.  

Privacy-preserving smart IoT-based healthcare was previously investigated to design a novel 

two-fold access control mechanism for supporting both normal and emergency situations (Yang et al., 

2019). This healthcare system was found to be not only self-adaptive in normal situations, but also in 

emergency situations. In the case of normal applications, healthcare staff with proper attribute secret 

keys has the privilege of data access. In emergency applications, patient’s medical data was recovered 

using a password-based break-glass access mechanism. To minimize the space complexity in the big 

data storage system, a secure deduplication technique was intended to take away the redundant medical 

files with the same data. The main advantage of privacy-preserving smart IoT-based healthcare was 

that the remaining medical file after deduplication was accessed by all data users authorized by different 

original access policies. The two-fold access control mechanism provided higher security in smart 

healthcare big data storage system. Due to the duplication, the time taken to accessing the secure 

medical data was improved. 

Based on the human nervous system and cognitive abilities, a set of autonomic cognitive design 

patterns were previously investigated to provide a mechanism to mitigate the problems in design 

complexity of smart IoT-based systems (Mezghani et al.,2017). This method also considered both big 

data and scalability management. The primary objective of these autonomic cognitive design patterns 

was to provide both generic and reusable solutions for providing a flexible and smart IoT-based system 
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to collect data and make decisions accordingly. Besides, these autonomic cognitive design patterns were 

articulated within a model-driven mechanism with the objective of incrementally refining both the 

functional and nonfunctional system requirements. 

Instantiated pattern sets were integrated for developing a flexible cognitive monitoring system 

to manage patient health, which addresses response time and scalability management. Despite 

addressing response time and scalability management, the computational overhead incurred in 

identifying the cognitive design patterns than the IoT-based scheduling method.  

With the help of the above discussion, an SHC system is an essential and important application 

for providing immediate health services to the patient. An SHC system generally monitors patient health 

to offer recovery services for critical conditions. Though, the scheduling performance of conventional 

work was not enough. In addition to that, privacy-preserving IoT-based healthcare was designed to 

identify unauthorized users while transmitting medical data. However, the response time was not 

reduced. Therefore, this research work aims to improve scheduling efficiency and reduce response time 

in SHC systems. The HP-TDT method was designed to enhance scheduling efficiency and reduce 

response time.  

 The rest of the paper is formulated as follows. In Section 2, a review of related SHC systems 

for IoT based on a cloud environment is presented. Section 3 describes the proposed HP-TDT method 

with the help of a block diagram and algorithms. Section 4 describes the experimental design. Section 

5 analyzes and discusses the results. Section 6 contains conclusion of the paper. 

2. Related works 

In recent years, harmony between smart health care and technology has extensively increased 

across the world. For example, IoT and Cloud environment are progressively achieving popularity for 

next generation SHC systems. Advantages of the healthcare IoT technologies that related to smart 

sensors for health care applications were previously analyzed (Firouzi, et al., 2018). A survey of 

Structural Health Monitoring (SHM) was previously investigated (Tokognonet al., 2017). The 

framework handled complex and large amounts of data collected from sensors installed on structures. 

However, computational overhead was not minimized while handling large data collections.  
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Another SHM IoT-based platform was previously designed (Abdelgawad and Yelamarthi 

2017). In this work, the size and location of damage in structures were found, and steps were taken to 

handle the issues via a mathematical model. Security analysis was not performed in SHM IoT-based 

platform. 

The state-of-the-art research work related to a wearable IoT healthcare system was presented 

in (Baker et al., 2017) where the sensors are placed in the patient’s body with the objective of 

monitoring several health indices, communication standards required for the corresponding indices, and 

the design of the cloud environment. Also, the design of the paper differentiated itself from the previous 

survey by taking into account every crucial component of an IoT-based healthcare system. The survey 

did not attain significant improvements in the field of IoT-based healthcare. 

The increased number of people suffering from chronic diseases necessitates the use of long-

term remedies, which requires the identification of probable solutions for ensuring cost-effective and 

high-quality services. An Ambient Intelligent (AI) system was designed with the objective of assisting 

every task for monitoring and enhancing the quality of life (Triberti and Barello 2016). Although AI 

system ensures the quality of life but, the level of patient’s adaptation to the disease condition was not 

identified. To address this issue, a descriptive study (Colicchio et al., 2016) was conducted using 

classification methods, which ensured security and including validity. However, this study failed to 

reduce misclassification. 

In recent years, sensors have become an unavoidable part of our everyday lives. This is because 

sensors are ambient and embedded in smartphones. A Physical Activity Change Detection (PACD) 

approach was designed (Sprint, G.et al., 2016) to measure the significance of detected changes and 

analyze the nature of the changes to track physical activity and respond accordingly. Although tracking 

was claimed to have been made more efficiently, the classification of tracking was not done. To address 

this issue, a vision-based proposal was made using the classification system that classified normal and 

abnormal gait (Hidalgo et al., 2016). Although the approach minimized computation time, accurate 

classification was not attained.  
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A SHC system for efficient patient monitoring and diagnosis for prevention and early-stage 

disease detection was presented in (Jeong, et al.,2016). Security of patient health information was not 

addressed.  

Although an IoT-based smart health care system provides an enhanced and better solution for 

smart healthcare management, its adoption by end users was infrequent. A partial least square structural 

equation modeling was designed (Pal et al., 2018) to explore smart home services of health care. 

Although actual adoption of smart home services in healthcare was achieved, security and privacy 

aspects were not addressed. To address this issue, Integrated Circuit Metric (ICM) technology was 

designed (Tahir et al., 2018) with the objective of achieving security, authentication, and confidentiality 

without compromising the resource demand. Key generation time was not minimized. 

With no definite cure for dementia and costs increasing exponentially, a Technology Integrated 

Health Management (TIHM) was designed via machine learning algorithms to improve the accuracy of 

detection (Enshaeifar et al. 2018). The TIHM used the IoT to enable solutions for monitoring dementia, 

but, time span (the period of time. i.e. daily or weekly scale) taken for identifies unusual patterns was 

longer. A review of methods based on IoT for healthcare along with ambient-assisted living, also 

referred to as the Internet of Health Things (IoHT) was presented in (Rodrigues et al., 2018). This 

review discussed the most recent journal articles and specifications available in the market. Although 

the methods increased the IoHT, a deeper understanding of IoHT and security requirements was not 

considered.  

