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ABSTRACT Increasing the dimensionality of the configuration space quickly makes trajectory planning
computationally intractable. This paper presents an efficient motion planning approach that exploits the
heterogeneous low-dimensional structures of a given planning problem. These heterogeneous structures are
obtained via a Dirichlet process (DP) mixture model and together cover the entire configuration space,
resulting in more dimensionality reduction than single-structure approaches from the existing literature.
Then, a unified low-dimensional trajectory optimization problem is formulated based on the obtained
heterogeneous structures and a proposed transversality condition which is further solved via SQP in our
implementation. The positive results demonstrate the feasibility and efficiency of our trajectory planning
approach on an autonomous underwater vehicle (AUV) and a high-dimensional intervention autonomous
underwater vehicle (I-AUV) in cluttered 3D environments.

INDEX TERMS Motion planning, underwater vehicle, trajectory optimization, dimensionality reduction.

I. INTRODUCTION
Robots designed for performing complex tasks, such
as (mobile) manipulators and humanoid robots, often have
many degrees of freedom (DOFs). Trajectory planning is an
essential part of task execution. Compared with low-DOF
robots, planning for high-DOF robots is challenging due
to the high dimensionality of the configuration space.
In this work, we use the trajectory planning problem of a
high-DOF I-AUV as an example to introduce a new kinematic
motion planning approach. The I-AUV consists of two parts,
a 6-DOF base and a n-DOF manipulator that can be applied
to conduct underwater infrastructure cleaning, inspection or
data collection [1]. Our method can also be applied to other
high-dimensional planning problems [2], [3].

In high-DOF robot planning, considering the computa-
tional time and memory required to solve an optimal tra-
jectory, planning in high dimensional space is generally a
computationally hard problem [3]. Although it is necessary
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to plan every DOF of the robot for the controller, it may
not be necessary to search the trajectory throughout the
entire configuration space because in some cases, the deci-
sion space may be small, and the planned trajectories retain
low-dimensional structures [3]. For example, when plan-
ning a trajectory for an I-AUV in an environment with few
obstacles, we need only to plan the base of the I-AUV; the
manipulator trajectory could be easily decided by control
methods [1]. Therefore, the high-dimensional decision space
of the planning problem is reduced to a lower dimensional
subspace. In other cases, only a few important DOFs may
be needed to complete the task. The trajectory planned in
lower dimensional subspace can easily be transformed into
the original high-dimensional space. This process is called
planning with dimensionality reduction or low-dimensional
structure [3]. The low-dimensional structure is the basis of
the low-dimensional subspace.

The lower dimensional subspace, such as the configuration
space of the base of an I-AUV, can be designed manually
based on prior knowledge. However, when given specific
planning problem data, such as the cost function, obstacle
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population and the kinematic model of the robot, an ideal
dimensionality reductionmethod is expected to automatically
exploit the lower dimensionality space.

In general cases, the lower dimensional subspace of
the planning problem not obvious, requiring an unknown
mapping from the original configuration space. For a
given planning problem, the dimensionality reduction or
low-dimensional structure learning process as shown in
Section IV-A is to learn a low-dimensional structure that
captures the cost function of the planning problem [4].
The high-dimensional cost function can be approximated
by a low-dimensional cost function defined in the learned
low-dimensional subspace.

The low-dimensional structure generally is learned from
the cost structure or from experts’ demonstration data based
on various learning- or modeling-based methods [4], [5].
In those prior works, the dimesionality reduction process
learns only a single low-dimensional structure. However,
given a planning problem, the structure generally is het-
erogeneous. The low-dimensional structure is highly cor-
related to the environment information. In heterogeneous
environments, considering different obstacle populations,
obstacle-free regions, cluttered areas, narrow passages, etc.
may all exist. Thus, in different regions, the dimensions and
structures of the low-dimensional subspace to be considered
to capture the original planning problem are obviously dif-
ferent. This fact is captured in the proposed heterogeneous
dimensionality reduction in Section IV. In Section V-A,
we demonstrate that heterogeneous dimensionality reduction
is more efficient and effective.
Contributions: In this paper, rather than utilizing a single-

structure dimensionality reduction method - planning in
one low-dimensional subspace that is exploited by uni-
form dimensionality reduction [4], we propose a planning
approach based on a heterogeneous dimensionality reduction
approach. In this approach, the entire configuration space is
decomposed into multiple sub-configuration spaces; then the
planning problem has different low-dimensional structures
in the different sub-configuration spaces. The trajectory is
optimized in multiple subspaces based on the defined objec-
tive function and the learned low-dimensional structures. The
main contributions of this work are as follows:

(i) Identifiable low-dimensional subspace learning. In our
approach, trajectory optimization is performed in multiple
low-dimensional subspaces. To identify the label of sub-
space that a low-dimensional point belongs, we propose
a low-dimensional structure learning method as shown in
Section IV-A.1 that retains some dimensions of the orig-
inal configuration space. These retained dimensions are
often essential in distinguishing environment conditions,
such as positional dimensions to distinguish obstacle influ-
cence. By doing so, every point on the trajectory in the
low dimensional spaces and every low dimensional structure
retains some common dimensions. These retained dimen-
sions identify an appropriate low dimensional structure for
each point on the trajectory during planning. In this approach,

low-dimensional structure is learned from the gradients of the
cost function at sampled points via a spectral optimization
method similar to principal component analysis (PCA).

(ii) DP-based subspaces classification. Because the dis-
tinct number of low-dimensional structures is unknown
beforehand for a given map, a nonparametric clustering
method based on the Dirichlet process is proposed to find
all clusters and assign cluster labels to each sampled point.
The DP is a stochastic process widely applied in Bayesian
nonparametrics to cluster unclassified data. It is also widely
used in motion pattern modeling [6]. In this work, we utilize
it for planning spaces classification. Finally, an SVM-based
classifier is trained based on those labeled points. When per-
forming trajectory optimization, the subspace label of each
every newly sampled point can be determined by the SVM
classifier.

(iii) Unified trajectory optimization in multiple subspaces.
Based on the objective function we defined, a unified
gradient-based trajectory optimization is proposed. The tra-
jectory planning process is divided into two steps. In the first
step, optimization is processed in multiple low-dimensional
subspace with a gradient-based optimization approach. The
low-dimensional subspaces trajectory optimization method
does not split the trajectory into multiple segments and
optimize it in each subspace, but rather unifies these segments
of heterogeneous dimensions through a proposed transver-
sality condition. The second step is to map the optimized
low-dimensional trajectory to full-dimensional trajectory
with a sequential quadratic programming (SQP) solver. Our
unified trajectory optimization problem analogous to the
discrete switched systems control problem that is how
to coordinate various subsystems [7]. Based on the
defined optimization problem, the transversality condi-
tion and the switching equation in both steps are detailed
in Section IV-B.
(iv) Numerical experiments. To verify the efficiency of the

proposed approach, we first give the computational complex-
ity analysis of our approach, and then apply our algorithm
to a 3D AUV planning problem and a 10-DOF I-AUV plan-
ning problem. Numerical simulation results demonstrate the
feasibility and efficiency of the proposed trajectory planning
approach.

