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Abstract. This paper proposes a new method for natural-image deblur
based on a single blurred image. The natural image prior, a sparse gradi-
ent distribution, is enforced using a gradient histogram remapping method
in the proposed deblur algorithm. The proposed objective function for blind
deconvolution is solved by an alternating minimization method. The point
spread function and the unblurred image are updated alternately. The pro-
posed method is able to produce high-quality deblurred results with low
computational costs. Both synthetic and real blurred images are tested in
the experiments. Encouraging experimental results show that the newly
proposed method could effectively restore images blurred by complex mo-
tion. C© 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3505868]
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1 Introduction
Restoration of blurred images is an important task in image
processing and computer vision problems. This paper fo-
cuses on spatially invariant image deblur and proposes a new
method to estimate the kernel [point spread function (PSF)]
and the latent image (original sharp image) from a single
out-of-focus or motion-blurred image.

In the case of spatial invariance, the blurring process can
be modeled by an image convolution operation.1 When the
PSF is given, the image can be restored by nonblind deconvo-
lution methods, such as the inverse filter, Wiener filter,1 Lucy-
Richardson deconvolution (LR),2, 3 and maximum-likelihood
estimation.4 Most of these algorithms are reviewed and com-
pared by Schuon and Diepold.5 Since the precomputed PSF
is inaccurate and the blurred image is also noisy in most real
cases, nonblind deconvolution methods that are regularized
by image priors have been popular in recent years.6–9

When the PSF is unknown, the image deblurring is com-
monly called blind deconvolution. The estimation is heavily
underconstrained and sensitive to noise.10 Therefore, more
knowledge is required to improve the estimation condi-
tions. Specifically, when the image is blurred by uniform
linear motion, the PSF is determined by the motion direc-
tion and motion extent, which can be estimated from the
power spectrum image11 or by directional smoothness calcu-
lation and autocorrelation in the spatial domain.12 For other
motion-blurred or out-of-focus images, existing methods like
anisotropic regularization13 and total-variation-based14 reg-
ularization methods, as well as maximum-likelihood image
deblur algorithms,15 are also able to restore the blurred im-
ages.

One method to improve the estimation results is by using
two or more blurred images of the same scene.10, 16 Yuan
et al.17 incorporate additional unblurred noisy images to im-
prove the estimation results. Recently, the methods based
on a single blurred image have tended to deploy more ef-
fective priors for deblurring. Heavy-tailed distributions,18, 19

sparse approximation,20 transparency,21 and sharp edge
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characteristics,22 are reported to be good priors for natural-
scene image blind deconvolution.

The proposed method for blind deconvolution also uses
heavy-tailed distribution priors, but it differs from previous
methods in two respects. First, we employ a histogram remap-
ping method to correct the gradient distribution function. Sec-
ondly, the kernel elements are represented by a sigmoid func-
tion, and the kernel is estimated in the gradient domain. In
order to solve the involved optimization problem efficiently,
we have developed new methods to estimate the kernel and
the latent image. They constitute another contribution of this
paper.

The paper is organized as follows. In Sec. 2, the re-
lated works are reviewed. The histogram remapping method
adopted in this paper is also discussed. In Sec. 3, we present
the proposed model for image deblurring and kernel estima-
tion. The subproblems involved in the model are detailed in
Sec. 3.1. The optimization methods to solve the subproblems
are presented in Sec. 4. In Sec. 5 the experimental results on
synthetic and real blurred images are shown. The conclusions
are given in Sec. 6.

2 Related Work

The priors modeling the preference for an unblurred image
and the optimization algorithms are the essentials of the blind
deconvolution algorithm. Usually, natural scene images are
characterized by heavy-tailed distributions.18 In tight-frame
systems, the sparsity of the transformed unblurred image is
also prominent.10 Cai et al.10, 20 demonstrated the efficacy of
the deblurring method based on this prior. They solve the cor-
responding optimization problem by a linearized Bregman
iteration method. The Gaussian prior8 modeling the smooth-
ness of the unblurred image is also researched in previous
works. It might be a good method, since it has a closed-form
solution. However, the estimated unblurred image tends to
be oversmoothed.23 The hyper-Laplacian prior is more use-
ful for modeling the sparsity,6, 8 but its objective function is
more difficult to minimize.