Another smart care beds for elderly patients were previously designed (Hong2018). with the 

objective of minimizing mortality rate. However, this study failed to measure the weight of elderly 

patients with impaired mobility.  

A design for intelligent healthcare systems and mobile computing was previously presented 

(Maet al., 2108). Although the system increased performance of the system; the quality of services was 

not improved. 

Two innovative algorithms were investigated with the objective of improving the reliability and 

lifetime of the operable device working condition during a working day by applying low-frequency 
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movement characterization and adaptive heart rate (Roda-Sanchez, et al., 2018). The algorithms 

increase the efficiency of the services, but the safety requirements were not ensured.  

A privacy protection user authentication and key agreement scheme was designed (Chen, Y et 

al., 2017) by applying the elliptic curve Diffie-Hellman algorithm to attain higher security. Privacy 

problems were not considered during the authentication and key establishment processes. 

A supportive framework called decision-making based IOT process was designed (Abdel‐

Basset, M et al., 2018) for gathering and processing required information in smart education 

environments. The framework increased the security of data gathering but it could not be applied to 

healthcare fields.  

Smart Service Systems were developed (Lim &Maglio 2018) by integrating machine learning 

algorithms and metrics for the analysis of text data. The system did not consider time metrics.  

A neural network model was introduced (Lacher et al., 1995) for effectively categorizing the 

financial health of a firm. The model did not effectively predict when the data exhibited significant 

nonlinearities.  

In (Ramaswamy, V et al., 2005), the high levels of call completion rates were maintained 

through preserving the quality of services in American Telephone & Telegraph (AT&T) network. 

However, scheduling was not performed while handling a large number of customers. 

A discrete-time model was developed (Liu &Xie 2018). to considerably decrease the total 

waiting time of patients without increasing staff capacity. The model did not maintain stability.  

An integrated model was designed (Martinez-Caro et al., 2018) to explore the relationship 

between the capabilities of patients to effectively use information and communication technologies and 

the success of IoT-based healthcare services. However, predictive capabilities were not at required 

level.  

An IoT-based health prescription assistant model was introduced to obtain proper suggestions 

from physicians (Hossain, M et al., 2018). However, the response time was unable to be minimized. A 

novel integer linear programming (ILP) model for assignment and scheduling efficient home care 

services was previously introduced (Cappanera&Scutellà2014). However, this model failed to solve the 

larger home care instances. 
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A Markov decision process and approximate dynamic programming approach (Diamant, et. 

al.,2018). was employed for solving dynamic patient scheduling. While handling a larger number of 

patients, overhead was not minimized. A workforce management and scheduling under flexible demand 

(Villarreal, et. al.,2015) was designed to resolving a staff planning and scheduling problem. Although 

the method increased scheduling efficiency, the privacy-preservation of patient data was not solved.  

Patient classification was performed using individual patient characteristics through the 

scheduling process (Salzarulo et al., 2016). Although patient scheduling efficiency was improved with 

less cost function, security remained unsolved.  

Big data enabled smart healthcare system (Md Ileas Pramanik et al. 2017) for offering 

intra and inter organizational business operation.  However, the security of medical information 

is crucial and generally low.  The heartbeat period for transmission suppression algorithms was 

described in (Kojo Sarfo Gyamfi et al. 2019) depends on the Bayes risk minimization for 

reducing the cost of the heartbeat transmission. However, time consumption was not effectively 

reduced.   

In the analyzed papers, the authors employ different healthcare systems using IoT for 

scheduling patients for timely rescue operations, but there are no changes on the fly in the balancing of 

computational overhead and response time.  A lower response time affects early diagnosis and patient 

treatment. In this way, computational overhead and response time be explored. In addition, the security 

of patient health information remains an unsolved issue in IoT. 

The work proposed in this paper reduces the response time by applying the Open Addressing 

Hash model in which the key generation center specifically generates the key for the registered user 

through mapping. Next, the computational overhead is minimized by applying the Two-factor Decision 

Tree scheduling algorithm, which is discussed in the next sections. 

3. Hash Polynomial Two-factor Decision Tree Scheduling 
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Internet of Things (IoT) is a type of network comprised of several physical objects. With IoT, not only 

information but also communication technology is connected to the Internet via multiple embedded 

devices, with the objective of performing data accumulation and transmission between two parties. One 

of the key advances is that such devices can be linked to massive resource pools such as the cloud. The 

unification of embedded devices and cloud servers suggests that IoT is comprehensively relevant to 

several aspects of our lives in clouding security, privacy, scheduling, and many other concerns. Based 

on the above information, an IoT for Smart Health Care (SHC) towards scheduling method, called the 

Hash Polynomial Two-factor Decision Tree (HP-TDT) is introduced. 

Figure 1. Block diagram of IoT using HP-TDT 

In the proposed HP-TDT method, each user (i.e., patient ‘PP’, hospital ‘HH’, and cloud (‘CC’) 

registers at the key generation center (‘KGC’). The ‘KGC’ in turn issues a pair of public keys (‘BK’) 

and private keys (‘RK’) that allow users to communicate. The user is also issued the pivotal key (‘PK’) 

for encrypting private health information. Consider an IoT for SHC systems that includes four entities: 

user ‘𝑈𝑝, 𝑈𝐻 , 𝑈𝐶’cloud data storage ‘CDS’, ‘KGC’, and IoT medical Sensor ‘MS’. Figure 1 shows the 

block diagram of the proposed HP-TDT method.  