In the remainder of this paper, Section II introduces
prior works regarding high-dimensional trajectory planning
and planning methods with low-dimensional structures, and
Section III defines the problem addressed in this work.
Section IV details each module of our approach using 3D
space motion planning task as an example. Section V reports
the algorithm simulation results and its comparisons with
other methods. This work is concluded in Section VI.

II. RELATED WORK
High-dimensional motion planning is a challenging topic.
Next, we discuss the latest motion planning approaches
applied to high-dimensional space planning problems and
their relationships with our approach. We first review the
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latest generic planners, including search- or sampling-based
methods, and optimization-based planners. Then, we focus on
planning methods that utilize the low-dimensional structure
of the planning problem.

A. SEARCH- AND SAMPLING-BASED PLANNING
Search-based planners are the most widely applied
methods for low-dimensional systems that guarantee opti-
mality and completeness. However, it is extremely ineffi-
cient to discretize a high-dimensional configuration space,
build a graph and then search that graph. Until recently,
the typical approach for applying search-based approaches
to high-dimensional systems was to use a lattice graph-based
method [8], [9]. This approach means that the planner con-
siders only limited possible robot actions and obtains a path
with bounded suboptimality.

Sampling-based motion planning is the most popular
approach for robot planning in high-dimensional configura-
tion spaces. Sampling-based methods such as the probabilis-
tic roadmap algorithm (PRM*), rapidly-exploring random
trees (RRT*), and fast marching tree (FMT*) method guar-
antee probabilistic completeness and asymptotic optimality.
In [10], FMT* was shown to have a higher convergence
rate than PRM* and RRT*, which utilize a ’lazy’ dynamic
programming recursion method to generate a tree.

Although sampling-based methods are more efficient than
search-based methods, the number of samples increases
exponentially when the dimensionality increases and the
sample density remains the same; therefore, the complexity
increases at least exponentially. To improve the speed of
sampling-based planners, as apposed to sampling the state
space uniformly, one intuitive method is to perform sampling
using heuristics. The batch informed trees (BIT*) method
proposed in [11] utilize a heuristic strategy to adaptively
change the area where dense sampling should be performed.
The results in [11] demonstrate that BIT* is faster than
RRT* and FMT* in some cases. Rather than using manually
designed heuristics, recent work by Brian et al. [12] presented
a more general non-uniform sampling strategy by using a
supervised learning method.

The main idea of heuristic sampling is to reduce the search
space or bias search priority. The method proposed in this
paper also attempts to reduce the decision space by learning
from problem data automatically.

B. OPTIMIZATION-BASED TRAJECTORY PLANNING
Optimization-based approaches formulate the planning prob-
lem as an optimization problem. They use an objective func-
tion to describe planning tasks, such as the shortest path or
minimum energy use, and include many practical constraints.
Then, the problem can be solved by an appropriate solver. The
main advantage of these methods is that they utilize the
derivative information, which can improve an initial trajec-
tory to an optimal trajectory iteratively. Therefore, if the gra-
dient can be solved accurately and efficiently, such methods
may be more appropriate for application to high-dimensional

planning problems. To enable online high-DOF robot
planning, CHOMP proposed in [13] introduced an inexpen-
sive method of calculating functional gradients by using a
covariant update rule.When the planning task considersmany
general constraints, gradient information may not be avail-
able. Kalakrishnan et al. [14] applied a trajectory sampling
strategy to solve the gradient approximately.

Differential dynamic programming, such as iLQG [15],
forms another class of optimization-based methods that opti-
mize the trajectory iteratively by solving a local quadratic
programming problem and providing optimal controls as the
planned trajectory. However, this type of optimal control
method is not suitable for planning problems that need to
consider obstacle avoidance.

Our method is also an optimization-based method. How-
ever, we solve the problem in lower dimensional sub-
spaces. Therefore, the computational complexity required
to solve the gradient information is lower than planning in
high-dimensional space.

C. PLANNING WITH LOW-DIMENSIONAL STRUCTURE
To achieve high-dimensional motion planning, in addition to
generic heuristic-based strategies for reducing the decision
space, another intuitive way to bias the sampling or optimiza-
tion direction is to conduct planning with low-dimensional
structures. The high-dimensional planning method in [16]
applies a low-dimensional structure to bias the sampling
direction in the high-dimensional configuration space. The
low-dimensional structure can be defined manually or deter-
mined automatically from the problem data. For certain
robots, such as manipulators or mobile manipulators, the end-
effector workspace and the base movement space are obvious
low-dimensional subspaces [17], [18].

Instead of using the low-dimensional structure as a
heuristic to bias the sampling in high-dimensional space,
the planning can be done directly in the low-dimensional
subspace, and then, the trajectory in the lower dimensional
space is mapped to the original space via some constraints
on the subspace (null space [1]) complementary to the
low-dimensional subspaces, such as energy minimization.
The task-space RRT proposed in [19] grows the tree in the
low-dimensional task space rather than in the full configu-
ration space. The task space denotes the workspace of the
end effector. Then, the high-dimensional trajectory is mapped
from the low-dimensional trajectory using the inverse kine-
matics model of the robot. Another example is the decom-
positional planning of legged robot locomotion [20]. It is
relatively easy to find a feasible or optimal low-dimensional
trajectory for the center of mass of the robot. Then, using
this trajectory as a path to be followed by the robot, the high-
dimensional footstep and joint plan can be solved by search-
or optimization-based methods. As opposed to planning
in a hierarchical manner, Kalin et al. proposed an adap-
tive dimensionality planning method for high-dimensional
mobile manipulator trajectory planning. Although it utilizes
the low dimensionality of the end-effector workspace, similar
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to the approach in [19], it constructs a single tree consisting
of low- and high-dimensional states.