Another method to represent the sparsity is to model
the gradient distribution function by a parametric equation.
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Fergus et al.18 use mixtures of Gaussian functions to fit the
logarithmic gradient distribution. Shan et al.19 use the two
piecewise concatenated continuous functions to fit the distri-
bution. Modeling the distribution by a parametric equation
has the advantage that the parametric equation can be explic-
itly put into the objective function for blind deconvolution.19

In both methods, the empirical distributions are all calculated
from sharp natural-scene images.

This paper also adopts the heavy-tailed distribution as a
prior for the proposed deblur algorithm. However, the empir-
ical distribution is directly deployed during estimation, and
its parametric form is not required. The blind deconvolution
problem is formulated as a constraint objective function so
that the gradients of the latent image are required to match
the empirical distribution. During the optimization process,
histogram remapping (histogram assignment)1 is adopted to
efficiently correct the distribution function.

2.1 Histogram Remapping
Histogram remapping is commonly used for image enhance-
ment. It adjusts the distribution function of image intensity
by searching a lookup table.1 If the cumulative distribution
function (CDF) of the target histogram is given, the remap-
ping can be carried out efficiently. In this paper, histogram
remapping is performed in the gradient domain. The empir-
ical CDF of the horizontal gradient magnitude is calculated
by 50 randomly collected sharp natural-scene images. The
function is shown in Fig. 1. The corresponding logarithmic
gradient distribution is shown in Fig. 2; it is seen to be a
heavy-tailed distribution. During the optimization, the empir-
ical CDF is used to correct the gradient distribution function
of the estimated unblurred image by histogram remapping.

3 Our Model
Let the sharp image and blur kernel be f and t , and the blurred
image be g. The ideal spatially invariant blur can be repre-
sented by convolution, g = f ∗ t , where ∗ denotes the image
convolution operation. Since the heavy-tailed distribution
prior we adopted is based on image gradients, we propose
the following constrained objective function for estimating
kernel and latent image:

J ( f, t) = ‖ f ∗ dx ∗ t − gx‖2 + ‖ f ∗ dy ∗ t − gy‖2, (1)
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Fig. 1 Cumulative distribution function of the gradient’s magnitude.
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Fig. 2 Logarithmic gradient distribution function calculated from 50
sharp natural images.

subject to the following requirements: (1) Both the horizontal

gradients fx
�= f ∗ dx and the vertical gradients fy

�= f ∗ dy
of the latent image f conform to the empirical distribution.
(2) All elements in the kernel t are nonnegative, and their
sum equals one.

In Eq. (1), dx = [−1, 1] and dy = [−1, 1]T . The images
gx and gy are the horizontal and vertical gradients of the
blurred image. They are computed as g ∗ dx and g ∗ dy . Al-
though the objective function has a simple form, no closed-
form solution exists, due to the constraint conditions. One
approach to minimizing (1) might be putting the constraints
into the objective function as a penalty function term with
an appropriate weight. Then it changes to an unconstrained
problem. This procedure coincides with the formulation de-
rived by the Bayesian approach. It tries to maximize the prob-
ability p(� f, t |�g) ∝ p(�g|� f, t)p(� f )p(t), where the �
is a gradient operator.

Here p(t) might be customized according to its blurring
type. For motion-blurred images, the sparsity of the kernel
is a popular prior.10, 16, 20, 24 But for out-of-focus images, the
PSF is commonly modeled by a concrete disk or a Gaussian
function. In the proposed objective function, the kernel reg-
ularization term is dropped for considering different kinds of
blur, and only the physical constraints are considered, namely
the non-negativity and the energy preserving property. Ex-
periments showed that our approach is able to suppress the
noise in the estimated kernel by the proposed optimization
method. Both Gaussian-blurred and motion-blurred images
were tested, as presented in Sec. 5.