As shown in Figure1, the block diagram of the IoT using the HP-TDT method includes three 

stages. The first stage includes registration between users with the ‘KGC’. The second stage includes 

data collection at the ‘CDS’. Finally, notification for efficient scheduling is performed. Registration 

Polynomial Data 

Collection 

Two-factor Decision 

Tree Scheduling  

Prioritize users  

Open Address Hash 

Registration 

𝐾𝐺𝐶 

 ‘𝑃’‘𝐻’     ‘𝐶’ 

𝑈𝑠𝑒𝑟𝑠  
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between users is carried out using Open Address Hash Registration to minimize key generation 

response time. Next, data collection is performed at the CDS using the Polynomial Data Collection 

algorithm. By applying a polynomial factor, the computational overhead is reduced. Finally, based on 

the priority of the state, the patient’s data are scheduled by a two-factor decision tree via IoT medical 

sensor. IoT using HP-TDT is explained below.  

3.1 Network model 

The proposed work models network topology as an undirected graph ‘G(V, E)’ with vertices 

(patient, hospital, and cloud) ‘V(G)’ connected by links ‘E(G)’. In this scenario, the publishers are the 

patient and the cloud, whereas the subscriber that is interested in receiving the notifications is the 

hospital. The set of sensor-publishers (for Patient, Hospital) are denoted as ‘𝑆𝑃𝑃 , 𝑆𝑃𝐻’. the subscribers 

interested in receiving alerts are denoted as ‘𝑆𝑃𝑐’and the cloud service as ‘C∈V’.  

3.2 Open Address Hash registration  

The registration phase is the first step toward the design of IoT for SHC systems. The 

registration phase is performed via the Open Address Hashing (OAH) model. The reason for using the 

OAH model is that the availability of a random set of sizeable and possible public and private keys at 

the KGC increases the possibility of collision occurrence. This is due to the probability of at least two 

of the keys in the KGC being hashed to the same slot in which the wrong keys may be generated for 

each user, which would increase the key generation response time. In this work, to reduce key 

generation response time, the Open Address Hash registration phase is presented.  

By applying the OAH model in the registration phase, the patient ‘𝑈𝑝’ and the hospital ‘𝑈𝐻’ 

perform initial registration at the ‘KGC’. The ‘KGC’ evaluates a pair of BK’ and ‘RK’ for each user. 

The user acquires the cloud’s ‘BK’ ‘a’ and ‘PK’ to either performs encryption or decryption to obtain 

medical information, along with the BK and RK generation time ‘TT’. The block diagram of the Open 

Address Hash registration phase is shown in Figure 2. 

As shown in Figure 2, the block diagram of OAH includes three parts: the user, cloud, ‘BK’ 

and ‘KGC’. For each user, along with the public key provided by the cloud, the ‘KGC’ generates a 
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public key and a private key using the OAH model. By using the OAH model for user registration, 

different hash functions in the sequence perform mapping with different locations in the hash table. 

 

 Figure 2. Block diagram of Open Address Hash Registration 

 

In this work, two different hash functions, ‘ℎ0’ and ‘ℎ1’, are used to generate a ‘BK’ and a ‘RK’, 

respectively, for each user ‘𝑈𝑃, 𝑈𝐻 , 𝑈𝐶’. This is mathematically formulated as shown below. 

 𝐵𝐾𝑝 = ℎ0(𝐼𝐷𝑝, 𝑎, 𝑇)      (1) 

𝐵𝐾𝐻 = ℎ0(𝐼𝐷𝐻 , 𝑎, 𝑇)      (2) 

 𝐵𝐾𝐶 = ℎ0(𝐼𝐷𝐶 , 𝑎, 𝑇)      (3) 

From equations (1), (2), and (3), for each user ‘U’ with identification ‘ID’ and the cloud’s public 

key ‘a’ for different time intervals ‘T’, a corresponding private key is generated. 

 𝑅𝐾𝑝 = ℎ1(𝐵𝐾𝑝, 𝑎, 𝑇)      (4) 

 𝑅𝐾𝐻 = ℎ1(𝐵𝐾𝐻 , 𝑎, 𝑇)      (5) 

𝑅𝐾𝐶 = ℎ1(𝐵𝐾𝐶 , 𝑎, 𝑇)      (6) 

Similarly, from equations (4), (5),and (6), for each user ‘U’ with identification ‘ID’ and cloud’s 

public key ‘a’ for different time intervals ‘T’, a corresponding private key is generated. The pseudo-

code representation of OAH is shown below.  

Algorithm 1 OAH algorithm 

Input: User ‘𝑈𝑃, 𝑈𝐻 , 𝑈𝐶’, cloud’s public key ‘a’, users public key ‘𝐾𝑃, 𝐾𝐻 , 𝐾𝐶’, time ‘T’ 

Key Generation Centre 

Public key ‘BK’ 

Private Key ‘RK’ 

Patient ‘𝑈𝑝’ 

Hospital ‘𝑈𝐻’ 

User  

 

Cloud’s 

Public key 
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Output: Key generation (public key ‘BK’, private key ‘RK’, pivotal key ‘PK’) 

1: Begin 

2:       For each user ‘𝑈𝑃, 𝑈𝐻 , 𝑈𝐶’ with the cloud’s public key ‘a’ 

3: For ‘i=0 to n-1’ 

4: If  [ℎ𝑖(𝑥) =x]’, then 

5: Return ‘ℎ𝑖(𝑥)’ 

6:                     Obtain a public key for the patient, hospital, and cloud using equations (1), (2) and (3) 

7:                    Obtain a private key for the patient, hospital, and cloud using equations (4), (5) and (6) 

8: End if 

9: If [ℎ𝑖(𝑥) = ∅], then 

10:                  Return ‘absent’ 

11: End if 

12: End for 

13: End for 

14: End  

 

As shown in the above OAH algorithm, the ‘KGC’ obtains ‘(𝐾𝑃, 𝐵𝐾𝑃, 𝑅𝐾𝑃)’, 

‘(𝐾𝐻 , 𝐵𝐾𝐻 , 𝑅𝐾𝐻)’, and ‘(𝐾𝐶 , 𝐵𝐾𝐶 , 𝑅𝐾𝐶)’ for each user and sends them to the corresponding end users 

for further communication. By applying OAH during registration, the collision between key selections 

is reduced. Because of this, key generation response time is further reduced. At first, the patient and the 

hospital perform initial registration through the key generation center using OAH model. For each user, 

‘KGC ’generates the pair of a public key and a private key. With this public and private key, the user 

performs encryption or decryption for accessing the medical records. By using the OAH registration 

process, the collision between key selections is minimized and also key generation response time is 

further reduced. 

