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Zhen Fang, Jie Lu, Fellow, IEEE, Feng Liu, Student Member, IEEE, Junyu Xuan, and Guangquan Zhang

Abstract—The aim of unsupervised domain adaptation is to
leverage the knowledge in a labeled (source) domain to improve a
model’s learning performance with an unlabeled (target) domain
— the basic strategy being to mitigate the effects of discrepancies
between the two distributions. Most existing algorithms can only
handle unsupervised closed set domain adaptation (UCSDA), i.e.,
where the source and target domains are assumed to share the
same label set. In this paper, we target a more challenging
but realistic setting: unsupervised open set domain adaptation
(UOSDA), where the target domain has unknown classes that are
not found in the source domain. This is the first study to provide
a learning bound for open set domain adaptation, which we do by
theoretically investigating the risk of the target classifier on un-
known classes. The proposed learning bound has a special term,
namely open set difference, which reflects the risk of the target
classifier on unknown classes. Further, we present a novel and
theoretically guided unsupervised algorithm for open set domain
adaptation, called Distribution Alignment with Open Difference
(DAOD), which is based on regularizing this open set difference
bound. The experiments on several benchmark datasets show the
superior performance of the proposed UOSDA method compared
with the state-of-the-art methods in the literature.

Index Terms—Transfer Learning, Domain Adaptation, Ma-
chine Learning, Open Set Recognition.

I. INTRODUCTION

TANDARD supervised learning relies on the assumption

that both the training and the testing samples are drawn
from the same distribution. Unfortunately, this assumption
does not hold in many applications since the process of
collecting samples is prone to dataset bias [1], [2]. In object
recognition, for example, there can be a discrepancy in the
distributions between training and testing as a result of the
given conditions, the device type, the position, orientation,
and so on. To address this problem, unsupervised domain
adaptation (UDA) [3], [4] has been proposed as a way of
transferring relevant knowledge from a source domain that has
an abundance of labeled samples to an unlabeled domain (the
target domain).

The aim of UDA is to minimize the discrepancy between
the distributions of two domains. Existing work on UDA
falls into two main categories: (1) feature matching, which
seeks a new feature space where the marginal distributions or
conditional distributions from the two domains are similar [5]—
[7], and (2) instance reweighting, which estimates the weights
of the source domain so that the distributional discrepancy is
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Fig. 1: Unsupervised open set domain adaptation problem
(UOSDA), where the target domain contains “unknown”
classes that are not contained in the label set of the source

domain.

minimized [8], [9]. There is an implicit assumption in most
existing UDA algorithms [10]-[16] that the source and target
domains share the same label set. Under this assumption, UDA
is also regarded as unsupervised closed set domain adaptation
(UCSDA) [17].

However, this assumption in UCSDA algorithms is not
realistic in an unsupervised setting (i.e., there are no labels in
the target domain) since it is not known whether the classes
of target samples are from the label set of the source domain.
It may be that the target domain contains additional classes
(unknown classes) that do not exist in the label set of the
source domain [18]. For example, in the Syn2Real task [19],
there may be more classes for the real-world objects in the
target domain than the synthetic objects contained in the
source domain. Therefore, if existing UCSDA algorithms were
to be used to solve the UDA problem without the assumption
in UCSDA, the potential mismatches between unknown and
known classes would likely result in negative transfer [20] (see
Fig. 2(b)).

To address UDA problem without the assumption, Busto
et al. [17] and Saito et al. [18] recently proposed a new
problem setting, unsupervised open set domain adaptation
(UOSDA), in which the unlabeled target domain contains
unknown classes that do not belong to the label set of the
source domain (see Fig. 1). There are two key challenges
[18] in addressing the UOSDA problem. The first challenge
is that there is not enough knowledge in the target domain to
classify the unknown samples. So how should these samples
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Fig. 2: Aim of UOSDA. (a) The original source and target
samples are given. (b) UCSDA algorithm matches the source
and target samples, leading to negative transfer. Because the
unknown target samples interfere with distribution matching.

(c) UOSDA algorithm classifies known target samples into
the correct known classes and recognizes the unknown target

samples as unknown.

be labeled? The solution is to mine deeper information in
the target domain to delineate a boundary between the known
and unknown classes. The second challenge in UOSDA is the
difference in distributions. The unknown target samples should
not be matched when the overall distribution is matched,
otherwise negative transfer may occur.

Only a small number of algorithms have been proposed to
solve the UOSDA problem [17], [18], [21]-[23]. The first pro-
posed UOSDA algorithm is Assign-and-Transform-Iteratively
(ATI) [17], which recognizes unknown target samples using
constraint integer programming. It then learns a linear map to
match the source domain with the target domain by excluding
the predicted unknown target samples. However, ATI carries
the assumption that the source domain contains unknown
classes that are not in the target domain. Hence, the first
proposed deep UOSDA algorithm, Open Set Back Propagation
(OSBP) [18] was developed to address the UOSDA problem
without this assumption. It rejects unknown target samples by
training a binary cross entropy loss.

Although ATT and OSBP are designed to solve the UOSDA
problem, neither is based on a theoretical analysis of UOSDA.
Moreover, no work has yet given a learning bound for open
set domain adaptation problems. To fill this gap, this paper
presents a theoretical exploration of UOSDA. In studying the
risk of the target classifier on unknown classes, we discovered
the risk is closely related to a special term called open set
difference which can be estimated from the unlabeled sam-
ples. Minimizing the open set difference helps us to classify
unknown target samples, addressing the first challenge.

Following our theory, we design a principle-guided UOSDA
algorithm referred to as Distribution Alignment with Open
Difference (DAOD). This algorithm can accurately classify
unknown target samples while minimizing the discrepancy
between the two domains for known classes. DAOD learns

the target classifier by simultaneously optimizing the structural
risk function [24], the joint distribution alignment, the mani-
fold regularization [25], and open set difference. The reason
DAOQOD is able to avoid negative transfer lies in its ability to
minimize the open set difference, which enables the unknown
target samples to be classified accurately as unknown. By ex-
cluding these recognized unknown target samples, the source
and target domains can be precisely aligned, addressing the
second challenge.

As mentioned, there is no theoretical work in the literature
for open set domain adaptation. The closest theoretical work
is by Ben-David et al. [26], who gives VC-dimension-based
generalization bounds. Unfortunately, this work has several
restrictions: 1) the theoretical analysis only covers closed
settings; and 2) the work only solves binary classification
tasks, rather than the multi-class problems common to open
settings. A significant contribution of this paper is that the
theoretical work gives a learning bound for open set domain
adaptation.

The contributions of this paper are summarized as follows.

e We provide the theoretical bound for open set domain
adaptation. The closed set domain adaptation theory [26] is
a special case of our theoretical results. To the best of our
knowledge, this is the first work on open set domain adaptation
theory.

e We develop an unsupervised novel open set domain adap-
tation algorithm, Distribution Alignment with Open Difference
(DAOD), which is based on the open set learning bound
proposed. The algorithm enables the unknown target samples
to be separated from samples using open set difference.

e We conduct 38 real-world UOSDA tasks (including 20
face recognition tasks and 18 object recognition tasks) for
evaluating DAOD and existing UOSDA algorithms. Extensive
experiments demonstrate that DAOD outperforms the state-of-
the-art UOSDA algorithms ATI and OSBP.

This paper is organized as follows. Section II reviews exist-
ing work on unsupervised closed set domain adaptation, open
set recognition and unsupervised open set domain adaptation.
Section III presents the definitions, important notations and
our problem. Section IV provides the main theoretical result
and our proposed algorithm. Comprehensive evaluation results
and analyses are provided in Section V. Lastly, Section VI
concludes the paper.

II. RELATED WORK

In this section, we present relevant work related to unsu-
pervised closed set domain adaptation algorithms, open set
recognition, and unsupervised open set domain adaptation.

Closed Set Domain Adaptation. Ben-David et al. [26]
proposed learning bounds for closed set domain adaptation,
where the bounds show that the performance of the target clas-
sifier depends on the performance of the source classifier and
the discrepancy between the source and target domains. Many
UCSDA algorithms [7], [11], [27], [28] have been proposed
based on theoretical bounds with the objective of minimizing
the discrepancy between domains. These algorithms can be
roughly divided into two categories: feature matching and
instance reweighting.



Feature matching aims to reduce the distribution discrep-
ancy by learning a new feature representation. Transfer Com-
ponent Analysis (TCA) [5] learns a new feature space to match
distributions by employing the Maximum Mean Discrepancy
(MMD) [29]. Joint Distribution Adaptation (JDA) [6] im-
proves TCA by jointly matching marginal distributions and
conditional distributions. Adaptation Regularization Transfer
Learning (ARTL) [30] considers a manifold regularization
term [25] to learn the geometric relations between domains,
while matching distributions. Joint Geometrical and Statistical
Alignment (JGSA) [31] not only considers the distribution
discrepancy but also matches the geometric shift. Recent
advances show that deep networks can be successfully ap-
plied to closed set domain adaptation tasks. Deep Adaptation
Networks (DAN) [32] considers three adaptation layers for
matching distributions and applies Multiple Kernels MMD
[33] for adapting deep representations. Wasserstein Distance
Guided Representation Learning [34] minimizes the distribu-
tion discrepancy by employing Wasserstein Distance in neural
networks.

In the other category, instance reweighting algorithms re-
duce the distribution discrepancy by weighting samples in the
source domain. Kernel Mean Matching [8] defines the weights
as the density ratio between the source domain and the target
domain. Yu et al. [9] has provided a theoretical analysis for
important instance reweighting algorithms. However, with a
very great domain discrepancy, a large number of effective
source samples are down-weighted and useful information is
lost.

Unfortunately, the algorithms mentioned above cannot be
applied to open set domain adaptation because unknown
target samples would be included in the distribution matching
process, leading to negative transfer.

Open Set Recognition. When the source domain and target
domain for known classes share the same distribution, open set
domain adaptation becomes Open Set Recognition. A common
method for handling open set recognition relies on the use
of threshold-based classification strategies [35]. Establishing
a threshold for the similarity score means distant samples
are removed from the training samples. Open Set Nearest
Neighbor (OSNN) [36] recognizes whether a sample is from
an unknown class by comparing the threshold with a ratio:
the similarity score of the sample to the two classes most
similar to that sample. Another research stream relies on
modifying Support Vector Machines [37]-[39]. Multi-class
open set SVM [39] uses a multi-class SVM as a basis to learn
the unnormalized posterior probability which is used to reject
unknown samples.