In order to minimize Eq. (1), we adopt an alternating
minimization scheme6, 19 in which f and t are updated alter-
nately. To enforce the constraints on the gradient distribution,
fx and fy are calculated from the latest estimated f and then
corrected by histogram remapping. The corrected gradient
images are denoted by f h

x and f h
y . They are used to update

t and f in the next iteration. This correcting method for
solving the constraint optimization problem is similar to the
kernel estimation method presented in Refs. 17 and 25, where
the constraints on the blur kernel are enforced during opti-
mization. Extensive experiments showed that the, proposed
optimization method converges quickly.

Briefly, the proposed method for optimization is carried
out iteratively. The values of t , f , f h

x , and f h
y are updated in
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each iteration. The subproblems for estimating the variables
are presented below. The details of solving the subproblems
are discussed in Sec. 4.

3.1 Subproblems of Minimizing the Constraint
Objective Function

3.1.1 Update t
Assuming f h

x and f h
y have been calculated, we put them into

Eq. (1) and get the following function:

J (t) = ‖ f h
x ∗ t − gx ‖2 + ‖ f h

y ∗ t − gy ‖2,
(2)

subject to 0 ≤ ti ≤ 1, i ∈ �, and
∑
i∈�

ti = 1.

Here � is the support of the PSF. This subproblem is also a
constraint optimization problem. We developed an corrected
gradient descent method to update t . The optimization details
are presented in Sec. 4.1.

3.1.2 Update f
Holding t constant, Eq. (1) could be minimized easily by
traditional nonblind deconvolution methods. However, the
kernel t is noisy during iterations. The estimated f might be
filled with rings. To suppress the rings and let the gradient
image of f approach the empirical distribution, f h

x and f h
y are

incorporated to update f . The objective function for updating
f is formulated as

J ( f ) = ‖ f ∗ tx − gx ‖2 + ‖ f ∗ ty − gy ‖2 + λ ‖ f ∗ dx

− f h
x ‖2 + λ ‖ f ∗ dy − f h

y ‖2, (3)

where tx = dx ∗ t, ty = dy ∗ t . We use the default value
λ = 0.01 in our experiments. Note that f h

x and f h
y are

constants, which also have been used to update t . An ef-
ficient method to solve Eq. (3) is proposed and presented in
Sec. 4.2.

3.1.3 Update fh
x and fh

y

Given the updated f , the horizontal gradient image fx and
vertical gradient image fy are computed. Next the histogram-
remapped versions f h

x and f h
y are calculated. The histogram

remapping method and the target CDF function have been
discussed in Sec. 2.1.

4 Optimization Details

4.1 Update t
There are two constraints in Eq. (2). Unlike the interior point
method19 or the Landweber method,17 we adopt a sigmoid
function to represent kernel elements ti ,

ti (τi ) = 1

1 + exp(−τi )
. (4)

Obviously, the kernel element ti is always nonnegative. Then,
t in the function (2) can be replaced by the sigmoid function
with parameter τ .

We estimate the kernel in the spatial domain. The convo-
lution operation1 is considered:

g(x, y) =
a∑

p=−a

b∑
q=−b

t(p, q) f (x + p, y + q), (5)

where a, b are the height and width of the kernel. It can be
simplified as a dot product,1

g(x, y) = t T
v fv (x, y), (6)

where tv = [t1, t2, . . . , tK ]T , K = (2a + 1)(2b + 1). The
column vector tv is reshaped from the kernel matrix t in
Eq. (5). The vector fv (x, y) is stacked from the pixels in the
neighborhood of (x, y) in f. According to Eqs. (4) and (6),
the function (2) can be rewritten as

J (τ ) = 1

N

∑
i

{[
t T
v f h

x,v (i) − gx (i)
]2 + [

t T
v f h

y,v (i) − gy(i)
]2}

,

(7)

where i is the index of the image coordinate, and N is the
number of pixels. The elements of tv are expressed by the
sigmoid function with parameter τi . The functions f h

x,v (i) and
f h

y,v (i) are column vectors with elements in the neighborhood
of i in the images f h

x and f h
y . The gradient of Eq. (7) with

respect to τ is

dJ (τ )

dτ
= dJ (τ )

dt
· dt

dτ
, (8)

where

dJ (τ )

dt
= 2

N

∑
i

[
t T
v f h

x,v (i) − gx (i)
]

f h
x,v (i)

+ 2

N

∑
i

[
t T
v f h

y,v (i) − gy(i)
]

f h
y,v (i),

and for each kernel element, dti/dτi = t2
i exp(−τi ).

