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Abstract—3D ultrasound imaging shows great promise for sco-
liosis diagnosis thanks to its low-costing, radiation-free and real-
time characteristics. The key to accessing scoliosis by ultrasound
imaging is to accurately segment the bone area and measure the
scoliosis degree based on the symmetry of the bone features. The
ultrasound images tend to contain many speckles and regular
occlusion noise which is difficult, tedious and time-consuming for
experts to find out the bony feature. In this paper, we propose
a robust bone feature segmentation method based on the U-net
structure for ultrasound spine Volume Projection Imaging (VPI)
images. The proposed segmentation method introduces a total
variance loss to reduce the sensitivity of the model to small-scale
and regular occlusion noise. The proposed approach improves
2.3% of Dice score and 1% of AUC score as compared with the
u-net model and shows high robustness to speckle and regular
occlusion noise.
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I. INTRODUCTION

Scoliosis is a condition in which the spinal cord gets severely
deformed over time. The process of detection and diagnosis of
the condition has been around for a long time [1]. A detection
process involves scanning the spinal area of a patient with a
suitable modality and accessing the curvature of the spine. This
process is repeated over time and if, at any stage, the curvature
of spine is detected to exceed 10°, the patient is categorized
for potential scoliosis treatment.

The highest risk factor for scoliosis occurs in teenagers
since their skeletal structure is still under development. This
condition in medical parlance is known as Adolescent Idio-
pathic Scoliosis (AIS) [2]. If left untreated, AIS not only has
a physiological impact on the adolescent body structure (such
as uneven shoulders and misalignment of hips) but also has
severe psychological impact and hindrance to the well-being
of the adolescent patient [3].
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The current practice of detection and diagnosis of AIS
generally involves (a) repeated scanning using X-Rays and (b)
measuring the Cobb Angle, which is a gold standard to assess
and monitor AIS [4]. This practice however leads to repeated
exposure to radiation that is especially harmful to adolescents.
During the whole course of scoliosis treatment, they may be
exposed up to 25 X-rays sessions [5]. In fact, Levy et al. [6]
demonstrated that AIS patients who had undergone multiple X-
rays have a 2.4% higher risk of developing cancer than normal
young people.

Other modalities such as MRI are also found unsuitable
as they are time-consuming, expensive and cannot meet the
needs of large-scale screening and frequent assessments [7].
Alternatively, to detect the bony feature of adolescent teenagers,
non-radiation imaging techniques, such as ultrasound imaging,
are being used. Though the noise in the output images is higher,
such techniques are not only safe but also affordable and fast.

We pioneered the technique of 3D ultrasound imaging to
assess scoliosis and have achieved great success [8]–[12].
The scolioscan system is a radiation-free, semi-automatic 3D
ultrasound system. The imaging technique used in scolioscan
is volume projection imaging (VPI). VPI analyses the intensity
of all voxels of ultrasound volumetric data to form a coronal
image [8]. The spinal angle measured by scolioscan using VPI
has been proven comparable to the gold standard of Cobb angle
obtained through the X-ray method.

While this has been ground-breaking research, the scolioscan
system requires manual measurement of the spine angle, which
in turn depends on the judgment and expertise of the doctor or
examiner. In fact, it is observed that the variation of the spinal
angle measured by different examiners can be as high as 2 - 3°.
So, as an improvement, several automatic measurements tech-
niques were developed [10], [11]. In [10], the spine curvature
angle is obtained by deriving the inflection points.

In [12], [13], it has been suggested that the Transverse pro-
cess (TP) measurement method can be used to measure spinal
deformation with 3D ultrasound images. The methodology of
TP measurement is to detect the bony features in an ultrasound
scan. However, the ultrasound images tend to contain many
speckles [14] and noise (Fig. 2) which makes it difficult for
experts to demarcate the bony features.

In this paper, a new segmentation method called U-net with
robustness to speckle and regular occlusion noise (RSN-U-net)
is introduced to effectively segment the bony features in an
ultrasound spine image. A new technique called total variance
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Fig. 1: The overall architecture of the proposed bone feature segmentation model of RSN-U-net.