Open Set Domain Adaptation. The open set domain
adaptation problem was proposed by Assign-and-Transform-
Iteratively (ATI) [17]. Using ¢, distance between each target
sample and the center of each source class, ATI constructs a
constraint integer programming to recognize unknown target
samples S, then learns a linear transformation to match the
source domain and target domain excluding S,. However,
ATT requires the help of unknown source samples, which are
unavailable in our setting. Recently, a deep learning algorithm,
Open Set Back Propagation (OSBP) [18], is a recent contri-

bution to addressing UOSDA. OSBP relies on an adversarial
neural network and a binary cross entropy loss to learn the
probability of the target samples. It then uses the estimated
probability to separate samples of known and unknown classes
in the target. However, we have not found any paper that
considers the learning bound for open set domain adaptation.
In this paper, we aim to fill in the blanks of open set domain
adaptation theory.

I11.

In this section, we formally define the problem setting
for this paper and introduce some fundamental concepts to
domain adaptation and, therefore, this study. The notations
used throughout this paper are summarized in Appendix A.
Table I .

PRELIMINARIES

A. Definitions and Problem Setting

Important definitions are presented as follows.

To be exact, a random variable is a measurable map. In
Definition 1, X € X and Y € ) mean that the image sets of
X and Y are contained in the spaces X and ) respectively.
We normally name the random variable X from the feature
space X as feature vector while the random variable Y as
label. The label Y can either be continuous (in a regression
task) or discrete (in a classification task). In this paper, we
have fixed it as a discrete variable with a fixed number of
items. Based on this definition, we have:

Definition 1 (Domains in Open Set Domain Adaptation).
Given a feature space X C R? and the label spaces YV*, )"
(Y* C V'), the source and target domains have different
joint distributions P(X*,Y*) and P(X*,Y"), where the label
space Y° C V¢, and random variables X°, Xt € X, Y € V¥,
Yte )t

From Definitions 1 and 2, we can see that: 1) X* and X*
are from the same space because our focus is on homogeneous
situations; and 2) V* is a subset of V. The classes from Y\ *
are the unknown target classes. The classes from ))° are the
known classes. Thus, the problem to be solved is:

Problem 1 (Unsupervised Open Set Domain Adaptation
(UOSDA)). Given labeled samples S drawn from the source
domain P(X?®,Y*) iid. and unlabeled samples Tx drawn
from the target marginal distribution P(X?) i.i.d., the aim of
unsupervised open set domain adaptation is to find a target
classifier ft: X — Y such that

1) ft classifies known target samples into the correct known
classes;

2) ft classifies unknown target samples as unknown.

It is worth noting that, with UOSDA tasks, the algorithm
only needs to classify unknown samples as unknown and
classify known target samples into the correct known classes.
Classifying unknown target samples into correct unknown
classes is not necessary. Hence, we consider all unknown target
samples are allocated to one big unknown class. Without loss
of generality, we assume that J* = {y.}&_;, V! = {Yc}gjll’
where the label yc41 represents the unknown target classes



and the label y. € R(C+Dx1 js a one-hot vector, whose c-
th coordinate is 1 and other coordinates are 0. The label y.
represents the c-th class.

B. Concepts and Notations

Before introducing our main results, we need to introduce
the following necessary concepts and notations in this field.
Unless otherwise specified, all the following notations are used
consistently throughout the paper without further explanations.
More detail on these notations is provided in Appendix A.

1) Notations for distributions: For the sake of simplicity,
we use the notations Pxsys and Pyx:ty+ to denote the joint
distributions P(X*,Y®) and P(X?,Y?) respectively and also
denote Pxs and Pyx: as the marginal distributions P(X*) and
P(X?), respectively.

Pxs|y. and Px:|y  represent the conditional distributions
for the c-th class P(X*|Y*® =y,.) and P(X'|Y" = y,), while
wt represents the target class-prior probability for c-th class
P(Y" = y.). Hence, 7{,;, = P(Y" = yc41) is the class-
prior probability for the unknown target classes.

Lastly, Px+|ys represents the target conditional distribution
for the known classes P(X*|Y* € Y*), which can be evaluated
by

P(X'Y' e V) _ S, PX'Y! = yo)m

P(Yte),) 1—7hyy '

The notation P denotes the corresponding empirical distribu-
tion to any distribution P. For example, Pxsys represents the
empirical distribution corresponding to Pxsy-s.

2) Risks and Partial Risks: Risks and partial risks are
two important concepts in learning theory, which are briefly
explained in the following and later used in our theorems.

Following the notations in [40], we consider a multi-class
classification task with a hypothesis space H of the scoring
functions

h: X - RYI=-RC+H

x = [h1 (%), ... hep1 (x)] T,

(D

where the output h.(x) indicates the confidence in the pre-
diction of the label y.. Let £ : RE*!1 x RE*! — R, be a
symmetric loss function. Then the risks of h € H wurt. /
under Pxsys and Pxty+ are given by
Ri(h):= E  {(h(x),y) =E ((h(X"),Y")),
(x,y)~Pxsys

R'(h) ::( E

y)~

U(h(x),y) = E ((h(X"), "), @

xtyt
The partial risk of h € H for the known target classes is

1
Ri(h):= 715/ ((h(x),y)dPxy:(x,y) (3)
1 — 7Tc+1 X xYs
and the partial risk of h € H for the unknown target classes
is

th+1(h) = E

x~Pxt

((h(x),yc+1)

lyc+41

)
/Xé(h(x)aYC+1)dPXt\yc+1(x)'

According to (2), (3) and (4), we have

R'(h) = n{& RG o (h) + (1 =75, )RL(h). )

The proof can be found in Appendix A.
Lastly, we denote

RZ,CH(h) = xN]%ng(h(x)’yCH) =E {(h(X?),yo11),
RZ,CH(h) =

xNﬂ;;, té(h(x)7ycur1) =E g(h(Xt)7YC'+1)
(6)

as the risks that the samples are regarded as the unknown
classes. R

Given a risk R(h), it is convenient to use notation R(h) as
the empirical risk that corresponds to R(h). Hence, notations
R*(h), R} o, (h) and R}, ., represent the empirical risks
corresponding to the risks R*(h), R} -, (h) and R}, -, (h)
respectively.

3) Discrepancy Distance and Maximum Mean Discrepancy:
One challenge of domain adaptation is the mismatch between
the distributions of the source and target domains. To miti-
gate this effect, two famous distribution distances have been
proposed as the measures of the distribution difference.

The first one is discrepancy distance presented as follows.

Definition 2 (Discrepancy Distance [41]). Let the hypothesis
space H be a set of functions defined in a feature space X, /
be a loss function and Py, Py be distributions on space X. The
discrepancy distance dg_t (P1, Py) between the distributions P
and P over X is
sup | E l(h(x),h"(x))— E {(h(x),h"(x))|.
h,h*cH x~ Py x~ P

If / in the definition is the zero-one loss, the discrepancy
distance is known as the A% distance [26]. The discrepancy
distance is symmetric and satisfies the triangle inequality, but
it does not define a distance in general: df,(Py, P2) = 0 does
not mean P, = Ps.

The second distance is Maximum Mean Discrepancy:

Definition 3 (Maximum Mean Discrepancy [29]). Given a
feature space X and a class of function F (f : X — R). The
maximum mean discrepancy between the distributions Py and
P2 is
MMD(F, P, P,] :=sup | E f(x)— E f(x)].
fer x~Pq x~ P>

To ensure that MMD is a metric, one must identify a
function class F that is rich enough to uniquely identify
whether P; = P». Gretton et al. [29], therefore, propose as
MMD function class F the unit ball in a reproducing kernel
Hilbert space (RKHS) H;. [42] (the subscript k represents the
reproducing kernel and is used to distinguish the hypothesis
set H from the RKHS ).

For convenience, we have used the notation MMDy,, (-, -)
to represent MMDIF, -, -], when F = {f € Hy : | flln, <
1} [29]. Note that MMDy;, is symmetric and satisfies the
triangle inequality. When the kernel k is a universal kernel,
MMDy, (P1, P;) = 0 if and only if P; = P,, which implies
that MMD+,, is a metric.



Though the MMD distance is powerful, it is not convenient
to be optimized as a regularization term in shallow domain
adaptation algorithms. The projected MMD [5], [42], [43]
has been proposed to transform the MMD distance into a
proper regularization term. Given a scoring function h =
[h1, ..., hcy1])T, where h. € Hy,c = 1,...,C+1, the projected
MMD is defined as follows:

| mxareo — [ nexapao

X

Dp (P, Py) =

)

2

where || - |2 is the {2 norm.

4) Manifold Regularization: The idea of manifold regu-
larization has a rich machine learning history going back to
transductive learning and truly semi-supervised learning [25].
Manifold regularization is specifically designed to control the
complexity as measured by the geometry of the distribution.
Given samples {x1,...,X,}, the manifold regularization is

S llh(x:) — B [EWis,

2,j=1

where [W ;] is the pair-wise affinity matrix and W ; estimates
the similarity of x;, x;.

By the manifold assumption [25], if two samples from the
support set of the distributions Px=, Px: are close, then the
scores of the two samples are similar. To extract geometric
relationship between domains, the manifold regularization has
been used by many closed set domain adaptation algorithms
[30], [43]-[48].

IV. PROPOSED ALGORITHM
A. Main Theoretical Result and Open Set Difference

Before introducing the main theorem, we firstly define open
set difference, one of the main contributions of the paper.

Definition 4 (Open Set Difference). Given risks R;, o, (h)
and RZ,C-&-l(h) defined in (6), the open set difference is

RZ,C-H(h)

A, = 1 ;
—Tcq

- RZ,C+1(h)a
where Tt 41 IS the class-prior probability for the unknown
target classes.

The following theorem provides an open set domain adap-
tation bound according to discrepancy distance and open set
difference.

Theorem 1. Given a symmetric loss function { satisfying
triangle inequality and a hypothesis H with a mild condition
that the constant vector value function g := ycy1 € H, then
for any h € H, we have

Source Risk Distribution Discrepancy
Rt (h) s 0
7 < R (h) +2dH(PXtD/57PX5)+A
L=7op
Ry cq1(h)
1u’ ﬂ_tc . - Ri,C—&-l(h’)a
+

Open Set DifferenceA,

where R*(h) and R'(h) are the risks defined in (2),

R; o1 (h) and R, . | (h) are the risks defined in (6), R.(h)

is the partial risk defined in (3), and A = ’ILm% R*(h)+R!(h).
€

Proof. Here we provide a proof sketch. Detailed proof is given
in Appendix A. According to (5), we have

R'(h)

— R*(h)
1-— Tl'é_i_l

(N
t
T
=RL(R) = R*(h) + TS R, (h).
C+1

Then we can check that

t
T
%Rgﬂ(m < d5,(Pxipys, Px:) +Dg. (9)
C+1
Combining (8), (9) with (7), we have

R'(h )
7(15 ) < R°(h) + 2d§{(PXtD;S,PXs) +A+A,.

1— To41

O

Remark 1. The condition yc4+1 € H can be replaced by a
weaker condition that there exists a sequence {h;}; > such
that h; converges uniformly to yc41. Note that the hypothesis
space H used in our algorithm satisfies the weaker condition
automatically, thus, the condition ycy1 € H can be removed
when we use the H applied in our algorithm.