To minimize Eq. (7), τi is updated by the standard gradient
descent method and ti is updated later. To meet the second
constraint on ti , we normalize it by

ti,normalized = ti/s, where s =
K∑

i=1

ti . (9)

Basically, there are three steps required to update t in each
iteration:

1. Update τ by τ ⇐ τ − dJ (τ )/dτ .

2. Update t by the sigmoid function (4) with the latest τ .

3. Normalize t according to Eq. (9).

4.2 Update f
The objective function defined in Eq. (3) could be minimized
by the gradient descent method, or by traditional nonblind
deconvolution methods. However, we may solve this problem
in the frequency domain as described in Refs. 6 and 19. The
closed-form solution to this problem is

f = F−1

(
Gx ◦ T ∗

x + G y ◦ T ∗
y + λFh

x ◦ D∗
x + λFh

y ◦ D∗
y

Tx ◦ T ∗
x + Ty ◦ T ∗

y + λDx ◦ D∗
x + λDy ◦ D∗

y

)
,

(10)

where * means the complex conjugate, ◦ denotes component-
wise multiplication, F−1 denotes inverse Fourier transforma-
tion, and Gx , G y , Tx , Ty , Fh

x , Fh
y , Dx , and Dy are the Fourier

transforms of gx , gy , tx , ty , f h
x , f h

y , dx , and dy , respectively.
In each iteration, only the Fourier transforms of f h

x , f h
y , and
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t need to be computed. The rest all can be precomputed (Tx
is multiplied by T and Dx ; Ty is multiplied by T and Dy).

Experiments show that the terms λ‖ f ∗ dx − f h
x ‖2

+ λ‖ f ∗ dy − f h
y ‖2 in Eq. (3) are effective in suppressing

rings. Some components of Tx ◦ T ∗
x + Ty ◦ T ∗

y in Eq. (10)
may be very small. Then the resulting divided spectrum
could be degraded by high-frequency noise without the terms
λDx ◦ D∗

x + λDy ◦ D∗
y .

4.3 Summary of the Whole Algorithm
The proposed method for blind deblurring is summarized as
follows:

Algorithm 1. Image deblur in gradient domain.

Require: The blurred image g.

Initialization:

Compute gradient image gx , gy .

Let fx = g x , fy = g y .

Kernel t is initialized as a 2-D Gaussian function.

Repeat

a. Histogram-remap fx , fy ; the results are denoted by f h
x , f h

y .

b. Update kernel by gradient descent method. Three steps are
involved:
� Update τ by τ ⇐ τ − dJ(τ )/dτ.
� Update t by the sigmoid function (4) with esti-

mated τ .
� Normalize t according to Eq. (9).

c. Compute f by Eq. (10).

d. Compute the gradient images fx and fy based on the
updated f.

Until they have converged or the maximum number of iterations of
have been performed.

Return f and t.

In our experiments, the convergence is measured by the L1
norm of the difference between the consecutive estimates of
t with threshold 1e − 5. The maximum number of iterations
is 50. The standard deviation of the 2-D Gaussian function to
initialize the kernel is a quarter of the kernel width. To avoid
local minima, the multiscale approach described in Ref. 18 is
adopted. The kernel is estimated in a coarse-to-fine manner,
and its initial size is specified by the user.

5 Experiments
The proposed algorithm was implemented in C++ and tested
on a Windows PC with an Intel 2.6-GHz CPU. To evaluate the
performance of the algorithm, both synthetic and real blurred
images were tested. The experimental results produced by
Fergus et al.’s18 code were compared in the experiments.
We used the authors’ code and hand-tuned the parameters to
produce the best possible results.