All the low-dimensional structures mentioned above are
user defined and selected manually. A few works have
also attempted to automatically learn and identify the
low-dimensional structure of a given problem. The approach
proposed in [21] used PCA to learn and identify the subspace
that contains the optimal solution. Vernaza and Lee [4]
proposed a low-dimensional structure learning method by
utilizing the gradient information of the cost function and
used a PCA-like method to find the basis of a subspace
that contains the start and goal states. Instead of learn-
ing the low-dimensional structure from the cost function,
Ha et al. [5] proposed amethod for learning a low-dimensional
latent model of a given high-dimensional robot from experts’
demonstration data. The robot dynamic model is modeled by
a Gaussian process dynamical model. The authors in [22]
also proposed using an autoencoding network to learn the
low-dimensional latent dynamic model and then searching
an optimal trajectory in the latent space, ultimately decoding
the low-dimensional trajectory to one in the full state space
using the trained decoder. Although the lower dimensional
dynamical representation learning is a promising solution for
achieving the optimal control of complex high-dimensional
robots, it is inefficient for planning because the training
process is lengthy and requires large amounts of training data.

In this work, we use a low-dimensional structure learn-
ing method similar to that in [4]. The learned structure is
directly related to the planning problem rather than sim-
ply related to the low-dimensional structure of the robot.
In [4], [5], dimensionality reduction were single-structure
reduction. However, in heterogeneous environments such as
the scenarios in Section V, a single-structure dimensionality
reduction process may fail or the learned low-dimensional
structure may be only locally effective. The results in [5] also
showed that the dimensionality of the latent space should be
changed based on the planning problem data (different obsta-
cle distributions). In our approach, we propose a DP-based
clustering method to find heterogeneous low-dimensional
structures for a given planning problem.

III. PROBLEM DEFINITION
The optimal planning problem this work attempts to address
is defined as follows:
Definition 1 (Optimal motion planning ):

U{x} :=
∫ 1

0
(C(xt )‖ẋt‖)dt

x∗(τ ) := argmin
x

U{x}

st. x∗0 = xstart , x∗1 = xgoal . (1)

where x∗(τ ) : [0, 1] → C ⊂ RN is the optimal trajectory
function mapping time to the configuration of the N DOFs
robot under a given objective function U{x}, and xt := x(τ ) ∈
RN denotes the configuration of the robot at time t . The
objective function is mainly determined by the cost function

FIGURE 1. Planning in a cluttered 3D environment with dimensionality
reduction.

C : RN
→ R. The optimized trajectory should satisfy the

start xstart and goal xgoal constraints. The integrated value
with respect to C(xt ) in the objective function relates only to
the geometric shape of the trajectory x(τ ) in its configuration
space and not to its certain time parameterization [23].

In this paper, we propose an efficient motion planning
approach that exploits the heterogeneous low-dimensional
structures of the given planning problem. The next section
introduces how we define and learn the heterogeneous
low-dimensional structures; then. we reformulate and solve
the planning problem defined in Eq. (1).

IV. METHODOLOGY
In this section, we show the technical details of our
approach. To clearly describe each module of the planning
framework, we use a planning task in a three-dimensional
space as an example.

The planning problem in Fig. 1 involves finding an optimal
trajectory with respect to a defined cost-to-go function. The
heterogeneous environment in Fig. 1 includes nontraversable
obstacles (the gray objects) region and a traversable high-cost
region illustrated as a vertical transparent block (e.g., a high-
temperature area). Assuming the configuration of the robot
at time t is xt = [xt ; yt ; zt ] ∈ R3 and the main cost C(xt )
of our trajectory optimization problem is the collision cost.
The traversable high-cost region is also treated as obstacle
area when calculating the cost of a state. The obstacle cost is
determined by the distance between the robot and the closest
collision point.

Single-structure dimensionality reduction involves sam-
pling the entire configuration space and learning a sin-
gle low-dimensional structure. However, as shown in
Section V-A, single-structure dimensionality reduction might
fail when using data sampled from the entire configura-
tion space. While no low-dimensional structure is defined
for the problem in the entire configuration space, we pro-
pose that planning with low-dimensional structure can be
utilized locally. First, the configuration space is decom-
posed into multiple sub-configuration spaces, and then
the low-dimensional structures can be learned in each
sub-configuration space. For example, considering the dis-
tribution of obstacles, one possible decomposition of the
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FIGURE 2. Clustered result based on DP. The color of each point denotes
the space label of the point. The clustered result is not absolutely
reasonable, such as the two points in the yellow circle area, but this
problem can be solved by the following SVM classifier.

configuration space in Fig. 1 is to divide the space into three
sub-configuration spaces denoted by Cs−CS1, Cs−CS2, Cs−CS3.
In Cs−CS1 where {xt ≤ 3}, it is obvious that the decision space
can be reduced to a lower dimensional subspace Csp1 ⊂ R2.
This is because all the obstacles are vertical cylinders in
Cs−CS1. Then, collision avoidance along the z − axis can be
ignored. To describe the low-dimensional structure, a 3 × 2
dimensionality reduction matrix W1 can be defined and the
column vectors of W1 are the basis of the low-dimensional
subspace Csp1, resulting in C(xt ) = C(W1W1

T xt ) =
C(W1zt ). For the 3D planning problem in sub-configuration
space Cs−CS1, the reduction matrixW1 can be defined simply
as W1 = [1 0; 0 1; 0 0]. Details about W1 and W2 for Csp2
and Csp3 can be found in Section V-A.

The idea underlying our approach is to decompose the
configuration space and to determine the dimensionality
reduction matrices Wi automatically. Then, trajectory opti-
mization is performed on those subspaces. Section IV-A
presents the heterogeneous low-dimensional structures
learning and Section IV-B provides our unified multiple
low-dimensional subspaces trajectory optimization method.

A. HETEROGENEOUS LOW-DIMENSIONAL STRUCTURES
LEARNING
In this subsection, we first present the definition of
low-dimensional structure and how to learn it. Then,
Section IV-A.2 introduces the DP-based search of multiple
low-dimensional subspaces, and Section IV-A.3 presents the
SVM-based subspace segmentation. Finally, the heteroge-
neous low-dimensional structures learning algorithm flow is
presented in Section IV-A.4.

1) LOW-DIMENSIONAL STRUCTURE LEARNING
As opposed to manually constructing the reduction
matrix Wi, in this work, the lower dimensional structure
for a given planning problem is trained from the problem
data, such as the robot kinematics model, the cost func-
tion definition, and heterogeneous environment information.
In our approach, low-dimensional structure exploiting results

in multiple low-dimensional structures. For trajectory opti-
mization in multiple low-dimensional subspaces, the label
of subspace to which a low-dimensional subspace point
belongs should be identifiable. To identify the label of sub-
space to which a low-dimensional subspace point belongs,
we propose a low-dimensional structure learning method that
retains some dimensions of the original configuration space.
Suppose xt = [pt , εt ], the retained dimensions pt is used
for subspace identification of the points in low-dimensional
subspaces as shown in Section IV-A.3.

In this subsection, we give the concept of the low-
dimensional structure and how to solve it from the problem
data.