The open set difference A, is the crucial term to bound the

risk of h on unknown target classes, since

1—nt
Riiq(h) < TCH (A, + d5y(Pxtys, Px=)) .
+1

A

(10)

The risk of A on unknown target classes is intimately linked
to the open set difference A,:

[t Re(h) — (1= m6i1)Ao| < diy(Pxejys, Pxe).

When 7th 1 =0 Theorem 1 degenerates into the closed set
scenario with this theoretical bound [26]

R'(h) < R*(h) + 3dy,(Px+, Px=) + A.
This is because when 7, ; = 0, the open set difference is
A, < d4(Pxtys, Px:) = dy(Pxt, Px:).

The significance of Theorem 1 is twofold. First, it highlights
that the open set difference A, is the main term for controlling
performance in open set domain adaptation. Second, the bound
shows a direct connection with closed set domain adaptation
theory.

In addition, the open set difference A, consists of two parts:
a positive term R}, -, (h) and a negative term R;, -, (h). A
larger positive term implies more target samples are classified
as unknown samples. The negative term is used to prevent the
source samples from being classified as unknown. According
to (10), the negative term and the distance discrepancy jointly
prevent all target samples from being recognized as unknown
classes. In addition, Corollary 1.1 also tells us that the positive



term and the negative term can be estimated from unlabeled
samples. Using Natarajan Dimension Theory [49] to bound
the source risk R°(h), risks Rl -, (h) and R; ., (h)
by empirical estimates ﬁs(h), ]/%Z,C_H(h) and ﬁZ,C—&-l(h)
respectively, we have the following result.

Corollary 1.1. Given a symmetric loss function £ satisfying
the triangle inequality and bounded by B, and a hypothesis
H C {h: X — Y'} with conditions: 1) the constant vector
value function g := yc4+1 € H, 2) the Natarajan dimension of
H is d, if a random labeled sample of size n® is generated by
source joint distribution Pxsys-i.i.d. and a random unlabeled
sample of size nt is generated by target marginal distribution
Pxt-i.id., then for any h € H and § € (0,1) with probability
at least 1 — 36, we have
t
L’J) < R*(h) + 2d5,(Pxt |y, Px:) + A, + A
1-—mei,
N 4B\/8dlogns + 16dlog(C + 1) + 2log2/0
nS

t
+2B\/8dlogn + 16dlog(C 4 1) + 2log2/d

2
(1- 7th+1) nt

)

where X is the feature space, YVt is the target label space,
R#(h) is the empirical source risk, R'(h) is the target risk,
A= ’rlnEl% R*(h) + Rt (h) and empirical open set difference
A, = Rl_cﬂitcl(f) - R\Z7C+1(h)’ here R*(h) are the risks
defined in (2), §Z7c+1(h), §270+1(h) are the empirical risks
corresponding to R}, 1 (h), R}, o ,(h) defined in (6).

Proof. The proof is given in Appendix D. O

Next, we employ the open set difference A, to construct
our model — Distribution Alignment with Open Difference.

B. Algorithm

The importance of Theorem 1 is that it tells us the rela-
tionships between the three terms (i.e., the source risk, the
distribution discrepancy, and the open set difference) and the
bound of the open set domain adaptation. Inspired by these
relationships, our initial focus is the following optimization
problem for unsupervised open set domain adaptation:

h* = argmin R*(h) + AdS, (Px-, Px:|y:)
heH

1 D Ds
+7 (MRZ,CH(h) - Ru,c+1(h)> )
C+1 an

where the hypothesis space H is defined as a subset of
functional space {h = [h1,....,hcy1]T : he € Hy} and A
and ~ are two free hyper-parameters.

As proven by JDA [6], ARTL [30] and MEDA [44], incor-
porating conditional distributions into the original marginal
distribution discrepancy can lead to superior domain adapta-
tion performance. Hence, we have also added an additional

conditional distribution discrepancy to the optimization prob-
lem in (11). Hence, the new problem becomes:

h* = argmin R*(h) + )\/.,LD}%“k(ﬁXs,ﬁXt‘ys)
heH '
c

+ A1 —p) ZDi,k(PXSchv Pxtyy.)

c=1

1 D Ds
i (1_tRzyc+1(h) - Ru,CJrl(h)) ;
TCc41

where € [0,1] is the adaptive factor [44] to convexly
combine the contributions from both the empirical marginal
distribution alignment and the empirical conditional distribu-
tion alignment. Note that the original d4, (-, -) is replaced with
the projected MMD Dy, i (-, ) in the new problem, because
d4,(-,-) is difficult to estimate. This results in a gap with
Theorem 1 where the discrepancy distance is used to measure
the distribution discrepancy rather than projected MMD. To
mitigate this gap, we also give a similar theoretical bound us-
ing MMD distance (see Theorem 4 in Appendix C for details).
Specifically, for proving Theorem 4, we need an additional
condition that the loss ¢ is squared loss {(y,y’) = |ly —y'||3.
Thus, we use the squared loss to design our algorithm.

Further, we have added the manifold regularization [25]
to learn the geometric structure of the source and target
domains. With this regularization, our algorithm can consis-
tently achieve good performance when the setting degrades
into a closed set domain adaptation (i.e., where there are no
unknown classes). This is because the state of the art closed
set algorithm ARTL [30] is a special case of DAOD, when
there is no open set difference.

Thus, the optimization problem can be rewritten as follows:

h* = argmin R\s(h) + )\MDlz,L’k(ﬁXS,ﬁXt‘ys)

heH
C ~ ~
+ A1 = 1)) D,y (Pxepy.. Pxryy.) (12)
c=1
+ OéRtu,cH(h) — YR, c41(h)
+ pMn(Sx, Tx) + ||k},
where o := /(1 — 7¢, ), p and o are three free hyper-

parameters, 7x denotes unlabeled target samples, Sx denotes
source samples without labels, My (Sx, Tx) is the manifold
regularization, and |k||? is the squared norm of h in H; to
avoid over-fitting.

Next, we show how to formulate equation (12) using given
samples. First, following the representer theorem, if the opti-
mization problem (12) has a minimizer h*, then h* can be
written as

n®4+nt

h*(x) = Z Bik(xi,x), VxeX,
i=1

where x; € Sx U Tx and B; € R(C+UX1 jg the parameter.
With this form of h*, we explain the computation of terms
in (12). The notations used in this section are summarized in
Appendix A. Table II.



1) Distribution Alignment: Since there are no labels for the
target samples, we cannot directly compute

C
1) Y Di i (Pxely., Pxyy,)

c=1 (13)
Therefore, the pseudo target labels are used to help compute
Pxt|ys and Px:,, instead. Given the pseudo target samples
for known classes Tx x, the pseudo target samples for c-th
class Tx . and the source samples for c-th class Sx . we can
compute (13) by the representer theorem and kernel trick as
follows:

D, k(Pxs, Pxtpys) + (1 —

tr(B"KMK}B),

where B = [B1, ..., Bpogne]T € ROETDX(" 40" K s the
(n® 4+ nt) x (n® 4+ n') kernel matrix [k:(xl, x;)], here x;,x; €
Sx UTx, and M = uM, + (1 — )ZC 1 M, is the MMD
matrix:

(14)

1
(ns)2, xi,X; € Sx,
1 €T
X, X X,K
(Mo)ij _ (n%)2? 1y ) )
0, x;orx;€Tx\Txk,
1
— ——» Otherwise;
nént.
1 €S
3, XXy X,cy
(ng)
1
. Xi,Xj € Txoes
(nt)?
M,);; = L
(M,)ij - X; € Sx,e,Xj € Tx.e,
cvc
1
_ m7 X; € SX,aXi € TXaC’
c vc
0, otherwise,
rvherT n® = |Sx|, ni = |Tx k|, ni = |Sx.| and n} :=
TX,C .

2) Manifold Regularization: The pair-wise affinity matrix
is denoted as

—— sim(x;,X;), X; € Np(x5) or x; € Np(x;)
Yo 0, otherwise;

where sim(x;,x;) is the similarity function such as cosine
similarity, NV,(x;) denotes the set of p-nearest neighbors to
point x; and p is a free parameter. The manifold regularization
can then be evaluated as follows:

n+nt
Ma(Sx,T) = 7 IIbx) — hix) [BWs;
i,j=1
C+1n°+nt
Z Z e(x:)Lijhe(x5),
c=1 1i,j=1

where x;,x; € SxUTx, L is the Laplacian matrix, which can
be written as D — W, here D is a diagonal matrix and D;; =

Z? At 'W;;. Using the representer theorem and kernel trick,
the mamfold regularization My (Sx, Tx) can be written as

tr(BTKLK@). (15)

3) Open Set Loss Function: We use a matrix to rewrite the

loss function and open set difference. Let the label matrix be
Y ¢ R(C+1)X(ns+nt):

1, x;€S8x;
Y, = 1= Shen i< €, (16)
0, otherwise
1, x;€7;
Y, = 1= Ghen i =C 41, (17)
0, otherwise

The label matrix Y € R(C+Dx(n"+n") jg

?ij =1iff i=C+1 and x; € Sx, otherwise ?ij =0.

(18)
Then
R*(h)+ aR!, ¢y (h) — YR, o1 (h) + 0| R}
=[(Y = B"K)A|% — 7[[(Y = B"K)A[. + otr(B"KB)

19)

where A is a (n® + n?) x (n® + n') diagonal matrix with

A = \/# if x; € Sx, Ay = /= if x4 € Tx; Ais a
(n® +n') x (ns +n') diagonal matrix with Ay = /L if
X; € SX, i = 0if x; € Tx, and || -
norm.

4) Overall Reformulation: Finally, based on (14), (15),

(19), the optimization problem in (12) is reformulated as:

B = L(B)

|7 is the Frobenius

arg min
BER(n5+nt)><(C+1)

where
L(B) =[I(Y = BTK)A[7 —~I(Y - BTK)A[%

20
+tr(BTK(AM + pL)Kg) + otr(BTKp). 0

C. Training

There is a negative term in £(/3), hence it may be not correct
to compute the optimizer by solving the equation oL (5 ) =0

directly. Maybe the “minimizer” solved by oL (ﬁ ) —0isa
maximum point or a saddle point. Fortunately, the following
theorem shows that there exists a unique optimizer that can
be solved by ( ) — 0.

Theorem 2. If the coefficient v of fz;c +1(h) is smaller than
1 and the kernel k is universal, then the L(3) defined in (20)
has a unique minimizer, which can be written as:

~ -1 ~ o~
((A2 — yA2 4+ AM + pL)K + UI) (A2YT — yA2YT).
(21)

The proof can be found in Appendix B.