(TV) loss is presented. Through experiments and studies, the
TV loss technique is found adept in training the neural network
and improving the robustness against the speckle and regular
occlusion noise. Through visual comparison of the results,
the proposed method is found to achieve a stable and better
performance even for cases where the input ultrasound image
has high speckles and noise.

This paper is organized into three main sections. In Section
II, the proposed RSN-U-net architecture and methodology are
discussed. In Section III, an account of the experimental setups
along with the dataset and the results are given. Finally,
in Section IV, a conclusion is drawn with a discussion on
robustness of the model and future work.

II. METHODS

Recently, U-net has been widely used in medical image
segmentation tasks owing to its superior performance [15]. In
this paper, Our bone feature segmentation model is mainly
drawn from the U-net structure. Fig. 1 shows the flowchart of
the proposed segmentation model. Given an ultrasound spine
image, our segmentation model aim to estimate a probability
map of the bone feature. Then a thresholding strategy is used to
generate the segmentation mask of the ultrasound spine image.

A. Bone Feature Segmentation Model

Bone feature segmentation aims to find out all the regions of
the bone from the original ultrasound image, and the surface
of the bone is not fixed. It means that the segmentation method
needs to distinguish whether a pixel belongs to a bone or not.
It is a pixel-level binary classification task. The output of the
model should be a segmentation mask with the same size as
the input image.

As shown in Fig. 1, the proposed RSN-U-net adopts the
auto-encoder structure. The encoder part consists four repeated
encoder stacks. Every encoder stack contains two convolutional

layers with the kernel size of 3×3 and a max pooling layer with
the stride of 2. The convolutional layers aim to extract useful
bone features from the original gray scale ultrasound image.
The down-sampling strategy (The pooling layers) is utilized to
select meaningful features and reduce the scale of the feature
map which not only can reduce the computation complexity
but also give the layers large receptive fields. Considering
the down-sampling strategy may lose local information [16],
[17], the shallow features are cropped and concatenated to the
corresponding deep layers to remedy the lost information. The
decoder part consists of four repeated decoder stacks. Each
decoder stack contains two convolutional layers with the kernel
size of 3×3 and an up-sampling layer with the stride of 2. The
convolutional layer are designed to extract bone features from
the concatenated features. The up-sampling layers gradually
enlarge the features back to the original size. In the last layer, a
1 × 1 convolutional layer with sigmoid function is used to map
and normalize the bone features to segmentation probability
map. Finally, the segmentation probability map is obtained
through a binary operation with the threshold of 0.5.

B. Loss Function

The original ultrasound VPI image is a 2-D mapping image
extracted from 3-D ultrasound voxels, which contain 2000-2500
2-D ultrasound images. The VPI images used for segmentation
usually contain regular occlusion noise which may be caused
by projection as shown in Fig. 2 (2). Furthermore, the ultrasonic
image tends to have many speckles which are shown in Fig. 2
(1). Both regular occlusion noise and speckles will reduce the
performance of the segmentation model. Therefore, in order
to enhance the robustness of the model to the noise and
speckle, based on the traditional binary cross-entropy (BCE)
loss function(LB), we introduce Total Variance (TV) Loss
function(LTV ) to constrain the estimation of the model. The



Fig. 2: Example of the speckles and regular occlusion noise of
the ultrasound spine image.

loss function (L) is described in the right part of Fig. 1.
Mathematically, it can be written as:

L(Y, Ŷ) = LB(Y, Ŷ) + λLTV (Ŷ) (1)

where Ŷ ∈ RW×H represents the estimated segmentation
probability map that is produced by the proposed RSN-U-net.
The H and W mean the height and width of the estimated
segmentation probability map. The term Y ∈ RW×H represents
the ground truth segmentation mask. A weight parameter λ is
utilized to balance the smoothness constraint. (Empirically, λ
is set to 0.4 in our experiments)

1) Pixel-level Classification: The segmentation network is
designed to find the area that belongs to the bone. In order
to enhance the classification ability of the network for each
pixel, we use the Binary Cross-Entropy (BCE) loss function
to calculate the classification error of each pixel. The value
of binary cross-entropy loss LB is the negative average of the
error of every pixel in the output probability map, viz.