As shown in the 3D case in Fig. 1, when {xt ≤ 3},
the gradient of the cost function is ∂C(xt )/∂zt = 0. This
means that the value of the cost function does not depend on
the dimension zt . Therefore, for anN -dimensional space xt =
[x1t ; . . . ; xN t ] planning problem, if m dimensions exist in
which the cost function does not depend on ( ∂C(xt )/∂xit =
0, i = [1, . . .m]), we say that the cost function has a
low-dimensional structure whose dimensionality is d = N −
m.
For a more general case, we assume there exists a rotation

matrix R and C(xt ) = C(Rzt ), zt = RT xt = [z1t ; . . . ; zN t ].
If a low-dimensional structure with dimensionality d exists,
the dimensionality reduction task involves solving for a rota-
tion R that makes ∂C/∂zi 6= 0, i ≤ d and ∂C/∂zi =
0, d < i ≤ N find the dimensions that make ∂C/∂zi 6= 0.
Actually, the partial derivative may not exactly equal to zero.
Therefore, similar to PCA, our goal is to find the first d
dimensions (d ≤ N ) that have a large influence on the cost
function value. Here, d is selected based on the confidence
level we set [24]. Specifically, ∂C/∂zi, i ≤ d is larger than
∂C/∂zi, d < i ≤ N .
Suppose that ri is the i−th column of the rotation matrixR,

and zi is one dimension of z:

∂C/∂zi = ∇CT ri.

To obtain a large partial derivative value, ri can be solved by
the following optimization problem:

ri = argmax
‖r‖=1

ExrT∇C(x)∇C(x)T r. (2)

We denote A := Ex∇C(x)∇C(x)T , and the Lagrangian
function of the optimization problem in Eq. (2) as

L = rTAr− λ(rT r− 1). (3)

The extreme value of this function can be solved by setting
the derivative to zero such that

∂L
∂r
= 2Ar− 2λr set

= 0

H⇒ 2Ar = 2λr H⇒ Ar = λr. (4)

The eigenvector with the largest eigenvalue is the solution
of the optimization problem defined in Eq. (2). Sorting the
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eigenvalues in descending order, the corresponding eigenvec-
tors constitute the rotation matrix R.

We select the first d columns of R, resulting in an N × d
dimensionality reduction matrix W. The cost function can
be approximated by a definition in d-dimensional space,
C(Wz) ≈ C(x) = C(RRT x). Then, the cost function can be
rewritten in the d-dimensional space. The basis of this lower
dimensional subspace isW.

As pointed out earlier, some dimensions of the origi-
nal full-dimensional space should be retained. For example,
in the 3D planning case, we assume that the subspace can be
identified by the value in x − axis. In the I-AUV planning,
we suppose that the xyz − axes should be retained, which
means that the position of the base must be included in the
low-dimensional space. Therefore, we can find a rotation
matrix R and update the dimensionality reduction matrix
W ← WR. In the I-AUV case, the structure of the updated
W is

W =
[

I 0
W21 W22

]
(5)

where I is a 3× 3 identity matrix.

2) MULTIPLE LOW-DIMENSIONAL SUBSPACE SEARCH
In the previous subsection, we described how to obtain the
reductionmatrix given the cost function and the configuration
space. Given the configuration space shown in Fig. 1, we can
sample the entire space and solve one reduction matrix [4].
However, in Fig. 1, it is obvious that the nontraversable obsta-
cle region and traversable high-cost region in a heteroge-
neous environment are not uniformly distributed. Therefore
it is unreasonable to reduce the dimensionality of the entire
configuration space to a single lower dimensional subspace.
Instead, we can divide the configuration space into multiple
regions based on their lower-dimensional structures. In this
section, we assume that N points were sampled in config-
uration space, the corresponding cost gradients 1Ci, i =
1, . . . ,N were obtained, and that task is to cluster those points
and then calculate multiple low-dimensional structures and
subspaces.

However, no prior knowledge exists concerning how many
subspaces should be selected to complete the planning task.
Given the sampled configuration space points and their gra-
dient, we next introduce how to divide those points into
different clusters based on the DP mixture (DPM) model and
the Gibbs sampling to infer the model parameters.

a: SAMPLED DATA MODELING BASED ON DIRICHLET
PROCESS GAUSSIAN MIXTURE MODEL
Considering the computational complexity, the Guassian
mixture model (GMM) seems to be a reasonable choice to
model the data. Suppose that there are K components; then,
the GMM can be written as follows:

p (Lx|θ1, . . . , θK ) =
K∑
j=1

πjN
(
x̌|µj, Sj

)
, (6)

where θj =
{
µj, Sj, πj

}
are the parameters of the jth compo-

nent, including the mean, covariance (Sj the inverse covari-
ance matrix) and the mixing proportion πj (

∑K
j=1 πj = 1).

Then, the task is to find the best parameters based on
the data X̌ =

{
x̌i
}n
i=1 that we obtained. In this work,

we assume the ith data point is x̌i = [pi,1Ci], where pi
is the retained dimensions as described in Section IV-A.1.
For example, in the 3D case, the ith data point is defined as
x̌i = [pi,1Ci] = [x, δC/δx, δC/δy, δC/δz]. We propose the
utilization of the DPM to model the data and automatically
determine parameters θj.

The DP is parameterized by a base distribution G0 and a
positive scaling parameter α. Generally, given a DP prior,
the DPM model can be constructed as a limit of a parametric
mixture model. Given unlabeled data X̌ =

{
x̌i
}n
i=1 and

considering a Gaussian mixture model for the data, the DP
model can be defined as in [25]:

π |α ∼ Dir(α/K , . . . , α/K )

li|π ∼ Discrete (π1, . . . , πK )

θk ∼ G0(β)

x̌i |zi, {θk}Kk=1 ∼ p
(
x̌i|θ zi

)
(7)

In this DP model, given the multinomial distribution param-
eter π and the distribution parameter θk of cluster k , it is
assumed that each state xi is sampled from one of the K
clusters. li ∈ {1, . . . ,K } is the indicator that denotes the
cluster to which datum xi belongs. The hyperparameter α
is a symmetric Dirichlet prior for the mixing proportion pi.
The cluster parameters {θk}Kk=1 are defined on a joint prior
distribution G0(β).

By fixing all but one indicator li, we can obtain the condi-
tional probability for each individual indicator using

p (li = k|l−i, α)=
∫
π

p (li|π) p(π |α)=
n−i,k + α/K
n− 1+ α

, (8)

where the subscript −i indicates all the indices except for i,
and n−i,K is the number of data points, excluding xi, that are
associated with class k . Let K →∞, then

p (li|l−i, α)=

p (li = k|l−i, α)=
n−i,k

n− 1+ α
p
(
li 6= li′ for all i 6= i′|l−i, α

)
=

α

n− 1+ α
.