To compute the true value of (21), it is best to use the
groundtruth labels of the target domain. However, our focus
is on unsupervised task, which means that it is impossible to
obtain any true target labels and, as mentioned, pseudo labels



Algorithm 1: DAOD
Input: Data S, Tx; #iterations T'; #neighbor p and
parameters A, o, p, o, 7, i4; threshold ¢; universal
_ kernel function k(-,-).
1. Y; <= OSNN®Y(S, Tx,t);% Predict pseudo labels;
2. Compute L, K using S, Tx, and Y;;
3.1+ 1;
while : <T + 1 do
4. Compute M using S, Tx, and f”t;
5. Compute 3 by formula (21);
6. f/t < [)’TK;%Predict pseudo labels;
7.0+ 1+ 1;

Output: Predicted target labels Y, classifier BTK.

can be used instead. These pseudo labels are generated by
applying an open set classifier that has been trained on the
source samples to the target samples.

In this paper, we used Open Set Nearest Neighbor for Class
Verification-t (OSNN®’-t) [36] to help us learn the pseudo
labels. We select the two nearest neighbors v, u from the test
sample s. If both nearest neighbors have the same label y, s
is classified with the label y.. Otherwise, the following ratio
is calculated ||v —s||2/||lu— s]|2, on the assumption that ||v —
s|l2 < ||u — s]|2. If the ratio is smaller than or equal to a pre-
defined threshold ¢, 0 < t < 1, s is classified with the same
label as v. Otherwise, s is recognized as the unknown sample.

To make the pseudo labels more accurate, we use the
iterative pseudo label refinement strategy, proposed by JDA
[6]. The implementation details are demonstrated in Algorithm
1 (https://github.com/fang-zhen/Open-set-domain-adaptation).

V. EXPERIMENTS AND EVALUATIONS

In this section, we first utilized real world datasets to verify
the performance of DAOD. We then conducted experiments
to examine the behavior of the parameters.

A. Real World Datasets

We evaluated our algorithm on three cross-domain recogni-
tion tasks: object recognition (Office-31, Office-Home), and
face recognition (PIE). Table I lists the statistics of these
datasets.

TABLE I: Introduction of datasets.

Dataset Type #Sample #Feature ~ #Class Domain
Office-31 Object 4,110 4,096 31 AWD
Office-Home  Object 15,500 2,048 65 Ar,CLPr,Rw
PIE Face 1,1554 1,024 68 P1....P5

Office-31 [50] consists of three real-world object domains:
AMAZON (A), DSLR (D) and WEBCAM (W). It has 4,652
images with 31 common categories. This means that there are
6 domain adaptation tasks: A - D, A - W, D - A, W — A,
D — W, W — D. Following the standard protocol and for a
fair comparison with the other algorithms, we extracted feature

vectors from the fully connected layer-7 (fc7) of the AlexNet
[51]. We introduced an open set protocol for this dataset by
taking classes 1-10 as the shared classes in alphabetical order.
The classes 21-31 were used as the unknown classes in the
target domain.

Office-Home [52] consists of 4 different domains: Artistic
(Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). Each
domain contains images from 65 object classes. We con-
structed 12 OSDA tasks: Ar — CI, Ar — Pr.,..., Rw — Ar.
In alphabetical order, we used the first 25 classes as the known
classes and classes 26-65 as the unknown classes. Following
the standard protocol and for a fair comparison with the other
algorithms, we extracted feature vectors from ResNet-50.

PIE [53] contains 41,368 facial images of 68 people in
various poses, illuminations, and expression changes. The face
images are captured by 13 synchronized cameras (different
poses) and 21 flashes (different illuminations and/or expres-
sions). We focused on 5 of 13 poses, i.e., PIE1 (CO5, left
pose), PIE2 (C07, upward pose), PIE3 (C09, downward pose),
PIE4 (C27, frontal pose) and PIES (C29, right pose). These
facial images were cropped to a size of 32 x 32. We took
classes 1-20 as the known classes and classes 21-68 as the
unknown classes in the target domain. 20 tasks were tested:
PIE1—PIE2, PIE1—PIE3...., PIES—PIE4.

B. Baseline Algorithms

The baseline algorithms selected for comparison with
DAOD were:

1) No Transfer:

e OSNN [36]. OSNN recognizes a sample as unknown by
computing the ratio of similarity scores to the two most similar
classes of the sample and then comparing the ratio with a pre-
defined threshold.

2) Closed Set:

e TCA [5] + OSNN. The aim in implementing TCA is
to show that if the UCSDA algorithm is used to solve the
UOSDA problem, negative transfer will occur, leading to poor
performance.

3) Open Set:

e JDA [6] + OSNN. We extended JDA into the open set
setting. Joint distribution matching is the main step in JDA.
Thus, we simply matched the known samples predicted by
OSNN when the JDA algorithm was implemented.

e JGSA [31] + OSNN. We extended JGSA into the open
set setting. First, for learning new features, we implemented
JGSA using the source samples and the known target samples
predicted by OSNN. Then, we used OSNN to predict the
pseudo labels. We repeated the process until convergence.

e ATI [17] + OSNN. ATI was the first UOSDA algorithm,
but it requires the unknown source samples to implement.
Therefore, to implement ATI under our setting, we used ATI
to select the outliers, and then learned the new features for
matching the source domain and target domain excluding
selected outliers. Lastly, OSNN was used to predict the labels.

e OSBP [18]. OSBP utilizes adversarial neural networks
and a binary cross entropy loss to learn the probability for the
target samples, then uses the estimated probability to recognize
the unknown samples.



TABLE II: Acc(OS*) and Acc(OS) (%) on Office-31, Office-Home and PIE Datasets.

Dataset OSNN TCA JDA JGSA ATI OSBP DAOD
OoS*  OS OoS*  OS OS*  OS OS*  OS OS*  OS OS*  OS OS*  OS
A—-W 560 540 548 548 630 648 757 752 706 69.7 69.1 70.1 842 84.2
A—=D 754 719 680 67.1 70.1 706 748 733 859 840 764 766 89.8 88.5
D—A 626 603 534 527 604 60.7 624 615 683 676 623 625 718 726
D—W 930 881 846 809 984 947 980 932 958 941 946 989 98.0 96.0
W—A 586 568 561 556 625 626 640 629 640 628 822 823 729 742
W=D 993 933 978 948 993 96.1 100.0 944 978 945 968 969 975 96.3
Average 742 707 692 685 756 749 792 767 804 788 802 804 85.7 853
Ar—Pr 394 406 377 379 597 590 641 633 704 686 692 684 72.6 718
Ar—Cl 321 337 244 241 391 396 459 460 542 531 533 531 553 554
Ar—Rw 56.6 57.0 557 553 675 664 741 728 781 773 791 780 782 77.6
Cl—Ar 323 340 313 321 419 421 438 445 59.1 578 582 579 591 592
Cl—Pr 39.1 403 348 348 491 489 558 558 683 667 724 716 70.8 70.1
Cl-Rw 469 4777 414 412 597 591 628 625 753 743 723 714 718 1770
Rw—Ar 514 521 494 492 558 551 569 564 708 70.0 682 665 713 705
Rw—Cl 38.0 392 349 341 441 439 487 48,6 554 552 592 578 584 578
Rw—Pr 592 592 573 565 680 682 665 653 794 783 808 786 818 80.6
Pr—Ar 385 397 332 334 484 480 558 555 626 612 610 596 66.7 658
Pr—Cl 350 363 358 36.1 412 41.1 441 444 541 539 569 557 600 59.1
Pr—Rw 59.6 59.7 583 575 704 689 735 723 81.1 799 839 821 841 822
Average 44.0 450 412 41.0 538 534 577 573 674 664 679 667 69.6 68.9
PI—=P2 321 343 206 214 421 413 554 544 440 419 666 642 573 565
P1—P3 465 483 202 203 500 49.1 544 535 563 536 691 664 53.1 522
P1—-P4 60.1 612 307 305 623 612 632 618 679 646 8.0 762 852 824
PI1—=P5 229 261 106 115 283 282 358 357 454 433 502 491 473 46.1
P2—P1 356 379 254 255 479 473 685 672 595 567 542 529 69.7 68.1
P2—P3 615 625 388 383 629 614 625 613 563 536 635 615 717 699
P2—P4 710 714 493 485 716 696 786 769 771 735 813 876 912 882
P2—P5 285 312 204 207 373 37.1 490 480 367 349 442 412 498 494
P3—P1 433 452 201 204 511 506 669 655 684 669 610 613 683 660.6
P3—P2 535 548 373 365 642 625 669 652 550 524 646 641 704 685
P3—P4 649 654 346 342 685 666 756 738 740 705 769 747 871 839
P3—P5 346 37.0 127 13.0 392 39.0 425 418 471 448 467 463 533 523
P4—Pl 565 577 248 246 642 624 758 739 668 637 687 672 871 844
P4—P2 781 780 640 62.1 752 724 783 76.1 781 744 850 822 848 824
P4—P3 783 783 338 333 815 789 813 791 617 587 676 669 80.0 77.6
P4—P5 431 448 17.1 177 521 509 658 644 485 462 638 599 613 599
P5—P1 232 257 116 128 296 302 464 459 235 302 666 642 606 592
P5—P2 265 284 183 183 310 31.1 44.0 43.6 367 349 358 354 348 350
P5—P3 31.0 327 123 133 331 329 554 546 419 399 463 451 444 446
P5—P4 372 389 194 200 497 49.1 638 627 586 558 535 522 703 68.6
Average 464 48.0 262 261 521 51.1 615 603 552 530 622 610 664 64.8
Allavg 500 50.6 377 375 563 556 631 619 630 613 668 659 704 69.3

C. Experimental Setup

Before reporting the detailed evaluation results, it is im-
portant to explain how DAOD’s hyper-parameters are tuned.
DAOD has several hyper-parameters: 1) the choice of the
kernel function k; 2) the adaptation parameters \, o, p, p, u;
3) the open set parameters «,y; and 4) #iterations 7" and the
threshold ¢ € (0, 1). Each parameter is discussed one by one
next.

1) The kernel function k : As suggested in [29], [44], we
chose the Gaussian kernel

la — blf3
— 22
oz ) (22)

where the kernel bandwidth r is median(||a — bl|2), Va,b €
Sx UTx.

2) The adaptive factor p: The adaptive factor p expresses
the relative importance of the marginal distributions and con-
ditional distributions. Wang et al. [44] made the first attempt to
compute p by employing A-distance [26], which is the special
case dg{_l of the discrepancy distance d%. According to [26],
the A-distance can also be defined as the error of building

k(a,b) = exp(—

a binary classifier from hypothesis set H to discriminate
between the two domains. Wang et al. [44] used the linear
hypothesis set to estimate .A-distance. Let e(h) be the error of
the linear classifier h discriminating source samples Sx and
target samples 7x. Then the A-distance

da(Sx,Tx) = 2(1 — e(h)).
We adopted the same algorithm as [44] to estimate u by
__ b
B do + 25:1 dc’

where dy = da(Sx,Tx,k), de = da(Sx,c,Tx,c) (¢ =
1,...,C). Here Tx i is the set of the target samples predicted
as known samples. This estimation has to be computed at
every iteration of DAOD, since the predicted conditional
distributions for the target may vary each time.