5.1 Synthetic Images
In this subsection, we use synthetic blurred images to test the
performance of the proposed method. The first example is
shown in Fig. 3, where the blurred image (a) is synthesized
with a sharp image and a kernel shown in (e). Since the
multiscale approach is adopted, three layers are computed
in this case (the scale factor is

√
2). The 1st, 5th, and 20th

iteration results of the first layer are shown in (b). The next
two layers’ final estimation results are shown in (c) and (d).
The input image is 230×186; the user-specified kernel size
is 19×19. Our code takes only 17.5 s. For the same blurred
image and kernel size, Shan et al.’s code19 takes 54 s to

(a) (b)

(e)(d)(c)

Fig. 3 (a) The input blurred image. (b) The 1st, 5th, and 20th iteration results of the first layer. (c) The 50th estimation result of the second layer.
(d) The 50th estimation result of the third layer (the final output). (e) The latent image and the ground truth kernel. (The specified kernel size is
larger than the real size.)
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Fig. 4 Motion blur and Gaussian blur examples. The images in the first row are synthesized by convolution. The real kernels and blurred images
are presented. The sharp images and kernels estimated by Fergus et al.18 are presented in the second row. The results estimated by our method
are shown in the third row.

(a) (b) (c)

(f)(e)(d)

Fig. 5 Experiments on real motion-blurred images. (a), (d) are the blurred images to be restored. (b), (e) are produced by Fergus et al.’s code.18

(c), (f) are produced by our method.
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(a) (b) (c)

Fig. 6 Experiments on out-of-focus blur. (a) is an real out-of-focus blurred image. (b), (c) are produced by Fergus et al.’s18 and our method,
respectively.

produce a comparable result, and Fergus et al.’s. MATLAB
code18 takes 8 min.

Figure 4 shows the experimental results on the four syn-
thesized images. Both the motion-blurred and the Gaussian-
blurred images are tested. The synthetic blurred images and
real PSFs are shown in the first row of the figure. The images
and PSFs in the second row are those estimated by Fergus
et al.18 The results produced by our method are shown in
the third row. The peak SNRs of (PSNRs) of the images are
calculated from the image shown and the corresponding un-
blurred image. It is observed that all the PSFs have been well
reconstructed. However, the PSNRs of the images on the last
two columns restored by the proposed method are not as high
as the PSNRs of the left two images. That is because of the
lowpass filter effect of the Gaussian function. Actually, the
killed high-frequency energies of Gaussian blurred images
are difficult to restore by a deconvolution method even if the
ground truth PSF is used for nonblind deconvolution.

5.2 Real Blurred Images
It is challenging to deblur real images, for several reasons.
Firstly, a spatially invariant model is the basic assumption
for common blind deblur algorithms,10, 18, 19 and it is apt to
be violated in real circumstances, as stated in Ref. 23. Sec-
ondly, the noise embedded in the blurred images makes the
estimation problem difficult. In this subsection, we show
some examples where real blurred images are restored by the
proposed algorithm. The results produced by Fergus et al.’s
code18 are also compared.

In the experiments, color images are converted to
grayscale images for kernel estimation. Then the three chan-
nels of the color images are simply restored by Wiener
filtering.1 In Fig. 5, experiments on two motion-blurred im-
ages are shown. Both images are blurred by complex mo-
tion. Figure 6 shows an experiment on out-of-focus blur. It is
observed that the deblurred images produced by our method
are sharp. It should be noted that the proposed method is
just based on the gradients of the input blurred image, and
the deblurred color images are computed by Wiener filter-
ing. Other nonblind deconvolution methods6, 7 would further
improve the results.

6 Discussion
This paper proposes a new method for blind deconvolution
of images. Kernel estimation is carried out in the gradient
domain, and a histogram remapping method is adopted to
correct the gradient distribution of the estimated image. To
the best of our knowledge, no histogram remapping method
has been deployed for image deblurring previously. Exper-
iments showed that the proposed method is faster than tra-
ditional methods and it is able to restore both out-of-focus
images and complex motion-blurred images.

A minor additional difference between the proposed
method and the previous methods is that the kernel prior
is dropped in our method. Actually, we also tried the ex-
ponential distribution prior19 for kernel estimation, which is
implemented by a gradient descent method. However, the
prior makes little contribution to the experimental results.
One reason is that the kernel elements are represented by a
sigmoid function, which is another novelty of the proposed
method. It always keeps kernel elements nonnegative and
gives a good constraint to the kernel estimation algorithm.
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