(9)

Based on the conditional distribution, the cluster indicator
of xi could be an existing component k or a new cluster.

b: GIBBS SAMPLING FOR MODEL PARAMETER ESTIMATION
To infer the parameters in Eq. (7), we utilize the Markov
chain Monte Carlo method based on Gibbs sampling. Given
the data X̌ =

{
x̌i
}n
i=1

(
x̌i ∈ Rd

)
and their cluster indicators

L = {li}ni=1, the Gibbs sampling involves iterations that
alternately draw from a conditional probability while keeping
other variables fixed. Recall that for each indicator variable
li, we can derive its conditional posterior in the DPM model
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as follows:

p
(
li = k|l−i, xi, {θk}Kk=1 , α, β

)
= p

(
li = k|xi, l−i, {θk}Kk=1

)
∝ p

(
li=k|l−i, {θk}Kk=1

)
p
(
x̌i|li=k, {θk}Kk=1

)
= p (li = k|l−i, α) p

(
x̌i|θk

)
(10)

p
(
θk |x̌k , β

)
= p (θk |β)

|x̌k|∏
i=1

p
(
x̌ki |θk

)
(11)

where p (li = k|l−i, α) is solved by Eq. (8), and p(x̌k |θ lk ) is
the likelihood for the current state xi. The distribution param-
eters θ lk can be determined by maximizing the conditional
posterior. If the current set for cluster k is x̌k and there are
nk = |x̌k | elements in this set, then based on the prior G0(β),
the DPM model learns θ lk by maximizing the posterior:

The update process is summarized by the following steps:
• update the mixture Gaussian model parameters (µj, Sj)
as in Eq. (11) and the hyperparameters;

• update the indicators of each datum xi based on Eq. (10)
• update the concentration parameter α of the DPM
model.

In this work, we applied the update rule detailed in [26]. In our
model, the data point x̌i = [pi,1Ci] for clustering consist of
the retained dimensions and the cost gradient of the sampled
point xi.

3) SUBSPACE SEGMENTATION BASED ON THE CLUSTERED
SAMPLED POINTS AND SVM
Based on the clustered sampled data points, a classifier can
be applied to segment the configuration space, resulting in
multiple low-dimensional subspaces with dimensionality di
(di ≤ n).
In this paper, we utilize the popular classifier SVM for

nonlinear classification. The Gaussian radial basis func-
tion (RBF) is used as the kernal function of the SVM model.

k(xi, xj) = e−γ ‖xi−xj‖
2
, γ > 0. (12)

The training data are the sampled points and the cluster
labels of those points. The classifier outputs a decision func-
tion M. Given any state to M, a label of the state will be
obtained that will be used in the multiple-subspace trajectory
optimization.

4) HETEROGENEOUS LOW-DIMENSIONAL STRUCTURES
ALGORITHM OVERVIEW
Now, based on the low-dimensional structure definition
and learning method in Section IV-A.1, the multiple sub-
spaces search in Section IV-A.2, and the SVM-based sub-
space segmentation, the DP-based multiple low-dimensional
structures learning algorithm in our work is summarized
in Algorithm 1. Low-dimensional structure learning in
Section IV-A.1 is based on the data in a single subspace.
Therefore, the first two steps in Algorithm 1 are: sampling

Algorithm 1 DP-Based Multiple Low-Dimensional
Structures Learning

Input: Start xs and goal xg; cost function, C(x); mapM;
Output: Multiple low-dimensional structures

{W1,W2, . . . ,WE };
Step1. DP-based subspaces search:
while not succeed or t<maximun time limit do

1:{xi, i = 1, . . . ,Nsample}←Randomly sampled
configurations
2: {1C(xi)}←Cost gradients at sampled points
3: Initialize number of clusters k of the DPM model
/*Run clustering method based on DP and output
cluster low-dimensional space*/
4: Label(x) ∈ {1, . . . ,E} ← DP(x,1C(x));

end
Step 2. SVM-based subspace segmentation:
/*SVM training process*/
5:M← SVM (x,Label(x1,...,Nsample));
/*SVM predicting process*/
6: New labels of all points Label(x)←M(x)
Step 3. Multiple low-dimensional structures learning:
/*Assuming the space label is l ≤ E*/
for l ≤ E do

7: Find all sampled data in space l;
8: Wl ← Low dimensional structure learning based
on 1C(xl),Label(xl)

end
Return {W1,W2, . . . ,WE };

and clustering, and SVM-based segmentation. The last step
is the low-dimensional structures learning based on the clus-
tered data in each subspace. This algorithm finally returns
multiple low-dimensional structures {W1,W2, . . . ,WE }.

B. UNIFIED TRAJECTORY OPTIMIZATION WITH
HETEROGENEOUS LOW-DIMENSIONAL STRUCTURES
Planning using the single-structure dimensionality reduction
method proposed in [27] generates the optimal trajectory by
optimization over only one low-dimensional subspace that
contains the start and goal states. The defined optimization
problem can be solved via any basic optimization method
such as dynamic programming or gradient-based optimiza-
tion. For planning with single-structure methods, the dimen-
sions of the optimization variables remains unchanged during
optimization.

However, in our case, the trajectory is optimized in multi-
ple low-dimensional subspaces; hence, the subspace to which
one waypoint belongs may change from the current subspace
to a different subspace; consequently, the dimensionality of
the optimization variables also will change. For example,
in Fig. 4, the waypoints gl1, g

l
m are called switching points

(the subspace to which the next waypoint belongs is different
from the subspace to which the switching point belongs).
After one iteration of the trajectory optimization, the
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FIGURE 3. The SVM classification result. Given the position of each
sampled point in the 3D space, SVM outputs the space label of the point
denoted by different colors.

FIGURE 4. Planning in multiple low-dimensional subspaces. Considering
the subspaces switching and the smoothness of trajectory at switching
points.

subspace of switching point g′1 belongs may change from Csp1
to Csp2. Therefore, dynamic programming or gradient-based
optimization can not be directly applied. In our solution,
we divide the optimization process into two steps. In the
first step, optimization is performed in the low-dimensional
subspaces. In this step, trajectory optimization considers
the transversality condition of the switching points between
two subspaces, but it does not consider the transversal-
ity in the original full-dimensional space. The second step
of the trajectory optimization considers the constraints in
the original full-dimensional space and maps the optimized
low-dimensional trajectory to full-dimensional space.