3) The open set parameters o and ~y: As shown in Figs. 3
and 4, DAOD is able to achieve consistently good performance
within a same range o € [0.2,0.4] and ~y € [0.15, 0.5], which
shows the relative stability of DAOD given the correct tuning
of these two parameters. Tuning should be done according to

p=1



the following rules. First, the positive term R, -, and the
negative term R; -, in the open set difference are inferred
from each other. A larger positive term means that more
samples are recognized as the unknown classes. A larger
negative term implies that more samples are classified as
known classes. To ensure that the positive and negative terms
balance, the difference |o—~| should not be too large. Further,
the parameter o should be larger than +, since the positive
term’s coefficient 1/(1 —m¢, ) is larger than 1. In this paper,
we set o = 0.4 for all tasks and 1) v = 0.2 for Office-31, and
2) v = 0.25 for Office-Home and PIE datasets.

4) Other hyper-parameters: We ran DAOD with a wide
range of parameter values for A, p, p, o, t and T" in Section
V-G. The results are shown in Fig. 4. These results indicate
that DAOD can provide a robust performance with a wide
range of hyper-parameter values.

From our tests, the best choices of parameters were: A €
[50,1000], p € [0,1], p € [2,32] 0 € [0.2,1.6], t € [0,0.9]
and DAOD can converge within 10 iterations. To sum up,
the performance of DAOD stays robust with a large range of
parameter choice. Therefore, the parameters do not need to be
significantly fine-tuned in practical applications. In this paper,
we fixed p=10, p=1and 0 =1, T = 10, t = 0.5 and set
1) A = 50 for Office-31, and 2) A = 500 for Office-Home
and PIE datasets.

Although DAOD is easy to use, and its parameters do not
have to be fine-tuned, we did explore how to further tune these
parameters for research purposes. We chose the parameters
according to following the rules: 1) The regularization term
|R||? is very important, so we tended to choose a slightly
larger o (0 = 1) to prevent DAOD from degenerating. 2) We
chose p by following [25]. 3) p is set following [25], [54]. 4)
distribution alignment is inevitable for DAOD, so we chose a
larger A (A > 50) to make it count.

We used two types of accuracy [17], [18] to evaluate DAOD:

C+1 ry
1 x:x from class c A\ f(x) =c¢
A9y = - S AFx) = ¢
c=1

)

(23)

|z : & from class ¢|

and

1< |z : x
Acc(0S") = 5 > =
c=1

from class ¢ A\ f(x) = ¢|
|z : x from class |

, 24

where f is the predicted classifier. Note that Acc(OS) is the
main index for evaluating the performance of the UOSDA
algorithms [17].

D. Experimental Results

The classification accuracy of the UOSDA tasks is shown
in Table II. The following facts can be observed from this
table. 1) The closed set algorithm TCA performed poorly
on most tasks, even worse than the standard OSNN algo-
rithm, indicating that negative transfer occurred. 2) All open
set algorithms achieved better classification accuracy than
OSNN on most tasks. This is because the source samples
and the known target samples have different distributions.
3) DAOD achieved much better performance Acc(OS) than

the six baseline algorithms on most tasks (24 out of 38).
The average classification accuracy (Acc(OS), Acc(OS*)) of
DAOD on the 38 tasks was 69.3%, 70.4% respectively, gaining
a performance improvement of 3.4%, 3.6% compared to the
best baseline OSBP. 4) Generally, JDA+OSNN, JGSA+OSNN
and ATI+OSNN algorithms did not perform as well as DAOD.
A major limitation of these algorithms may be that they omit
the selected unknown target samples when they construct a
latent space to match the distributions for the known classes.
This may result in the unknown samples being mixed with the
known samples in the latent space. In DAOD, the negative term
R}, o1 helps DAOD to avoid the problem suffered by JDA,
JGSA and ATI. 5) The performance of the OSPB algorithm
was generally worse than that of DAOD. The main reasons
may be that: 1) OSBP only matches the marginal distributions,
not the joint distributions; 2) OSBP does not keep the unknown
target samples away from the known source samples, with
the result that many unknown target samples are recognized
as known samples. DAOD, however, uses the negative term
R; o4 to separate the source samples and unknown target
samples.

E. Open Set Parameters Analysis

From our analysis of the open set parameters o and ~,
we find that the relationship between a and ~ is closely
related to another parameter, the difference § = a — 7.
We conducted experiments on the Office-31 dataset with «
ranging from 0.2 to 1.2 and J ranging from —0.2 to «.
Due to space limitations, the average results on Office-31 are
reported in Fig. 3. According to Fig. 3, we made the following
observations:

1) As ¢ increased, the accuracy of the unknown classes also
increased, since a larger positive term R, (h) means that
more samples are recognized as unknown.

2) When § < 0 (o < 7), for almost all « € [0.2,1.2],
the performance Acc(OS) was poorer than the best baseline
algorithm (dashed line). This is because when § < 0, more
samples are recognized as known classes. Our theoretical
results support this observation (Theorem 1) since the positive
terms coefficient 1/(1 — 7{, ) is larger than the negative
term’s coefficient 1. Thus, § should be larger than 0 (o > 7).

3) All figures in Fig. 3 are similar for almost all « from 0.4
to 1.2, which implies that o may be not the most important
factor influencing the performance of DAOD. Rather, the
difference ¢ is likely to be more important.

4) Performance Acc(OS) begins to decrease when § is
larger than 0.25 because more known samples are classified
as unknown with a larger 9.

5) When « ranged between 0.2 to 1.2 and § was chosen
from [0.05,0.2], the performance Acc(OS) of DAOD § was
superior to the best baseline.

6) Although « is not the main factor influencing the
performance of DAOD, we compare figures (o < 1.0) with
figures (aw > 1.0) and find that a smaller o achieves slightly
better performance than a larger o. In general, we select «
from [0.2,0.4] and § from [0.05, 0.25].
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Fig. 3: The horizontal axis is the difference in the open set parameters § = o — +y. In the figures, the difference ¢ is not larger
than «, since the parameter -y is required to be larger than or equal to 0. If 6 > 0, « is larger than . If § < 0, v is larger.

F. Parameter Sensitivity, Ablation Study and Convergence
Analysis.

These studies were conducted on different types of datasets
to demonstrate that: 1) a wide range of parameter values can be
chosen to obtain satisfactory performance, and 2) the open set
difference and distribution alignment term are important and
necessary. We evaluated important parameters \, o, p, p, t, a,
v and T, reporting the average results for datasets Office-31,
Office-Home and PIE respectively. The dashed line denotes
the results of the best baseline algorithm with each dataset.

Distribution Alignment \. We ran DAOD with varying
values of A. Fig. 4(a) plots the classification accuracy w.r.t.
to different values of \. From this figure, we can see that: 1)
When A\ = 0, the performance was the worst than the baseline.
2) After the increasing of the A from 0 to 50, the performance
dramatically increased to equal that of the baseline. 3) From 50
to 1000, DAOD was stable with values of around 0.85, 0.7, and
0.65 on the three datasets. Overall, the performance of DAOD
with most values of A was better than the baselines. We also
found that larger values of A resulted in a better distribution
alignment, and, if we chose A from [50,1000], we obtained
better results than the best baseline algorithm.

Manifold Regularization p. In these experiments, we ran
DAOD with varying values of p. Larger values of p increase
the importance of manifold consistency in DAOD. From Fig.
4(b), we can see that: 1) DAOD’s performance was steady and
consistently good when p € [0, 1]. 2) But, after the increasing
of p from 1 to 5, its performance dramatically dropped below
the baseline. 3) Further, DAOD’s continued to fall below the
baseline from 5 to 50. The reason for this poor performance at
p € [5,50] is that when p is large, DAOD mainly focuses on

the geometric information of the samples and ignores other
information. Choosing A from [0, 1], however, provides the
best results.

#Nearest Neighbors p. We ran DAOD with varying values
of p. If p — +o00, two samples which are not at all similar are
connected. If p — 0, limited similarity information between
samples is captured, thus p should not be too large or too
small. Fig. 4(c) shows that if p is selected from [2,32], the
performance of our algorithm is better than the baseline. When
p > 32, the performance of PIE was worse than the baseline.
One reason may be that when p is large, the samples from
different classes are connected, resulting in that samples from
different classes share similar scores. From Fig. 4(c), p can be
selected from [2,32].

Regularization 0. We ran DAOD with varying values of
o and plotted the classification accuracy as shown in Fig.
4(d). Theoretically, when ¢ — 0, the classifier degenerates
and overfitting occurs. When o — +o0, the classifier obtains
a trivial result. From Fig. 4(d), we can see that: 1) When
o = 0, the performance was the worst and also much worse
than the baseline. 2) However, after increasing of o from
0 to 0.2, performance dramatically increased commensurate
with the baseline. 3) From 0.2 to 1.6, DAOD was stable
with values at around 0.85,0.7 and 0.65 on three datasets. 4)
When o > 1.6, the performance dramatically dropped again
to below the baseline. According to Fig. 4(d), we can choose
o €[0.2,1.6].

Threshold ¢. Fig. 4(b) shows the classification accuracy
with varying values of t. Theoretically, the threshold ¢ is
determined by the openness @. When openness O — 1, ¢ — 0.
When openness O — 0, ¢ — 1. However, according to Fig.
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Fig. 4: Parameter sensitivity study, ablation study and convergence analysis of the proposed DAOD algorithm.

4(e), DAOD performed steadily when the threshold ¢ varies
from [0, 0.9]. This is because: 1) As the number of iterations
T increases, the effect of ¢ tapers off. 2) OSNN®'-¢ is not
sensitive to t.

Open Set Parameter o. Fig. 4(f) plots the classification
accuracy w.r.t. different values. Theoretically, when o — 0, the
classifier can not recognize unknown samples, whereas, when
a — 400, the classifier classifies all samples as unknown.
These conjectures are verified by the results in Fig. 4(f), where
the performance reaches its maximal point at around o = 0.3
and then gradually drops as « increases. Performance was
worst and lower than the baselines when o > 0.4, because
at this parameter setting many samples from known classes
are classified as unknown. In general, we can choose « from
[0.2,0.4].

Open Set Parameter ~. The classification accuracy w.r.t.
different values of ~ is shown in Fig. 4(g). Theoretically,
when v — 400, DAOD keeps the unknown target samples
away from known source samples. As a result, few samples
are classified as unknown classes. When v — 0, more
samples are classified as unknown, and when v < 0.15,
its performance was worse than the baselines. Conversely,
as vy increased, DAOD’s performance dramatically increased,
reaching its maximal value at around v = 0.3 before gradually
dropping again as y continues to increase. In general, we can
choose v € [0.15,0.5].