LB(Y, Ŷ) = −
∑H

i=1

∑W
j=1(yi,j log(ŷi,j) + (1− yi,j)log(1− ŷi,j))

H ×W
(2)

where H×W is the total number of pixels in the original ultra-
sound spine image. ŷi,j and yi,j are the estimated probability
and the ground truth respectively to the position in (i, j).

2) Robustness to Speckle and Noise: The regular occlusion
noise and speckles in the original ultrasound spine image
will cause the segmentation network to erroneously classify
the noisy area as a bone feature area, thereby generating a
misclassified area that is much smaller relative to the bone
feature area. In other words, since the pixel values in speckle
and regular occlusion noise area vary frequently, incorrectly
classified regions tend to have a higher proportion of edge
pixels with high-frequency energy. The total variance loss
calculates the total edge energy of the output probability map
[18], which means the output probability map with the more

misclassified area will have a large TV loss value of LTV . LTV

is defined as bellows:

LTV (Ŷ) =

H∑
i=1

W∑
j=1

(
(ŷi,j − ŷi+1,j)

2

H × (W − 1)
+

(ŷi,j − ŷi,j+1)
2

(H − 1)×W
) (3)

III. EXPERIMENTS

A. Dataset

The dataset used in this paper is collected from 3D ultrasound
scanning in the whole spine region. Then, ultrasound volume
projection imaging (VPI) technique is utilized to generate 2-
D mapped images. Ultrasound VPI images from 109 subjects
with different degrees of scoliosis are used. The bone features
are labeled by the medical experts. We randomly divided the
dataset to a training set and a testing set with 80 and 29 samples
respectively. The images are all in gray scales. The size of
the ultrasound images corresponding to different patients is
different. In the training set, all the images are resized to 250
× 1000 pixels. In the testing set, the original image size will be
recorded and then input to the segmentation model after resized
to 250 × 1000 pixels. Finally the segmentation mask will be
resized to the same dimension as those of the original images.

B. Experimental Setups

The proposed bone feature segmentation model was im-
plemented using PyTorch [19]. In the training stage, random
crop (that randomly selects the patch of the training images),
horizontal flip (with 50% probability to flip the input patch)
as well as affine transformation were utilized to augment the
training data to avoid overfitting. The network was trained for
50 epochs by the Adam optimizer [20] with a learning rate of
0.01 (weight decay = 1e−6). All experiments were conducted
by a system with one Nvidia GeForce RTX 2080Ti GPU.

C. Results & Discussion

In this paper, we employed Dice score , Receiver Operating
Characteristics (ROC) curve and Area Under the Curve (AUC)
score to evaluate the segmentation performance.

1) Dice score: After obtained the segmentation results, we
evaluate the proposed RSN-U-net by the bone feature area over-
lap of the segmentation results. Let AF and AG corresponding
to the set of pixels of the bone feature segmentation result and
the ground truth, respectively. We access the performance of
our proposed method using Dice score [21], which quantifies
the area overlap between two regions, viz:

Dice(AF , AG) = 2× AF ∩AG

AF +AG
(4)

A Dice score of 1 means the regions of AF and AG are
identical. A Dice score of 0 means the regions of AF and
AG do not have any overlap.



Fig. 3: Visual comparison of U-net and RSN-U-net for bone feature segmentation.(1) the original input VPI image; (2) the ground
truth mask; (3) the foreground probability map of the prediction result by U-net (visualized by heatmap); (4) the foreground
probability map of the prediction result by RSN-U-net; (5) segmentation result by U-net (Dice score: 0.7827); (6) segmentation
result by RSN-U-net (Dice score: 0.8144); (7) comparison of the segmentation results on a part of ultrasound image with speckles
(up to down: the input image, the segmentation result of U-net, the segmentation result of RSN-U-net) (Green line: segmentation
result of the model; Yellow line: Ground Truth) (zoom in for better view).

Method Dice Score AUC
U-net 0.7608 0.97
RSN-U-net 0.7838 0.98

TABLE I: The comparison results with baseline U-net and the
proposed RSN-U-net.