1) TRAJECTORY PLANNING IN LOW-DIMENSIONAL
SUBSPACES
Based on the planning problem in Definition 1, we first
define the trajectory optimization problem in multiple
low-dimensional subspaces, and then give our gradient-based
optimization approach and the transversality condition in
low-dimensional trajectory optimization.

a: LOW-DIMENSIONAL TRAJECTORY PLANNING PROBLEM
DEFINITION
Many parameterization methods exist for representing a
trajectory, such as piecewise polynomial trajectories and
B-spline trajectories. We use a uniform discretization that

samples the trajectory function over equal time steps of length
1t : ξx ≈

(
xT1 , x

T
2 , . . . , x

T
i , x

T
i+1, . . . , x

T
n
)T
∈ Rn×N , where

x0 and xn+1 are the fixed starting and goal point of the
trajectory, respectively. Suppose there are E low-dimensional
subspaces for a given planning problem, and the subspace
index of the ith waypoint is denoted by li ∈ E = {1, . . . ,E}.
The basis of the subspace where the ith waypoint located is
denoted byWi ∈ {W1, . . . ,WE }.
Definition 2: Planning in multiple low-dimensional

subspaces :

ξz := argmin
ξz

U(ξ )

:= argmin
ξz

n∑
i=1

C(Wizi(t))‖Pzi‖+‖Pxcommon‖2, (13a)

z(0) = W0xs, z(n) =Wnxg, (13b)

where ξz = {z1, z2, . . . , zn} denotes the trajectory in the
subspaces and zi =WT

i xi is the ith waypoint of the trajectory.
The subscript common in Pxcommon denotes the velocity of the
common dimensions of the state between two adjacent points.
The velocity of the trajectory in one subspace can be defined
easily. However, as shown in Fig. 4, in multiple subspaces tra-
jectory optimization, the velocity term around the switching
points should be treated carefully. In our solution, we define
the following velocity term, which considers the process of
switching between subspaces.

‖Pxcommon‖ = norm(W(Wizi −Wi−1zi−1)),

W = Wi−1WT
i−1 +WiWT

i − I. (14)

When the subspace label of the (i − 1)-th waypoint is the
same as that of the ith waypoint, W is approximate to an
identity matrix. This velocity term denotes the velocity of
the trajectory in a single low-dimensional subspace. At the
switching points, Wi−1 and Wi denote different subspaces
bases. The velocity term attempts to reduce the displacement
at the common dimensions of two states in two different sub-
spaces by using the factor W . The velocity term guarantees
the smoothness of the low-dimensional trajectory in multiple
subspaces.

b: GRADIENT-BASED OPTIMIZATION WITH
TRANSVERSALITY CONDITION
To solve the non-convex optimization problem in Eq. (13),
we utilize a gradient-based approach to iteratively optimize
U(ξz). At each iteration the objective function is approxi-
mated by its first-order Taylor expansion around the trajec-
tory ξz:

U[ξz +1ξz] ≈ U[ξ kz ]+∇U[ξz]1ξz. (15)

We use the Gaussian-Newton algorithm to iteratively
improve the solutions. Suppose that the incremental solution
at each iteration is 1ξz; then, we use the following updating
rule:

ξ̄ k+1z ← ξ kz +1ξz,

ξ̄ k+1x = {Wk
1 z̄
k+1
1 ,Wk

2 z̄
k+1
2 , . . . ,Wk

n z̄
k+1
n }, (16)
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where ξ̄ k+1z is an updated trajectory inmultiple low-dimensional
subspaces, and k denotes the number of iteration, and ξ̄x is a
trajectory in the original full-dimensional space.

Then, using the trained SVM model shown in
Section IV-A.3 and the new waypoints trajectory ξ̄ k+1x ,
we can obtain the label l of each waypoint, which denotes
the label of the subspace to which each waypoint belongs.
Although the trajectory ξ̄ k+1x is not the final full-dimensional
trajectory in the original configuration space, Eq. (5) guar-
antees that some dimensions of the coordinates are in the
original space such that the trained SVM model can be
utilized to update the subspace labels of the waypoints.

l(ξ̄ k+1xi )← SVM (ξ̄ k+1xi ). (17)

After the low-dimensional trajectory updating in Eq. (16)
and the waypoints subspace labels updating in Eq. (17),
the subspace label of a waypoint may change. Suppose that
one point xi in subspace li is transferred into a new subspace
l ′i ; the basis of the new subspace l ′i is W′i, and the first
waypoint of the low-dimensional trajectory in subspace l ′i is
z′i (e.g., in Fig. 4, gr1 is the first waypoint of the trajectory in
Csp2). To obtain the waypoint’s new low-dimensional coordi-
nate zk+1i in subspace l ′i , we apply the following transversal-
ity condition [7]:

zk+1i ← argmin‖zk+1i − z′i‖. (18)

The purpose of the transversality condition is to guarantee
the continuity of the trajectory in each subspace. Then, if the
subspace label of a waypoint changes, we execute the follow-
ing switching equation:

ξ̄ i+1xi =Wk
i z̄
k+1
i + (I−Wk

iW
k
i
T
)W′iz

′
i. (19)

Based on the new labels l(ξ̄ k+1x ) of each waypoint
and the updated trajectory ξ̄ k+1x , we obtain the updated
low-dimensional trajectory

ξ i+1z = {z1, z2, . . . , zn}i+1. (20)

2) FULL-DIMENSIONAL TRAJECTORY SMOOTHING
The above trajectory optimization is processed in the multi-
ple lower dimensional subspaces. However, to complete the
planning task, we need to obtain a trajectory in the original
high-dimensional decision space. Therefore, we need to pro-
vide a mapping function λ,

ξx← λ(ξz), (21)

where ξx is the trajectory in the original full-dimensional
space.

Transformations from the original space to subspaces
ξz ← λ−1(ξx) are many-to-one transitions. In this work,
we consider a single-query planning task. Therefore, in one
subspace, we only need to guarantee that the start state xs and
goal state xg lie in the mapped trajectory. As shown in Fig. 4,
when planning in multiple subspaces, the smoothness of the
full-dimensional trajectory at the switching points should also
be considered.

Definition 3 (Mapping trajectory in low-dimensional sub-
spaces to original high-dimensional space):

gk := argmin
gk

m∑
k=1

‖glk − g
r
k‖

2
+ Cns−dist

st.W1xs = z1, Wkg
l,r
k = zl,rk , WKxg = zn, (22a)

xi =Wzk+(I−WWT)x̄s+(I−WWT)ys, (22b)

y = x̄g − x̄s, (22c)

s =
‖zi − z̄s‖∥∥zi − z̄g
∥∥+ ∥∥zi − z̄g

∥∥ , (22d)

where the objective function consists of two terms: the first
term is transversality condition in full-dimensional space
optimization, which guarantees the smoothness of trajectory
at switching points, and Cns−dist is the length of the tra-
jectory in the null space of the low-dimensional trajectory.
In Eq. (22a), glk and grk are two points at the switching area
as shown in Fig. 4, Eq. (22b) is the coordinate transformation
from the low-dimensional subspace to the original space and
x̄s, x̄g are the start and end states of the trajectory in one
subspace.