Ablation Study. 1) a and ~ are the two parameters that
control the contribution of the open set difference. As shown
in Fig. 4(f), setting o closer to 0 reduces the contribution of

the open set difference and performance degrades compared to
the optimal value of about ao = 0.3. Further, as shown in Fig.
4(g), setting ~y closer to 0 also reduces the contribution of the
open set difference and again performance degrades compared
to the optimal value of about v = 0.3. Therefore, we can safely
draw the conclusion that our proposed open set difference
is a necessary term for open set domain adaption. 2) X is
the parameter that controls the contribution of the distribution
discrepancy. As shown in Fig. 4(a), when A is 0, performance
is much worse than at other values, which shows that this
term also makes a significant contribution to the final domain
adaptation performance. 3) p controls the contribution of the
manifold regularization. Fig. 4(b) shows there is no significant
change in performance when p is set in the range O to 1. These
results indicate that p makes no significant contributions to
DAOD and may even negatively effect its performance with
values from 5 to 50. Though the contribution of manifold
regularization is not significant, more experiments in Appendix
E show that the manifold regularization is necessary. 4) o is
used to avoid overfitting. As shown in Fig. 4(d), performance
drops significantly when o is set to 0. Thus, the term ||h||7 is
important to our algorithm.

Convergence Analysis. The results of the convergence
analysis on the number of iterations 7' are provided in Fig.
4(h). As shown, DAOD reached a steady performance in only
a few iterations (7" < 10). This is a clear indication of the
advantages of DAOD’s ability to be trained in unsupervised
open set domain adaptation tasks.
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VI. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first work to
present a theoretical analysis for open set domain adaptation.
In deriving a theoretical bound, we discovered a special
term, open set difference, which is crucial for recognizing
unknown target samples. Using this open set difference, we
then constructed an unsupervised open set domain adaptation
algorithm, called Distribution Alignment with Open Difference
(DAOD). Extensive experiments show that DAOD outperforms
several competitive algorithms.

In the future, we will mainly focus on universal domain
adaptation [55], which is a unified domain adaptation frame-
work that includes closed set domain adaptation, open set
domain adaptation and partial domain adaptation [56] .
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SUMMARY

Some important definitions and notations are restated in Appendix A. The proof for Theorem 2 is provided in Appendix B.
The learning bound based on MMD distance (Theorem 4) is contained in Appendix C. In Appendix D, Corollary 1.1 is proven
in Appendix D along with an empirical proof of the MMD learning bound (Theorem 5). The experiments are represented in
Appendix E.

I. APPENDIX A: DEFINITION, NOTATIONS AND PROOF FOR THEOREM 1

The necessary definitions and notations for these Appendices follow, including a restatement of some definitions and notations
in the main text. Note that, although some notations and definitions coincide with the definitions and notations defined in the
main text of the paper, the notions and definitions introduced here strictly follow probability theory.

Source domain, target domain and distributions.

1. Let (92, <7, P) be a probability space, where €2 is the original space, &/ is the o-algebra on €, and P is the probability
measure on (2, o).

2. Let (X, %) be the measure space, where X is the sample space (feature or input) and £ is the o-algebra on X.

3. Let (V*,%) and (), 2) be two measure spaces, where the label spaces V° = {y.}< ,, V' = {y.}¢% are one-hot

c=1
set (yc+1 means unknown classes) and ¢, & are o-algebras, which consist of all subsets of Y* and ) respectively.

4. Denote the random variables X*, X!, Y* Y as:

where the notation X : (Q, &) — (Z,&) means X is a measurable map related to measurable spaces (£2,.<7) and (Z, &).

5. The joint random variables are denoted as:
XxY?: () > (X XV, BRF)
w = (X*(w), Y*(w))
and
XixY (o) = (X x V', B2 D)
w = (X' (), Y (w)),
where ® is the direct product of two measurable space (€2, %) and (Q, %3). Z® € denotes the smallest o-algebra containing
all cylinder sets {B x C : B € #,C € €} and & ® 2 denotes the smallest o-algebra containing all cylinder sets
{BxD:BeX,DecP}
6. The source domain and target domain are defined as follows.

Definition 1. The source domain and target domain are joint distributions P(X*,Y*) and P(X',Y*"), where X*, X' and
Y. Yt are the random variables defined (1).

Notations Pxsys and Pxty: denote the source joint distribution and target joint distribution respectively. Hence, given any
measurable set U € ZR % and V € B R Z, the value Pxsy:(U) and Pxty+(V) can be computed as follows:

Pxsys(U)=PweQ: X* xY5(w) €U), Pxiy:(V):=PlweQ:X"xY"w)eV).

7. The marginal distributions Pxs and Px: are defined as follows: For any measurable set B € %,

Pxs(B):=PweQ: X*(w) €B), Px:(B):=PweN: X" (w)eB).

8. The distribution th‘ ys is defined as follows: For any measurable set B € %,

Plwe Q: Xtw) € Band Yi(w) € V*)
Plwe Q:Yi(w) € Vs)

Pxt|y:(B) := P(X' € B[Y' € Y®) =



9. The distribution th‘y o1 is defined as follows: For any measurable set B € 4,

PlweQ: X'w) € Band Y{(w) =yci1)

PXt|yc+1(B) = P(Xt€B|Yt GyC+1): P(wegzyt(w):yc+1) . (2)

10. The distribution Pxty+|y is defined as follows: For any measurable set V € £ ® 2,

PlweN: Xt xYHw) € Vand Y(w) € V?) 3)
PlweN:Yiw) € V9) .

Pyiyijys(V):= P(X'xY' e VY € V*) =

Restatement of the definitions of risks:

11. Given the loss function ¢ : R¢*! x RE*! — R, and the scoring function h : X — RE*!, then the source risk
R*(h) and the target risk R!(h) are

R°’(h) :=E ¢(h(X®),Y?) = / ((h(x),y)dPxsys(x,y), R'(h) :=E {(h(X"),Y") = /Xxyt L(h(x),y)dPxtyt(x,y).

X xYs
“
12. The class-prior probability for the unknown target classes is
Top = Plw e Q:Y'(w) = yeou). (5)
13. The target risk of h w.r.t. ¢ limited to the source label space )* is:
Sﬁhx,ydP tyt( X,y
Ri(h):z fXxy ( ( ) t) XY( ) (6)
1—7o4
14. The target risk of h w.r.t. ¢ for the unknown target classes is:
Re (k) = /X 0(h(x),yc4+1)dPxrjye ., (X). (7
15. The risks that unlabeled samples are regarded as unknown samples are:
R cn(h) = B 6R(XC) yor) = [ (G0, yer)dPy. (o)
X
®)

Rl cialh) = B (X" 5c42) = [ U0, yeu)dPy: ()
Next, we prove several results which will be used in the proof of Theorem 1.
Proposition 1. If ((h(x),y) is a Pxty+-measurable function, then R'(h) = (1 —nf ,)RL(h) + g RE (h).
Proof for Proposition 1. First consider 7¢ ; Pxt|y.,, (B). For any measurable set B € 4,

PlweQ: Xt (w) € Band Y (w) =ycy1)
t _ .yt — .
T Pxtye,, (B) = P(w € Q: Y (w) = yoi) PlweQ:YHw)=yc+1)

=PweQ: X"w) e Band Yi(w) =yci1)
= Pxtyt(B X yc+1)-

Hence, 776+1dPXt|yC+1 (X) = dPXtyt (X, YC+1)'




Now consider (1 — 7¢ ) RL(h) + 75 RE 1 (h),

(1 =76 )R (R) + 6y Ry () :/
XXYs

= Z / f dPXth(X y)—|—7rc+1/ f yc+1)dPXt‘yc+1(X)

yeys

=> / y)dPxey(x, Y)+/ ((h(x),yc41)dPxey (X, yot1)

yeys &

eauxx>»dpxquoay>+w%ul/Qeuuxxyc+adfxnyCH<x>

_yezyt/ f dpxtyt(x Y) /Xxyt g(h’(X%y)dPXtyt(X,y)
—R'(h).

Proposition 2. Given the scoring functions h, h, if {(h(x), h(x)) is a Px:-measurable function, then

Jrxye €(R(x), h(x))d Pxeye(x,y) .
R — [ ).~ )Py ()
To+1 X
lyer Te, ¥ c€1,...C as: for any B € A,

PlweQ: XY w) € Band Y{(w) =y.) . o
PlweQ:YtHw) =y.) ;o mo=Plwe: Y (w) =ye). )

/ 0(h(x), h(x))dPxty|ys (X, y) =
X xYt

Proof for Proposition 2. Here we denote Pxt

PXt\yc(B) =
Firstly, we prove that for any B € £,
sz - Pxtjy.(B) = P(w € Q: X*(w) € B and Y'(w) € Y*) = Pxty+(B x Y*). (10)

That is because

C
> wl- Pxiy. (B
c=1

Il
Mo

(P(w QY gy P ER X (@) € B and V() = yc)>

PlweQ:Yiw)=y.))

I
—

C

I
Mo

Q
I
—

By Fubini theorem,
fXXySé(h(x),ﬁ(x))dPXzyt(x,y) S Xyeys U(h(x), h(x))dPxy(x,y)

7
1771'04_1 lfﬂtc_H (11

Do 1 cfX ))dPXt\y( x)
using (10) 1 T‘-C-&-l

Secondly, we need to prove that for any B € %,

Y mh - Pxiyy (B) = (1= mhyy) - Pxepys (B).

That is because
PweQ: X!(w) € B and Y (w) € Y*)
PlweQ:Ytw) e Y9)

(1 —7hyy) - Pxeys(B) = Plw € Q: Yi(w) € V°)-
—PweQ: X' (w) e Band Yi(w) € Y*) = Zw Pxuy. (B

Hence,

C t T
Dot Te Jo L(R(x), h(x))d Pxe)y, (x / ((h x))d Pyt |y:(x). (12)

t
177TC+1

PlweQ: X' (w)€eBand Y'(w) =y.) = Pw € Q: X" (w) € B and Y'(w) € Y*) = Pxtyt(B x Y%).



According to (11) and (12), we obtain

fXx)iS L(h(x), h(x))dPxtyt(x,y)

7
L =7o4

- /Xf(h(x),il(x))dpxtws (x). (13)

Next, we prove that

f)cxys £(h(x), h(x))dPxty:(x,y)

7
L —7eyy

/X . 0(h(x), h(x))dPxtyt|ys (X, y) =

Note that £(h(x), h(x)) is not related to variable y, thus we only need to prove that
Pxtyi(B X ys
thytlys(B X yt) = L}ﬁ)
-7
where B € 4. It is clear that

Pyeyeys (B x V') = PlweN: XH(w) € Band Yi(w) € Y*NYY) _ Pxiy+(B x yS).