3.3 Polynomial Data Collection 
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Upon successful registration between the patient, hospital, and cloud via ‘KGC’, the next part 

in the design of the proposed method is data collection between the patient, hospital, and cloud. During 

an emergency, multiple co-located sensors in IoT SHC systems may initiate and forward similar sensed 

data/events to the cloud server. Therefore, in this work, a data collection mechanism is designed to use 

at least some of these publications for the detection of emergencies rather than the collection of all data. 

This is performed using the Polynomial Data Collection (PDC) algorithm. By using the PDC 

algorithm, complexity (i.e., the computational complexity) is taken into account in order to classify the 

algorithm based on the behavior of the number of operations it needs to perform, not on the constant 

time regardless of the input size. As a result, computation complexity is reduced.  

Using the PDC algorithm, two schedules are constructed from each registered publisher 

‘𝑆𝑃𝜖𝑆𝑃𝑃 , 𝑆𝑃𝐻’ to the assigned gateway router ‘C’. These two schedules are the shortest path that 

identifies the perfect shortest path ‘PSP’ (in terms of the weight factor of sensor ‘i’) between ‘SP’ and 

‘C’, in case of the critical state. This is mathematically formulated as shown below.  

PSP (f) =MIN C (V, E, G)     (7) 

From equation (7), the ‘PSP’ is obtained according to the minimum cost involved in mapping 

vertex ‘V’ and its corresponding entropy and the information gained of sensor ‘i’ (obtained in the next 

section). Other than the shortest path, the maximal disjoint paths (i.e., minimum number of common 

nodes/links) from each ‘ 𝑆𝑃𝜖𝑆𝑃𝑃 , 𝑆𝑃𝐻’ to ‘C’.  

 MDP(f)=Overall Space PSP(f)     (8) 

From equation (8), the maximal disjoint paths ‘MDP’ is the path other than the perfect shortest 

path obtained, in case of the normal state. The pseudo-code representation of ‘PDC’ is shown below.  

Algorithm 2 PDC algorithm 

Input: Registered publisher ‘𝑆𝑃𝑃 , 𝑆𝑃𝐻’, gateway router ‘C’, time ‘T’ 

Output: Data collection  

1: Begin  

2:      For each registered publisher ‘ 𝑆𝑃𝜖 𝑆𝑃𝑃 , 𝑆𝑃𝐻’ to the assigned gateway router ‘C’ at Time ‘T’ 

3:               Identify the perfect shortest path ‘PSP’ using equation (7) 
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4:                    Send corresponding data between ‘𝑆𝑃𝐻 and C’ 

5: Identify maximal disjoint paths using equation (8) 

6:                    Send corresponding data between ‘𝑆𝑃𝐻 and C’ 

7: End for 

8: End  

 

As shown in the above PDC algorithm, for each registered publisher, the algorithm initially 

identifies the shortest path or the critical state based on the minimum cost involved in mapping vertex 

‘V’ and its corresponding entropy and the information gained of the sensor by using polynomial 

distribution. Next, the algorithm identifies the maximal probable disjoint paths or the normal state via 

polynomial distribution based on the Overall space of Perfect shortest path by using PDC algorithm. 

Only one exponential calculation is performed to identify the critical state using polynomial 

distribution. The normal state is measured using this identified value. Therefore, the computational 

overhead incurred in identifying the normal or critical state is minimized.  

3.4 Two-factor Decision Tree Scheduling  

Decision Tree Scheduling represents a tree-formed structure that denotes classification 

knowledge. For performing the classification, the number of attributes is taken from the healthcare 

dataset.  

𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛 ∈ 𝐷ℎ      (9) 

In equation (9),𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛 denotes an attribute and𝐷ℎ denotes a healthcare dataset. Consider the 

attributes blood pressure ‘BP’, ‘ECG’ and glucose level ‘GL’ of the data set. A decision tree is a top-

down approach from a root node and involves partitioning the data into different subsets containing 

instances with similar values. A two-factor decision tree is used to classify patient data through the set 

of rules. The tree consists of a root node, branches, and leaf nodes. The top node indicates a root node 

in the tree that contains the attribute. The branch node processes the attributes based on the set of rules. 

Finally, the leaf node in the tree contains a class label. Generally, developing a decision tree model 

involves two steps, tree construction and tree pruning. In tree construction, recursively split the tree 

according to selected attributes with the information gain. In tree pruning process, it tries to identify 
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and remove the irrelevance branches (that might lead to outliers). In this way, the pruning method is a 

search algorithm that reduces the size of decision trees by removing sections of the tree that provide 

little power to classify instances. Pruning reduces the complexity of the final classifier, and hence it 

improves predictive accuracy by the reduction of overfitting potential. For example, in decision tree 

model, consider two branch nodes for predicting the state using ‘BP’, one branch node predict the 

critical state of the patient and the other is predicting the normal state of the patient. If ‘BP’ of the 

patient is higher than the threshold value, patient in critical state and disease predicted by using tree 

construction method. In this case, an attribution for the normal state is irrelevant. Therefore, it is reduced 

by using pruning method.  

 

Figure 3. Flow diagram of Two-factor Decision Tree Scheduling 

This process continues until all the attributes have been tested. In this work, a Two-Factor 

Decision Tree Scheduling was performed. Figure 3 shows the flow diagram of Two-factor Decision 
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Tree Scheduling. As shown in the flow diagram in Figure 3, initialization of the values of the attributes 

‘𝐴𝑡𝑡𝑟 = 𝐵𝑃, 𝐸𝐶𝐺, 𝐺𝐿’is the first step. Following initialization, threshold values of ‘𝐵𝑃𝑡 , 𝐸𝐶𝐺𝑡 , 𝐺𝐿𝑡’ are 

compared with the actual values to determine whether compared values are either critical state ‘CS’ or 

normal state ‘NS’. The decision tree uses the concept of information gain and entropy as two factors 

for the classification of normal state or critical state. The first factor (i.e., entropy) is the measurement 

of information entropy associated with each possible attribute value, which is the negative logarithm of 

the probability mass function for the value. Entropy is mathematically formulated as shown below  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) = − ∑ 𝑃𝑟𝑜𝑝(𝐶) log2 𝑃𝑟𝑜𝑝(𝐶)𝐶∈𝑐1,𝑐2
    (10) 

In equation (10), ‘C’ represents the set of class labels (i.e., normal state (𝐶1)or critical state (𝐶2) 

that categorizes the rules and ‘Prop (c)’ represents the proportion of patients ‘P’ belonging to class ‘C’. 