The nonlinear optimization problem defined in Eq. (22)
can easily be solved using SQP [28].

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In our framework, the computational complexity stems
mainly from two components: the basis learning of the lower
dimensional subspaces and the gradient-based trajectory opti-
mization. We note that for the first part, although large num-
bers of points should be sampled to guarantee the consistency
of the learned dimensionality reductionmatrices, the cost gra-
dient calculation could be processed in parallel. It is relatively
easy to implement parallel computing on computers with
multiple cores. Suppose that the original high-dimensional
space dimensionality is N , for each iteration, the com-
putational complexity for the gradient-based optimization
would be O(kN 3), where k is the number of waypoints
in the trajectory. For single-structure dimensionality reduc-
tion, assume the dimensionality of the low-dimensional sub-
space is ds; then, the computational complexity would be
O(kd3s ). In our approach, we assume that the dimensionality
of the subspace to which the ith waypoint belongs is dl(i)
(dl(i) ≤ ds, where l(i) is the subspace indicator of the
waypoint as shown in Eq. (17)). Then, the computational
complexity of our approach is

∑
1≤i≤k O(d3li ). Compared

with single-structure dimensionality reduction method [2],
our approach reduces the computational complexity to
varying degrees based on the complexity of the problem
data.

V. SIMULATIONS AND RESULTS
The solution presented in Section IV is summarized in
Algorithm 2. In this section, we first use 3D space planning to
verify our algorithm clearly; then, the results of a high-DOF
I-AUV planning simulation are presented.
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FIGURE 5. Planning in multiple low-dimensional subspaces with bases Wi,...,j . The red dot and pentagram denote the start x = [0; 1; 0] and goal
x = [8.5; 4.5; 2.8] points, respectively. The colors of the waypoints of the trajectories denote the subspace to which each waypoint belongs.
In regions with cluttered obstacles, the primary task is to guarantee the clearance of the trajectory. To reduce the cost of the trajectory in the
traversable high-cost region, the robot should move quickly.

Algorithm 2 Planning With Heterogeneous Dimension-
ality Reduction
Input: Start xs and goal xg; cost and objective function,

C(x) and U(ξ ); mapM;
Output: The optimal trajectory in Eq. (21);
1. {W1,W2, . . . ,WE } ← Low-dimensional structures
from Algorithm 1;
2. Planning in subspaces as in Eq. (13);
3. Mapping ξz to the original space trajectory ξx as in
Eq. (22)
return ξx;

A. THREE-DIMENSIONAL SPACE PLANNING
Continue the 3D space planning example in previous sec-
tions. As shown in Fig. 5, we assume that there are non-
traversable obstacles (the gray objects) and a traversable
high-cost region illustrated as a vertical transparent block
(e.g., a high-temperature area), assumed to extend ad infini-
tum in directions orthogonal to the vertical direction. In the
cost function definition of this problem, we assume that
the cost introduced from the traversable region has the cost
formulation as the obstacle areas.

We select an exponential function as the obstacle cost
function. Given a position x of the robot in a signed distance
map, the cost function C(x) is

C(x) = C̄(δ(x)) = α · exp (− (δ − δ0) /r) , (23)

where δ is the distance between the robot and the closest
obstacle point, δ0 is the threshold where the cost starts to
rapidly rise, and r controls the rate of the function’s rise.

The random state sampling and low-dimensional subspace
exploitation results are shown in Fig. 2. Figure 3 shows that
the map is divided into three parts by the SVM classification.
According to Eq. (5), the reduction matrix in this example
is quite simple. The map is divided into three parts, and the

dimensionality reduction matrices are as follows:

W1 =

[
1 0 0
0 1 0

]T
, W2 =

[
1 0 0
0 0 1

]T
, W3 =

[
1 0 0

]T
.

In Fig. 5, Trj-in-low-dim is the optimized trajectory in
the low-dimensional subspaces. As described in Section IV-
B, the smoothness of this trajectory in the original
full-dimensional space is not guaranteed. There are two cost
terms in Eq. (22). Trj-in-high-dim is an optimized trajectory
considered for the first cost term in Eq. (22), and Opti-trj-in-
high-dim is the optimal trajectory.

To demonstrate the advantages of planning with
heterogeneous or nonuniform dimensionality reduction
(nonUniReduction), two other methods, planning with-
out dimensionality reduction (noReduction) and planning
with uniform dimensionality reduction (UniReduction), are
compared with our approach. All methods use the same
gradient-based trajectory optimization method as described
in Section IV-B. When planning with uniform dimen-
sionality reduction, two strategies can be utilized for
the low-dimensional structure, as shown in [2] and [4],
i.e., SLASHDP and LDD, respectively, which uniformly
reduce the original state space to a single low-dimensional
subspace. In SLASHDP, the optimal trajectory is searched in
the single low-dimensional space. In LDD, the first step is
to learn the low-dimensional subspace basis, and the second
step selects a subset of those bases to optimize according
to their relative importance. By optimizing the path in the
selected subspace, the projected path in the remainder of the
space will remain fixed. This strategy improves the solutions
monotonically. Intuitively, we could also use this strategy in a
more efficient way: in each iteration, we could use the learned
basis of each low-dimensional subspace.

In [2], given the planning problem in Fig. 5, the three
eigenvalues of M as shown in Eq. (4) from our test are
(1.19, 0.27, 0.25). These three values are relatively simi-
lar; therefore, in this case, SLASHDP is inefficient. In the
left-hand figure, Fig. 5, we compare the convergences of the
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FIGURE 6. A simulated 10-DoF I-AUV with 6 links. The blue axis is the
rotation axis fixed at the start point of each joint. The robot model and
parameters setup are based on the I-AUV presented in [29].

noRedunction and nonUniReduction methods, their solution
costs, and their time consumption for each iteration. The solu-
tion cost is the final objective function value in the original
space as defined in Eq. (1). The results show that using our
method, the cost function converges to a relatively low cost
and the time consumption for each iteration is lower than that
of the noReduction method.

B. HIGH-DOF I-AUV PLANNING
We simulated a 10-DOF I-AUV with a holonomic vehicle
base driven by thrusters and a 6-DOF manipulator as shown
in Fig. 6. Themodel parameter setup is based on the underwa-
ter robot presented in [29]. This robot can be used to perform
data collection, mobile manipulation or cleaning. We assume
that the state of the I-AUV in the configuration space is
x = [x, y, z, 9, θ1, . . . , θ6]. The goal is to find an optimal
path ξx in the configuration space.