2) ROC curve and AUC score: We regarded the bone feature
segmentation task as a pixel-level binary classification task. So
the AUC-ROC score is utilized to measure the classification
performance of our proposed segmentation model at various
threshold settings. ROC is a curve indicating probability. AUC
measures the degree of separability [22]. The ROC curve
reflects the relationship between True Positive Rate (TPR)
(y-axis) and the False Positive Rate (FPR) (x-axis). It also
measures the discriminative capacity of a model. A higher AUC
means a better model.

Table I shows the Dice score and AUC score over 29
testing subjects of the U-net and the proposed RSN-U-net.
Our proposed RSN-U-net achieve a 2.3% average Dice score
improvement as compared with the U-net model. The gap of the
performance between U-net and RSN-U-net is more obvious
in the case of input ultrasound image with speckle and regular
occlusion noise. For the case that the input ultrasound image
contains many speckles as shown in Fig. 3, the RSN-U-net

achieve a 3.17% (= 0.8144 - 0.7827) Dice score improvement
as compared with U-net. For the case that the input ultrasound
image contains severe regular occlusion noise (Fig. 4), our
proposed RSN-U-net performs much better than U-net by a
5.18% (= 0.7689 - 0.7171) Dice score improvement. The two
special cases shows that our proposed RSN-U-net have a good
robustness to speckle and regular occlusion noise.

From the perspective of the classification, the proposed RSN-
U-net also achieve 1% AUC score improvement. As depicted
in Fig. 5, both testing methods perform very well according
to the ROC curve. The ROC curve of the RSN-U-net is better
than that of U-net, which means the classification ability of
RSN-U-net outperforms that of U-net.

Fig. 3 shows a visualization of the bone feature segmentation
results. From the probability maps, Fig. 3 (3) and (4), the
proposed RSN-U-net shows low confidence in the non-bone
region (the green and blue regions in the figure), while U-net
tends to be confused by the speckled area and results in over-
segmentations. From the segmentation results (Fig. 3 (5) and
(6)), the proposed RSN-U-net performs better than the U-net.
Fig. 3 (7) shows a more detailed example of the segmentation
results in a part of the input image with speckle. The U-net
incorrectly classifies the speckled area as a bone area, while
the RSN-U-net gives a correct segmental result of the bone



Fig. 4: Visual comparison of the segmentation results on a part
of ultrasound image with regular occlusion noise. (1) original
VPI image; (2) ultrasound image with severe regular occlusion
noise; (3) the ground truth mask; (4) the foreground probability
map of the prediction result by U-net(visualized by heat map);
(5) the foreground probability map of the prediction result
by RSN-U-net; (6) segmentation result by U-net (Dice score:
0.7171); (7) segmentation result by RSN-U-net (Dice score:
0.7689) (Green line: segmentation result of the model; Yellow
line: Ground Truth) (zoom in for better view).

Fig. 5: The ROC-AUC curve of the U-net and proposed RSN-
U-net.

feature.
Fig. 4 presents a detailed example of the segmentation results

in a part of the input image with severe regular occlusion noise.
According to the segmentation results (Fig. 4 (6) and (7)),
the U-net fails to segment the bone feature. In contrast, the
proposed RSN-U-net achieves a much better and more stable
result even in the severe noisy areas. From the probability maps
in Fig. 4 (4) and (5), we can see that owing to the introduction
of the TV loss, the proposed RSN-U-net shows good robustness
to high-frequency noise when compared with the U-net.

IV. CONCLUSION

This paper propose a bone feature segmentation model for
ultrasound spine image with high robustness to speckle and
regular occlusion noise. After improving the loss function of

the segmentation by introducing the total variance loss function,
our proposed segmentation model (RSN-U-net) achieves a
better performance (78.38%) as compared with the baseline
model (U-net). When using ultrasound images to measure the
degree of scoliosis, it is very important to correctly segment the
area of the bone. The ultrasound spine images tend to contain
many speckles and regular occlusion noise which will increase
the difficulty for experts to find out the bony region. Analysis
of results shows that our model is robust to speckle and regular
occlusion noise and can obtain a good segmentation result even
the input is noisy.

In the future, we will invite experts to use the segmentation
results of our model to measure the degree of scoliosis and
compare it with the results obtained manually to further verify
the reliability of our model. Further study would also focus on
exploring the potential of the proposed model on setting up a
fully automatic measurement system for accessing scoliosis.
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