The second factor (i.e., information gain) refers to the anticipated minimization of entropy due to 

splitting the training samples according to their attributes. The decision tree selects the best attributes 

for splitting the patient into different subsets at each step. For each iteration, the best attributes are 

selected based on information gain, which is measured as follows: 

𝐺𝑎𝑖𝑛(𝑃, 𝐴𝑡𝑡𝑟) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − 𝑃𝑟𝑜𝑏𝑝(𝑉) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑉)  (11) 

In equation (11), ‘Attr’ represents the attribute relative to the collection of samples ‘P’ and ‘V’ 

denotes the set of values ‘V’. The attribute with maximum information gain is selected to make a 

decision to split all possible values for attributes ‘𝑃𝑉’ is the subset of attribute in which the samples ‘P’ 

has the set of values ‘V’. Finally, ‘𝑃𝑟𝑜𝑏𝑝(𝑉)’ represents the probability that sample ‘P’ belongs to the 

patient condition attributes normal or critical state based on the threshold value𝐵𝑃𝑡 , 𝐸𝐶𝐺𝑡 , 𝐺𝐿𝑡. After 

classifying patient condition, priority-based scheduling is performed. A critical patient condition state 

is given higher priority than the normal state. Higher priority is scheduled first to the physicians than 

lower priority. This process increases scheduling efficiency. The pseudo-code representation of Two-

factor Decision Tree Scheduling is shown below.  

Algorithm 3. Two-factor Decision Tree Scheduling 
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Input: Registered publisher ‘𝑆𝑃𝑃 , 𝑆𝑃𝐻’, attributes‘𝐴𝑡𝑡𝑟 = 𝐵𝑃𝑡 , 𝐸𝐶𝐺𝑡 , 𝐺𝐿𝑡’, 

threshold‘𝐵𝑃𝑡 , 𝐸𝐶𝐺𝑡 , 𝐺𝐿𝑡’ 

Output: Prioritize registered publisher based on two-factors 

1: Begin 

2:       For each registered publisher ‘𝑆𝑃𝑃 , 𝑆𝑃𝐻’ 

3:              For each Attribute ‘𝐴𝑡𝑡𝑟’  

4:                     Measure entropy value using equation (10) 

5:                     Measure information gain using equation (11) 

6:                     If ‘𝐵𝑃 ≤ 𝐵𝑃𝑡’ && ‘𝐸𝐶𝐺 == 𝐸𝐶𝐺𝑡’ && ‘𝐺𝐿 ≤ 𝐺𝐿𝑡’ then 

7:                                normal state 

8:                      Else  

9:                                Critical state  

10: End if 

11: End for 

// Decision Tree pruning process// 

12: Constructing tree for each attribute  

13: if BP, ECG, GL > threshold value then 

14:             Critical state 

15:  else 

16:                normal state  

17:                 Normal state attributions are removed by using pruning method 

18: Assign high priority 𝑝ℎ to critical state 

19:                  Assign Low priority 𝑃𝑙 to normal state 

20:                  Schedule high priority to the physician 

21:       End for 

22: End  
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As shown in the Two-factor Decision Tree Scheduling algorithm above, the algorithm starts 

with obtaining attribute values for each registered publisher. The attributes refer to the values of ‘BP’, 

‘ECG’ and ‘GL’. Two factors, entropy and information gain, are measured with these three attributes. 

The threshold values are compared with these two resulting n values to schedule the process, depending 

on the sensitivity of the condition of the patient. The sensor with higher values has higher priority 

because of the critical state. In contrast, the sensor with lower values has a lower priority because of the 

normal state.  The two factor decision tree algorithms is impelmented to efficiently schedule the normal 

state or critical state of the patient. In this method, irrelevant attributions are removed by using pruning 

method.  

3.5 Contributions 

Based on the described strategy, the main contributions of the HP-TDT method are described 

below. 

 The HP-TDT was designed to improve the performance of response time via collision 

reduction in an SHC system as compared to conventional methods:  Due to collision 

occurrence in KGC, the probability of at least two of the keys in the KGC being hashed to the 

same slot in which the wrong keys may be generated for each user, which would increase the 

key generation response time. In order to overcome these issues, Open Addressing Hash model 

is used to addressing the response time issue through collision detection for enhancing 

performance. 

 The computational overhead is reduced during data collection by using Polynomial Data 

Collection (PDC) algorithm: Data collection is performed at the CDS using the PDC 

algorithm. By applying a polynomial factor, the computational overhead is reduced. PDC 

algorithm identifies the differentiation between the normal and critical states efficiently.  Only 

one exponential calculation is performed to identify the critical state using polynomial 

distribution. Here, the normal state is measured using this identified value. As a result, the 

computational overhead incurred in identifying the normal and critical states are minimized.  
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 The Two-factor Decision Tree algorithm is implemented to increase the scheduling 

efficiency by efficient classification of patient data according to normal and critical states: 

The decision tree uses the concept of information gain and entropy as two factors for the 

classification to the normal state or critical state. The number of critical patients is high and, 

therefore, the scheduling process takes too much time in order to schedule the patient. By 

coupling the decision tree algorithm to our system, it takes less time to schedule the patient and 

scheduling efficiency is increased. 

 

4. Experimental setup 

 Based on the design described above, IoT-based cloud computing was implemented in JAVA 

platform using Cloud Sim simulator. Several experiments were conducted to evaluate the performance 

of our proposed SHC system. A healthcare dataset (Healthcare dataset) was used in the experiments. 