The cost function used for low-dimensional structure
exploration is

C(x) =
ns∑
i=1

exp
(
−

(
δi − δi0

)
/r
)
, (24)

The obstacle cost function of the I-AUV is similar to the
definition in Eq. (23). δi denotes the position of the collision
checkpoint on the robots. In this work, we assume that the
collision checkpoints include the points on the edges of the
vehicle base and the links of the manipulator. The total num-
ber of collision check points is ns [13].

In this experiment, for mobile manipulator planning,
we consider navigation tasks rather than manipulation
tasks [3]. The start position is relatively far away from the
goal, as shown in Fig. 7 and the planning task involves
planning a collision-free trajectory for the base and arm from
the start configuration to the goal in a coupled way [1], [30].

1) SAMPLING STRATEGY FOR HIGH-DOF I-AUV
Cost gradient sampling described in Section IV-C is a
time-consuming component. To learn the low-dimensional

structure of the cost function efficiently for high-DoF robots,
as opposed to sampling randomly, we can use multiple arm
configurations, such as the configuration in Fig. 6, which has
a maximum collision probability (the arm is fully extended
upward). In our trials, we use 100,000 cost gradient sam-
ples in parallel. For a given task, the number of samples
could also be determined by the running time limits of
the algorithm. Other workspace analysis method can also
be applied to the bias the sampling, such as the General-
ized Voronoi Graph-based (GVG) narrow passages search
[30] and learning-based non-uniform sampling strategies pro-
posed in [12]. In those works, more points are sampled at the
narrow passages areas or other important areas.

Given the cost function in Eq. (24), the robot in Fig. 6,
and the map in Fig. 7, two dimensionality reduction matrices
or the basis of the subspaces are obtained, W1 and W2,
as follows:

W2 =



1 0 0 0.0000
0 1 0 0.0000
0 0 1 −0.0019
0 0 0 −0.8285
0 0 0 −0.5599
0 0 0 −0.0044
0 0 0 −0.0009
0 0 0 −0.0028
0 0 0 −0.0013
0 0 0 −0.0010


,

W2 =



1 0 0 −0.0023 0.0005
0 1 0 −0.0040 0.0021
0 0 1 0.0028 −0.0084
0 0 0 0.7008 0.0452
0 0 0 0.7101 0.0510
0 0 0 0.0531 −0.7766
0 0 0 0.0355 −0.5243
0 0 0 0.0209 −0.3088
0 0 0 0.0099 −0.1432
0 0 0 0.0029 −0.0390


.

The matrix W1 shows that in subspace 1, in addition to
x, y, z, the movements ofψ, θ1 are more important than those
in other dimensions, while in subspace 2, ψ, θ1, θ2 are the
dimensions in which the value of the objective function varies
substantially.

2) TRAJECTORY OPTIMIZATION RESULTS
The planning task involves planning a low-cost trajectory
resulting in a collision-free base and arm trajectory from the
initial configuration to the goal configuration. Generally, for
high-dimensional space planning, gradient-descent optimiza-
tion can readily become trapped in local minima, resulting in
relatively high costs or infeasible trajectories. Many methods
are available to alleviate this problem such as the Hamil-
tonian Monte Carlo algorithm used in [13]. In this work,
we use the initial trajectories search method proposed in our
previous work to avoid the local minima problem [1]. The
searched initial solutions are in multiple homotopy classes
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FIGURE 7. Planning in multiple low-dimensional subspaces with bases Wi,...,j . The red dot and the pentagram denote the start x = [0; 1; 0] and
goal x = [8.5; 4.5; 2.8] points, respectively. The colors of the waypoints of the trajectories denote the subspace to which each waypoint belongs.

and solved through the RRTconnect and polynomial trajec-
tory optimization-basedmethods for the initial base trajectory
search and a null space saturation controller for the initial
manipulator path search.

The simulation results of one planning task are
shown in Fig. 7. The start and goal configurations are
xstart = [0.1; 0.1; 0.1; 0;π/2;−π/2; 0; 0; 0; 0]; and xgoal =
[5; 3; 1.5; 0; 0;−π/2; 0; 0; 0; 0], respectively. The opti-
mized I-AUV base trajectory is shown in Fig. 7. The
zoomed-in area shows that although the smoothness of
the trajectory in each subspace is guaranteed, it should be
post-processed in the connection area. The manipulator tra-
jectory in Fig. 7 shows that in this case, to complete the task,
θ1 and θ2 change more than other dimensions, which means
that θ1 and θ2 are the most important dimensions.

To prove the effectiveness, we compared both the optimal-
ity of the planned trajectories and the time consumption for
trajectory optimization as in the comparison in the previous
3D space planning case. We tested our algorithm using MAT-
LAB 2017b running on a quad-core 2.8 GHz Intel i7 CPU
with 16GB of RAM. As mentioned in Section IV-C, the run-
time of the cost gradient sample can be reduced by using
parallel computing on multicore computers. In simulations,
using the parallel computing commandParfor, our test results
show that on a computer with a k-core CPU, the nonparallel
computation time is k times that of the parallel calculation.
Therefore, in the subsequent comparisons, we do not consider
the time for the cost gradient sample. As shown in the left
figure in Fig. 7, the noReduction and nonUniReduction meth-
ods converge to local minima within 20 iterations. Their final
solution costs are very similar; however, the computation time
per iteration of the noReduction method is almost 2.7 times
that of the nonUniReduction method.

In practice, planners usually need to consider the time bud-
get for task execution. Therefore, to compare the efficiency
of different methods, we evaluated the solution cost for a
given planning time. For the planning problem in Fig. 7,
we executed each method 20 times. Fig. 8 shows that the
average solution costs obtained by our approach are lower
than those of the other methods for the given time budgets.

FIGURE 8. Algorithm performances under fixed time budgets.

We should note that the comparisons described above are
not absolutely comprehensive-there are no benchmarks for
comparison, and code for the other methods is unavailable,
as they are not open source. Thus, the performances of those
methods depend on the implementation details.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we presented a novel motion planning frame-
work for planning problems with low-dimensional structures.
The proposed approach utilizes tools from data analysis
(DP and SVM) to explore the heterogeneous low-dimensional
structures. Numerical simulation results demonstrated the
efficiency of the unified multiple low-dimensional subspaces
trajectory optimization approach.

Although we present a unified optimization-based trajec-
tory planning approach that operates in multiple subspaces,
other generic trajectory planning methods could also be
applied to solve multi-subspace planning problems, such as
the sampling- and search-based methods [30].

The proposed approach improves the efficiency if and only
if one or multiple low-dimensional structures for a given
planning problem exist. In the future, we plan to develop
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more general dimensionality reduction methods by using
neural network-based approaches to reduce the complexity in
obtaining the heterogeneous low-dimensional structures, via
experiences and analogy [31], [32].
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