PlweQ:YtHw) € ¥9) 1—7h
hence, -
- S vs L(R(x), h(x))dPxtyt(x,y)
/ ((h(x), h(x))dPxiyt|ys (x,y) = 22 — : (14)
X x Yt —TCH1
According to (13) and (14), we obtain the result. ]
Proposition 3. If /(h(x),y) is a Pxtyt-measurable function, then Rt (h) = fXth ((h(x),y)dPxtyt|y: (X, y).
Proof for Proposition 3. We first prove that: for any measurable set V € ZR % C B R 2, we have
1
thytlys (V) = 1_ 7Tt thyt (V)
C+1
Note VEBRC CAERI.
P V) = PlweQ: X' xY'(w)eVand Yi(w) e V?) PlweQ: X"'xY'(w)eV)
XYy = Plwe Q: Yiw) € V*) T PweQ:Yiw) € Ye)
1
- P t t V .
-7y xeve(V)
Hence 1
/ f(h(x%y)dpxtyqys (x,y) = lit / f(h(X),y)d_thyt (X,y). (15)
XxY* T oyl Jaxys
In addition, we note that, for any B € 4,
p (B x )_P(wGQ:Xt(w)GBandYt(w)eyCHﬂys)_P(wGQ:Xt(w)EBand Yt(w)e(l))_o
Xyl yo+t) = PweQ:Ytw) € Y3) N Plwe:YtHw) € Y9) -
Hence,
/ L(h(x),y)dPxty+|ys(X,y) :/ ((h(x),y)dPxty+|ys(X,y). (16)
X xYs X XYt
Combining (15) and (16), we have
1
[ 0. 5)aPxvye o) = e [ 0. 3) APy ().
XY T o4 Jaxys
O

Next we provide a proof for Theorem 1.



Proof of Theorem 1.
We firstly present the main idea of the proof. According to Proposition 1, we have that

R'(h) = (1 = n¢ 1) RL(h) + g Regq (R),
then
R'(h)

o R = RUR) R+ %Rgﬂ(h) (17)

L =74

thus we separate the proof into two main steps. For the first step, we mainly consider that Rf(h) — R*(h). For the second
step, we investigate RY,_ , (h).

If we can prove that

R'(h) — R*(h) < A+ dj,(Pxt|ys, Px+), (18)
and
wt Rtu h
—H—RE o (h) <dj(Pxeys, Pxe) + L() Rl c11(h), (19)
1-— Togt 1-— Tot
then combining (18), (19) with (17), we have
R'(h
# < R°(h)+ QdQ(PXt‘ys,PXS) +A+A,.
I =7oq

Step 1. We claim that R%(h) — R*(h) < A + df,(Pxt|y:, Px=).
Firstly, we note that

R.(h) — R*(h)

- / ((h(x), y)dPxry ey (x,y) — / (h(x), y)dPyey-(x,y)
X xYt XXYs
< FiB [ 0, )P )

inequalityl

LR () — /X |, (G, RON Py (5,y),

(20)

where h is any scoring function in . In inequality 1, we have used following triangle inequality: |£/(h(x),y) — £(h(x),y)| <

((h(x), h(x)).
Then according to the definition of Pxy+|ys, we can check that

/ |, {0, )Py 5. = [ ). R Py ). @1
X t
The proof of (21) can be found in Proposition 2. By Fubini’s theorem, it is also easy to check that
[ 0. )Py (y) = [ R0, APy (). 2)
AXYs X

Based on (20), (21), (22) and the definition of the discrepancy distance, we have
Ri(h) - R*(h)

< Rt( +RS ‘/ € dpxt‘ys / f FL dPXs(X)
< RL(h) + R*(h) + d% (Pxt|ys, Px:).

Hence,
R(h) — R*(h)

<min (Rg@ + Rs(fz)) +db; (Pxtjys, Px-) (23)
heH

=A + dj(Pxt|y-, Px<).



Step 2. We claim that 7S£ FREL (B) < di(Pxojye, Pxe) + ﬁ_cﬂi;(’” — Rl oy ().
We note that

Ru C+1(h) (1- 7TC+1)Ru C+1

(24)
=nt 1 Ro(h) + (1= 764, /f x),yc41)dPyejys (x) — (1 = 764 /E ), Yc+1)dPxs (%),

this is because the following equation

Ry cii(h /5 ), yot1)dPxe(x)
- /X ((R(x), e 41)dPxt ey (%) + (1 — 7hiy) /X (h(x), yos1)dPxe . (x) 25)

:WtCHRtCH(h) + (1 - 7th+1) /Xﬁ(h(x),ycﬂ)dPqus (x).

According to the definition of the discrepancy distance and the condition that the constant vector value function g = ycy1 €
‘H, we have

/E(h(x),ycH)dth‘ys(x)f/ L(h(x),yc+1)dPx:(x)
X X

(26)

/ ((h(x), g(x))d Py ye (x) — / ((h(x),g(x))dPx (x)| < diy(Pxeye, Px+).
X X

Combining (24) and (26), we show that
7TtC+1RtC+1(h) <(1- 772‘+1)d$1(PXf'\y5 , Pxs) + RZ,C-H(h) - (1~ 7TtC+1)RZ,C+1(h)~

Hence, we have proved 5 C L Rc+1( ) < dy,(Pxeys, Pxs) + %ﬁcﬂh) — Rl o1 (h).
+1 ’

As mentioned above, combining (18), (19) with (17), we have
Ri(h
) R () 4 2y (Proiyes Pxe) + A+ A
1-— Tog1

The proof has been completed.



TABLE I: Notations and their descriptions.

Notation Description Notation Description

X feature space Pxsys, Pxtyt source, target joint distributions
RARINY source, target label spaces {y.}<_,, {y}<' | Pxs, Px: source, target marginal distributions
X8, Xt random variables on the feature space Px:ly., Pxty, P(X°]Y® =y.), P(X"|Y' =y.)

Ys, Y! random variables on the label spaces Pxtjys P(X'Y?! € Y%)

R*(h), R'(h) source, target risks RL(h) partial risk on known target classes

Ye one-hot vector (class c) R, 41(h) partial risk on unknown target classes
h scoring function [h1(X), ..., ha41(x)]T R} 41, Rl o risks that samples regarded as unknown
H hypothesis space, set of scoring functions mt target class-prior probability for class ¢
Hy, RKHS k(") reproducing kernel

ds, (") discrepancy distance MMDy, (-,-) Maximum Mean Discrepancy

Dp (-, ) projected MMD distance P,R(h) empirical distribution, empirical risk

TABLE II: Notations and their descriptions.

Notation Description

S source samples

Sx source samples without labels

Tx unlabeled target samples

Sx.c source samples for class ¢ (label y.)

Tx.c pseudo target samples for class ¢ (label y.)
Tx K pseudo target samples for known classes
n®,nt numbers of sets Sy, Tx,

ns, nk, nk | numbers of sets Sx ¢, Tx ¢, Tx, K

K kernel [k(x;,x;)], here x;,x; € Sx U Tx
M MMD matrix

L laplacian matrix

Y label matrix

Y label matrix
AA diagonal matrics

II. APPENDIX B: PROOF FOR THEOREM 2

Proof for Theorem 2. The proof of Theorem 2 is divided into three parts.
Claim 1:

lim L(B) = +o0.
HBHﬂ — 00

It is easy to check that
tr(BTK(AM + pL)KB) + otr(BTKB) > 0,

since the projected MMD distance and manifold regularization are not negative.
Consider [|(Y — BTK)A[% —v[(Y — BTK)A|[7. ~
Since the kernel & is universal and v < 1, the matrix K(A2 — yA2%)K is symmetric and positive definite, which can be
written as _
K(A%? - yA?)K = OAOT,
where O is the orthogonal matrix, and A is the diagonal matrix, whose diagonal elements {/\z}f:i“"t are positive.
Then
I(Y = B"K)A[3 —7[I(Y - BTK)A3
— tr[(Y — BTK)A2(Y — BTK)"] — ytr[(Y — BTK)A*(Y - 87K)"]
= tr[BTK(A? — yA2)Kg] — 2tr[(YA?K — yYA2K)g] + constant
= tr[BTOAOT 3] — 2tr[(YA2K — yYA2K)g] + constant
= tr[(BTO)A(BTO)T] — 2tr[(YA2K — yYA2K)g] + constant
> ctr[(BTO(BTO)T] — O(||8|2) + constant = ctr[BT 3] — O(||B||2) + constant,



where c is the smallest diagonal element of the diagonal matrix A.

Therefore,
lim L > lim  ctrBTB — O(||B]|s2) + constant
o (B) o (I8le)
= lim ¢8| — O(||Blle) + constant = +o0
1Bl ;2 —+o0
Claim 2: There exist optimizers.
In Claim 1, we have proven that
lim L(B) = +oc.
1Bl g2 —+o00

which implies that there exists a large constant r > 0, such that £(3) > £(0), for any 8 € R(C+Dx(n"+1)\ B (0), where
B,.(0) is an open ball with a radius pf r and a center of 0.
Since L is a continuous function and the closed ball B,.(0) is a compact set, we know that there exist optimizers for £ and
these points must be contained in the open ball B, (0).
Claim 3: The solution is unique.
If a point 3y is a minimizer, then G satisfies the following equation:
oL
B

0 is unique, then the solution must be the unique minimizer.

(Bo) = 0.

If the solution of §£(8y) =
We compute g—é(ﬁo) -0,

0=—2(KA?YT — yKA?YT) + 20K8

- 27
+2(KA?’K — 7KA?K)3 + 2K(AM + pL)Kg. @7

Noting that the solution of (27) is unique and can be written as:
~ -1 o~
= ((A2 — 4A2 4 AM + pL)K + JI) (A2YT — yA2YT).

With Claim 1, Claim 2 and Claim 3, Theorem 2 is proven. O



I1I. APPENDIX C: LEARNING BOUND BASED ON MMD
We give a theoretical bound for OSDA that shows how MMD controls generalization performance in the case of the squared
loss ((y,y’) = ly - ¥'I%
One of the main techniques is that we use MMD distance to bound the discrepancy distance dg_t. This technique is firstly
given by Ghifary et al. [1]. We firstly review the technique, see Lemma 2.
Definition 2 and Lemma 1, along with details of the proof, can be found in [1] (Definition 8 and Lemma 4).

Definition 2 (Multiplication Operator [1]). Let C(X) be the space of continuous functions on the compact set X equipped
with the supremum norm || - ||, Given g € C(X), define the multiplication operator as the bounded linear operator Mg
C(X) — C(X) given by:

M, (f)(x) = g(x)f(x), for any [ € C(X). (28)

Lemma 1. Given g, f € Hy, where Hy, is equipped with a universal kernel, it holds that
IMg (Pl = llg - fllaee < llglloo - [1f I,
The details of Lemma 1 is in [1].