The reason for using Kaggle is that it supports a variety of dataset publication formats. Kaggle datasets 

are not open, accessible data formats better supported on the platform, but possess the advantage of 

working with more users regardless of the tools being used. 

Columns included in the dataset are patient ID, gender, age, hypertension, heart disease, marital 

status, work type, residence type, average glucose level, BMI, and smoking status. One hundred fifty 

different users (i.e., patient) ranging between15 to 70 years of age were considered for the experiments. 

The experiments were repeated ten times. The performance of the proposed method (an IoT using Hash 

Polynomial Two-factor Decision Tree (HP-TDT) Scheduling method for SHC systems) was compared 

with two existing methods: privacy-preserving smart IoT-based healthcare (Yang et al., 2019)and 

autonomic cognitive design patterns (Mezghani et al., 2017). In order to evaluate the performance of 

IoT based on SHC systems, three different parameters such as key generation time, computational 

overhead and scheduling efficiency were tested in the JAVA platform. 

5. Results &Discussions 

In this section, the performance of the HP-TDT method is evaluated and compared with state-

of-the-art methods. 

5.1 Key generation time  



 

20 

 

In this section, the response time of the HP-TDT method is evaluated and compared with 

privacy-preserving smart IoT-based healthcare (PPS-IoT) proposed by Yang et al.,(2019)and 

autonomic cognitive design patterns (ACDP) proposed by Mezghani et al., (2017), based on the number 

of patients involved as input in a Cloud environment in the comparison experiments. Key generation 

time depends on the number of cloud user placed in the cloud environment where the request is 

processed. The key generation time is shown below.  

𝐾𝐺𝑇 = ∑ 𝑃𝑖 ∗ 𝑡𝑖𝑚𝑒 (𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦) + 𝑡𝑖𝑚𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐾𝑒𝑦)𝑛
𝑖=1    (12) 

From equation (12), the key generation time is obtained according to the time required to obtain the 

public key ‘ 𝑡𝑖𝑚𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐾𝑒𝑦)’ and private key ‘ 𝑡𝑖𝑚𝑒 (𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐾𝑒𝑦)’ with respect to the patients 

‘𝑃𝑖’. 

 

Figure 4 Comparison of different methods in terms of key generation time. 

Figure 4 shows the key generation time of all three methods. This experiment was performed 

to verify the high efficiency of the key generation time with respect to the number of patients in IoT for 

SHC systems. In this experimental environment, two different hash functions were combined to achieve 

the high-efficiency key generation time. The key generation time was compared with PPS-IoT and 

ACDP by capturing the same number of patients. As illustrated Figure4, the experimental result of key 

generation time for a different number of patients with the same size (e.g., 15, 30, 45…,150) in the key 

generation phase was considered. Based on this experiment, we learned that: 1) the key generation time 

is proportional to the number of patients and 2) to handle the same number of patients for key 
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generation, HP-TDT method requires less time than PPS-IoT and ACDP methods. Hence, as shown in 

Figure 4, the key generation time increases with an increase in the number of patients and has 

insignificant gaps when the number of patients is greater than 60; i.e., the key generation time for SHC 

systems in the HP-TDT method is lower than PPS-IoT and ACDP which is because of the application 

of OAH in the HP-TDT method. The reasons for this are twofold. First, existing PPS-IoT and ACD P 

methods perform key generation over IoT in a cloud server using model-driven methods with the aid 

of a cognitive monitoring system password-based mechanism, whereas in the HP-TDT method, two 

different hash functions were applied, which minimized the collision between key selections. Second, 

for performing key generation, the existing PPS-IoT and ACDP methods applied a single edge to avoid 

service failures for optimization, which is compromised in case of a large file or large number of 

patients, whereas in the HP-TDT method, key generation is performed for different time intervals and 

then key generation was performed with the optimal number of keys. This, in turn, reduced the key 

generation time and therefore the response time between the patients and the cloud in IoT system using 

HP-TDT method by 20% as compared to PPS-IoT and 47% as compared to ACDP. Hence, with the 

quick response time, physicians or medical practitioners can swiftly attend to the patients. 

5.2 Computational overhead 

In the HP-TDT method, computational overhead measures the storage that is consumed to carry 

out the SHC system. Computational overhead is evaluated in terms of kilobytes (KB) and is 

mathematically formulated as shown below.  

𝐶𝑂 = 𝑃𝑖 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑀𝐷𝑃(𝑓))    (13) 

Using equation (13), the overhead incurred for SHC systems is estimated with respect to a 

different number of patients (P) (i.e., samples). The lower the communication overhead, the more 

efficient the method is said to be. The computational overhead incurred for IoT based on cloud 

environment is one of the challenges to be addressed for S9HC systems. With an increase in the number 

of patients, minimization of computational overhead cannot be attained; however, optimization can be 

achieved. The comparison of computational overhead for HP-TDT method was measured and compared 

with PPS-IoT (Yang et al., 2019) and ACDP (Mezghani et al., 2017) methods and the results are plotted 
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in Figure 5. The results reported in Figure 5confirm that with an increased number of patients, the 

computational overhead is also increased.  

 

Figure 5 Comparison of different methods in terms of computational overhead. 

Figure 5 shows the comparative performance of computational overhead for 15 different 

patients collected at ten different time intervals involving various activities (i.e., measuring BMI or 

glucose levels). As a result, 150 different patients are shown on the x-axis and computational overhead 

is shown on the y-axis. With the increase in the number of patients using KAGGLE datasets with 

different age groups of 25 and 40 collected from both genders, the computational overhead of SHC also 

increases. As a result, computational overhead increases with an increase in the number of patients. As 

a simulation in which‘15’ patients were considered for experimentation, the required to rage was found 

to be ‘11’ using HP-TDT method, ‘15’ using PPS-IoT and ‘19’ when applied with ACDP However, 

performance analysis of computational overhead using HP-TDT method is comparatively better than 

PPS-IoT and ACDP methods. This is because of the shortest paths using the Polynomial Data Collection 

(PDC) algorithm. By applying the PDC algorithm, differentiation between the normal and critical state 

are made efficiently as the classification is made according to the behavior of how many operations to 

be performed and not on the constant time consumed irrespective of the input size as done in (Yang et 

al., 2019) and (Mezghani et al., 2017) using PPS-IoT and ACDP methods, respectively. As a result, 

computation complexity is reduced by applying the HP-TDT method. The results also show that the 

computational overhead for data collection is found to be comparatively smaller using HP-TDT method 

by 18% as compared to PPS-IoT and 34% as compared to the ACDP method. 
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5.3 Scheduling efficiency  

Finally, the scheduling efficiency, i.e., successful patients assigned with the physicians, is 

measured. In the HP-TDT method, scheduling efficiency refers to the number of successful patients 

assigned with the physicians performed in a Cloud environment based on the number of patients. The 

scheduling efficiency is measured as shown below. 

𝑆𝐸 = ∑ [𝑃𝐵𝑆/𝑃𝑖]𝑛
𝑖=1 ∗ 100     (14) 

In equation (14), the scheduling efficiency ‘SE’ is the ratio of the patients being scheduled 

‘PBS’ to the number of patients ‘𝑃𝑖’ waiting to be scheduled. The scheduling efficiency is measured in 

terms of percentage (%).  

 

Figure 6 Comparison of different methods in terms of scheduling efficiency. 

The targeting result of scheduling efficiency using the HP-TDT method is compared with two 

state-of-the-art methods: PPS-IoT and ‘19’ when applied with ACDP in Figure 6 for visual comparison 

based on a varied number of patients. The HP-TDT method differs from PPS-IoT (Yang et al., 2019) 

and ACDP (Mezghani et al., 2017) methods in that the Two-factor Decision Tree Scheduling algorithm 

was applied for scheduling of patients in the cloud environment for IoT-based SHC systems. With 

simulation being conducted for 15 patients, the values of the attributes ‘𝐵𝑃, 𝐸𝐶𝐺, 𝐺𝐿’ were initially 

initialized. Next, assigned values were compared to threshold values. The application of this algorithm 

optimizes scheduling by applying entropy. With optimized scheduling, the normal and critical state of 

the patient is differentiated by applying the information gain with respect to the threshold factors 
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(separately for BP, ECG, and glucose level). By two-factor decision tree scheduling algorithm, the high 

priority is scheduled to the physician first followed by low priority. In the proposed system HP-TDT 

Therefore, the scheduling efficiency using HP-TDT method is found to be improved by 14% as 

compared to PPS-IoT and 33% as compared to ACDP.  

5.4 AUC (Area Under a Curve) 

AUC curve is plotted with two performance metrics, scheduling accuracy and false-positive 

rate. Scheduling accuracy is defined as the number of patients correctly identified from the 

decision tree. The false-positive rate is defined as a number of patients incorrectly identified. 

Figure 7 shows the Area under a Curve for measuring the accuracy of the proposed technique. 

For finding the area under the curve integrate of y = f(x) between x = a (false-positive rate=2) 

and x = b (false-positive rate=8) are calculated. Where y is the scheduling accuracy. Areas 

under the x-axis will come out negative rate and areas above the x-axis will be positive rate in 

between the 2-8 interval.  

  

Figure 7. Represents the diagram of area under the curve 

5.5 Scheduling Time  

Scheduling time is defined as the time taken to schedule the number of patients.  
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𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠

× 𝑡𝑖𝑚𝑒(𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝑖𝑛𝑔 𝑜𝑛𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑎𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑟 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙) (𝑚𝑠)  

 

 

Figure 8 Comparison of different methods in terms of scheduling Time  

 Figure 8 shows a comparison of the scheduling time of the proposed method and two state-of-the-art 

methods published recently. The targeting results of scheduling time using these methods are 

visualized for a varied number of patients. From this figure, on average, there are about 20% and 7% 

of scheduling time reduction by the proposed HP-TDT technique in comparison with two existing 

methods, PS-IoT and ACDP, respectively. 

 

6. Conclusions 

The proposed method consists of three parts: key generation, data collection, and notification. The 

method starts with initial registration or key generation performed by the ‘KGC’ by applying the 

OAH model. Next, for registered users, data collection at the cloud data storage is performed by 

applying a Polynomial Data Collection algorithm. The PDC algorithm is applied to the registered 

users and was designed in such a manner that the normal and critical state of patients can be 

differentiated via the shortest path and maximal disjoint paths. Finally, Two-factor Decision Tree 

Scheduling algorithm was applied at the cloud for swift detection of critical stage patient send toper 
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form Two-factor Decision Tree Scheduling algorithm scheduling accordingly. The HP-TDT was 

implemented to validate the proposed method. Extensive experiments were conducted to demonstrate 

the effectiveness and robustness of the proposed method in terms of key generation time, 

computational overhead, and scheduling efficiency. Future work will focus on designing low cost and 

low power consumption for the SHC system to perform efficient patient analyses. In the future, the 

scalability of the method will be verified by evaluating the proposed method using different kinds of 

datasets. In addition, advanced classification techniques may be developed in the future to further 

increase the classification and scheduling process.  
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Appendix: 

TABLE A1: COMPARISON STUDY 

Reference  Approach Objective Pros Cons 

C. Jr. Arcadius 

et al. (2017) 

Survey of 

Structural health 

monitoring 

framework  

Handled 

complex and 

large amount 

of collected 

data from 

sensors 

Sense and 

collected useful 

information  

Computational 

overhead was 

not minimized 

Ahmed Abdel 

Gawad and 

Kumar 

Yelamarthi 

(2017) 

SHM platform 

embedded with 

IoT 

Detected the 

size and 

location of 

damage in 

structures 

Correctly 

checked whether 

the sheet was 

healthy or not  

Security 

analysis was 

not performed 

http://mathworld.wolfram.com/PolynomialTime.html
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Stephanie 

Baker et al. 

(2017) 

Standard model 

for application in 

future IoT 

healthcare systems 

Monitored 

several health 

indices and 

communication 

standards  

Improved 

security in the 

cloud 

Attained 

significant 

improvements 

in the field of 

IoT-based 

healthcare 

Stefano 

Triberti and 

Serena Barello 

(2016) 

Ambient 

Intelligent (AI) 

system 

Task 

monitoring  

Improved the 

quality of life  

Validity was 

not ensured 

Tiago K. 

Colicchio et al. 

(2016) 

Survey of 

classification 

methods  

Classified and 

characterized 

variables to 

measure the 

impact of 

information 

technology on 

healthcare 

Ensured security 

and validity 

Data 

misclassificatio

n was not 

minimized 

Gina Sprint et 

al. (2016) 

Physical Activity 

Change Detection 

(PACD) approach  

Physical 

activity change 

detection  

Tracked physical 

activity of users  

Did not find 

the ability to 

perform 

accurate 

tracking 

Mario Nieto-

Hidalgo et al. 

(2016) 

vision-based 

approach 

Classified 

normal or 

abnormal gait 

Minimized 

computation time 

Classification 

performance 

was not 

efficient. 

Joon-Soo 

Jeong et al. 

(2016) 

Smart Healthcare 

System 

Disease 

diagnosis and 

treatment of 

patients in the 

healthcare 

industry 

Monitored and 

diagnosed 

disease at an 

early stage 

Security of 

patient health 

information 

was not 

addressed 

Deba jyoti Pal 

et al. (2018) 

Partial least square 

structural equation 

modeling 

Explored smart 

home services 

of health care 

Explored the 

process of 

adopting smart 

home services in 

healthcare 

Security and 

privacy aspects 

were not 

addressed 

Hasan Tahir et 

al. (2018) 

Integrated Circuit 

Metric (ICMetric) 

technology 

Achieved 

security 

Scheme provided 

High levels of 

security and 

authentication 

Key generation 

time was not 

minimized. 

Shirin 

Enshaeifar et 

al. (2018) 

Technology 

Integrated Health 

Management 

(TIHM) 

Discovered 

changes in the 

health of  

participants' 

Increased the 

accuracy of 

detecting 

abnormalities 

Increased the 

timespan for 

detecting 

abnormalities 
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Joel J. P. C. 

Rodrigues et 

al. (2018) 

Reviewed 

methods based on 

IoT 

Analysed 

remote 

healthcare 

monitoring 

Improved the 

Internet of 

Health Things 

(IoHT) 

Security was 

low. 

Youn-Sik 

Hong (2018) 

Smart care bed 

prototype system 

Sensed 

pressure on the 

body of a 

patient to 

minimize the 

mortality rate 

Found various 

postures of 

patients to be 

more effective 

Higher 

mobility 

Xiao Ma et al. 

(2018) 

Intelligent 

healthcare systems 

Provided more 

intelligent, 

professional, 

and 

personalized 

healthcare 

services 

Enhanced 

performance of 

healthcare 

services 

Quality of 

service was not 

improved 

Luis Roda-

Sanchez et 

al.(2018) 

Two innovative 

algorithms  

Improved 

reliability and 

lifespan of the 

Opera BLE 

device  

Improved 

efficiency  

Did not ensure 

safety at work 

Yuwen Chen 

et al.(2017) 

Privacy protection 

user 

authentication and 

key agreement 

scheme 

Ensured 

secrecy of the 

key and 

avoided 

gateway access 

Increased 

security  

Privacy 

problems were 

not considered  

Mohamed 

Abdel-Basset 

et al. (2018) 

Decision-making 

model based on 

IoT 

Gathered and 

processed 

required 

information 

Increased 

security and 

minimized cost 

Did not apply 

healthcare 

fields  

Chiehyeon 

Lim, Paul P. 

Magliob 

(2018) 

Smart Service 

Systems 

Analyzed text 

data 

Developed a 

unified 

conceptualization 

of smart service 

systems 

Time analysis 

was not 

performed 

R.C. Lacher et 

al.(1995) 

Neural network 

model 

Classified the 

financial health 

of a firm 

Minimizes the 

error 

Did not 

effectively 

predict the data  

Ramaswamy 

V.et al. (2005) 

Queuing models Increased 

access to 

emergency 

services 

Ensured the 

safety of the 

customers 

Scheduling 

was not 

performed 
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Ran Liu and 

Xiaolan Xie 

(2018) 

Simple discrete-

time analytical 

model 

Estimated 

patient waiting 

time 

Significantly 

reduced the total 

waiting time of 

patients  

System 

stability was 

not improved 

Eva Martínez-

Caro et al. 

(2018) 

Integrated model Provided IoT-

based 

healthcare 

services 

Offered better 

quality of 

healthcare 

services 

Predictive 

capabilities 

were not 

improved 

Mahmud 

Hossain et al. 

(2018) 

IoT-based health 

prescription 

assistant model 

Provided 

quality 

healthcare 

services to 

remote 

locations 

Minimized 

communication 

and computation 

latency 

Response time 

was not 

minimized 

Paola 

Cappanera and 

Maria Grazia 

Scutellà (2018) 

Integer linear 

programming 

(ILP) model 

Assigning and 

scheduling the 

pattern of 

efficient home 

care services 

Minimized 

operating costs 

The larger 

home care 

instances were 

not solved 

Adam Diamant 

et al. (2018) 

Markov decision 

process using 

approximate 

dynamic 

programming 

approach 

Scheduled 

several and 

serial 

appointments 

for patients 

Increased 

scheduling 

practices 

Overhead was 

not minimized 

Monica C. 

Villarreal et al. 

(2015) 

Workforce and 

demand 

scheduling model 

(WDSM) 

Planned and 

scheduled the 

staff and 

demand 

Increased 

scheduling 

efficiency 

Privacy-

preservation 

was not 

performed 

Peter A. 

Salzarulo et al. 

(2016) 

Appointment 

scheduling system 

Classified 

patients using 

individual 

patient 

characteristics 

Improved 

efficiency of 

patient 

scheduling and 

minimized the 

cost function 

Security 

remained 

unsolved.  

Proposed 

Model 

Hash Polynomial 

Two-factor 

Decision Tree 

(HP-TDT) model 

Smart health 

care 

scheduling 

Increased 

scheduling 

efficiency  

 

 


	Elsevier required licence
	M20_revised version 20-08-2019