Lemma 2 (Domain Scatter Bounds Discrepancy [1]). Let Hy be an RKHS with a universal kernel. Suppose that ¢ = |y —y'||3
is the squared loss, and consider the hypothesis set

H={f€Hp | flr, <M and ||flloc <m},
where M, m > 0 is a constant. Let P, and P, be two distributions over X. Then the following inequality holds:
ds,(Py, Py) < AMmMMDy, (P, Py). (29)
Proof for Lemma 2. Let f, f € H. Observe that

Bl P = sup || B 069~ F0)] = B, 009 - Foo]
fs EH 1 X~ I2
~ s | E (200~ 20076 + P - _E (1)~ 2£(x)f(x) + F(x)]
f,fEH 1 X~ 12
= s LB (M) -2+ M) p00), | = B, (M09 —2My () M) 00, |
= s l<Mf(f) M (F) 4+ MA(P). E, 560 - xlEPf(X)Lk]
< sup My - My () 47| | B, et - B, o)
ffEH Hei ! 2 He
< sw (Mo, +2Msh],, + Mo, ) avow )
<fsfupH(||f||oo £l + 20Nl - 1l + 1 Fllc - 1 Flle, ) - MMDs (Pr, Py, here we use Lemma 1
S 4MmMMDHk (Pl, PQ)
(30)
O

However, the bound provided by [1] only considers scalar valued functions not the scoring functions (vector-valuedd
functions). The problem here, however, is based on scoring functions, thus we propose a new version of this bound:

Lemma 3. Let Hy, be an RKHS with a universal kernel. Suppose that {(y,y') = ||y —y'||3 is the squared loss, and consider
the hypothesis set H = H* U F, where

H* = {[hl> ~-~7hC+1}T : hc S Hlm ||th’Hk S M7 ||hc||oo S m}a

and F is a set that only contains a constant vector-value function [0, ..., 0, ..., 1]T € R+ here M, m > 0 is a constant.
Let Py and P, be two distributions over X. Then the following inequality holds:

dy,(P1, P2) < LMMDy, (Py, Py), €20
where L = max{4Mm(C + 1),(C +1)Mm + M}.



Proof for Lemma 3. Let h, h € #* Note that h = [hy, ..., hc41]T, h = [hq, ..., hc1]T. Observe that

C+1 C+1
7 2 7 2
sup | xlEpl[(hc(x> —he(x)?] = ) XLEPQ[(hc(X) — he(x))7]
h.heH | =1 c=1
C+1 C+1
_ 2 _ 7 72 _ 2 - 7 72
= hsflzlp leEPl[hc(X) 2he(%)he(x) + he (x)] ZXLEPQ[’%(X) 2he(x)he(x) + he (x)]
JhEH | c=1 c=1
C+1 _ _ C+1 ~ B
= sup |30 B (M (k) = 2V )+ My () o9), | = 3 B, | (M () = 2M () M G ), |
JREH | c=1 =1
C+1 ~ _
= sup [Z <th(hc) — 2My, (he) +M;;C(hc)7xngl<p(X) —XLEP;@(X)> ]
h,heH c=1 Hr
C+1 - ~
< sup Y My, (he) — 2Mp, (he) + Mj, (he) E ¢(x) = E o(x)
hheH o1 Hy X X~ Hi,
+2 My, (he)||  + |[M; (he) )
h,heM =1 H He H e He

C+1

< MMDy, (P, Ps) - sup 3 (Ihclloe - el + 2ello - el + el - el ) - here we use Lenma 1
h,heM j—1

< 4Mm(C + ].)MMDH,C (Ph PQ)
Let h € H*, f =[0,...,0,1]7. Note that f. = 0,c = 1,...,C and fcy; = 1 Observe that

+
< MMDy,, (P1, P,) - sup (HMh

C+1 C+1

sup E [(he(x) — fo(x))?] — E [(he(x) — fo(x))?
sup |5, 060~ £:60Y] = 3B, (100~ ()
C+1 o+l
= sup Y E [h060) = 2he(x) folx) + fE(x)] = D B [h2(x) = 2he(x) fe(x) + f2(x)]
€ c= X~ c= X~
C+1 C+1
_ 2( 2(
= | 2 B held) = 2 B G B hon (9 - B hen()
c+1 o+l
< sup | Y E, (M, (he), (%)) 3, ] = D E [(Mp, (he), 0(%)) 4, ]
heH p— X~ ot x~ P
=+ sup EP [<hc+17¢(x)>yk] - EP [(hCJrleO(X»Hk]
het |x~P1 X~ Py
Cc+1
= su My, (he), E - E + su hot1, E o(x)— E o(x
a3 [< (10, B, 00 = B o) ||+ sup K o1 B, o0~ E o )>H]
C+1
< sup My, (he E - E + sup||hc E E p(x
hGH; wlhe)| | B, ex) = B el +suplhon| | B 060 - E G0
C+1
< sup Z helloo * [|Pe]|7, MMDyy, (P, Pa) + sup||hc+1||HkMMDHk(P1,Pg) here we use Lemma 1
c=1
< ((C+1)Mm + M)MMDy, (Py, P,).
Note that d4,(P1, P,) = sup | E [(h(x) —h(x))’] - E [(h(x)—h(x))?]|.
hhew X~ x~Po
we have
d4 (P, Py) < LMMDy, (P, P2),
where L = max{4Mm(C +1),(C +1)Mm + M}. O

Proof of the main result:
Theorem 4. Let H;, be an RKHS with a universal kernel. Suppose that ((y,y') = ||y —y'||3 is the squared loss, and consider
the hypothesis set H = H* U F, where

H* = {[hh ~--7hC+1}T : hc S Hlm ”th”Hk S M7 ||hc||oo < m}7




and F is a set which only contains a constant vector-value function [0, ...,0, ..., 1]T € R(CE+D) here M, m > 0 is a constant.
Given the source domain and target domain Pxsys and Pxty«, if for any h € H, {(h(x),y) is measurable respect to Pxsy s
and Pxty+, then

Ri(h
B w4+ \/EMMDs, (P, Pyajye) + /Ao + IMMDy, (Px, Pxijye) + A,
1-moiy
where A = ’leéi;’r_ll\/RS(h) ++/RL(h), L = max{4Mm(C + 1), (C +1)Mm+ M} and open set difference A, %Cl(h)
+1

Ry cra(h).

Proof for Theorem 4. Step 1. Given h € #, using the triangle inequality of L? norm and Proposition 2, we have

U=t )RR \/ | 1060 - yl3dPrey (x.y)
X xYs
< \/ / () — yl2dPyey (%, y) + \/ / 1(x) — R(x)[2dPxry+ (x,y)
X xYs XxYs (32)

= \/ 7TC+1 JRL h‘)"’\/ 7Tc+1 / |h(x HQdPXfD/S( x)

_\/1—770+1 —|—\/ — 7o) Ep, sty

N;)te that Ep twsé(h, il) ]Ep Nt ys Hh — h”g < prs h — h||2 +d§_t(PXS7PXt‘yS) = ]prsé(h, il) + d!;_l(PXS’Pthys), we
obtain

AT

\/(1 —mey)Ri(h) < \/(1 - 7rtc+1)R>tk(il) + (L= mgy)Epy. U(h, h) + (1 — o)y (Pxs, Pxejy-) (33)

By Fubini Theorem and triangle inequality for L? norm:

VEp,.l(h, h) \// |R(x) — h(x)|2dPx- (x)

= \// |h(x) — ’N'L(X)H%dPXSYS(Xv y)
Xy (34)

< \//Xm A (x) — y[3dPx-y- (x,y) + \//Xxys |h(x) — y|2dPx-v+ (x,y)
— VR + /R (h).

Step 2. We claim that 7{, , RE. (k) < (1 — 7k )d5 (Pxepys, Pxs) + R oy (h) — (1 — 76 ) RE oy (R).
Firstly,

Ry (h) = /X Uh(x), yo41)dPx: (x) = Ty /X Uh(x),y041)dPxelye,, (%) + (1= 7,y /X £(h(2), o) dPec e ().

(35)
We note that
Rea(h) = [ (0. yei)dProye., () 36)
Therefore, according to (35) and (36), we have
RZ,CH(h) - (1- 7th+1)RZ,c+1(h)
(37)

=ropRo(h) + (1= 704) /Xf(h(X)7yc+1)dth|ys (%) = (1 =75 yq) /Xf(h(X),yCH)dPXs(X)

According to the definition of discrepancy distance and the condition of the constant vector value function g := yc4+1 € H,
we have

< d4,(Pxty-,Px-). (38)

/E(h(x),ycﬂ)dPxf,‘ys(x)f/ (h(x),yc+1)dPxs(x)
X x




Combining (37) and (38), we show that

772’+1Rt0+1(h) <(1- 7TtC+1)d$-L(PX‘|ySvPXS) + RZ,C-H(h) - (1= 772“+1)RZ,C+1(h)- (39)
Step 3. Using Proposition 1, Lemma 3, inequalities (33), (34), (39) and inequality va + b < y/a + Vb (a,b>0), we get

VRi(h) < /1 =7t VRU(R) + (/7 4/ R, 1 (h) Using prposition 1 and va +b < Vva+ Vb
< \/1 —7th1+1 <\/Ri(il) + \/]prsé(h,hj) + \/d?H(PXs,Pqus)) + \/WtC-i-l\/RtC-i-l(h)

Above inequality uses (33) and va +b < va + Vb

- (40)
§1/1—7T6+1 (\/Ré(h,)—l—\/]“zi(h)—f—\/RS ) \/L 7TC'+1 MMD’Hk(PXs Pthya +\/7TC+1\/RC+1 )
Above inequality uses (34) Lemma 3 and va+b < va+ Vb
<\/l1-7h (\/Rs(h) + \/Ri(fz) + \/RS ) \/L — mb, ) )MMDy, (Px:, Px:|y<) + VA, Using (39)
where A = (1 —mf,)dy (Pxjys, Px:) + Rl ¢y (h) — (1 — 7l 1) R o4y (R).
Consider A with Lemma 3,
L \/A + LMMDy, (Px-, Px1y:). 1)
1-— 7Tc+1 e Ex

From inequalities (40), (41), we have, for any he H,

Rt(h - =
# < V/Rs(h)+ y/LMMDy, (Pxs, Pxt|ys) + 1/ Ao + LMMDy (Pxs, Pxt|ys) + 1/ RL(h) + 1/ R*(h),
1— 7.‘.t ‘ ‘

C+1
Hence, we obtain the result:
R'(h)

7
L =7oy

< VRs(h)+ \/LMI\/IDH}C (PXs,PXt‘ys) + \/AO + LMMDH(PXS,PXt,‘ys) + iIlIél?I-lL \/Ri(il) + \/Rs(il,)



IV. APPENDIX D: LEARNING BOUND BASED ON EMPIRICAL VERSION

Although Theorem 1 and Theorem 4 give bounds for our problem, it is hard to evaluate because the bounds are expressed
based on random variables. An empirical version of those bounds is needed to evaluate the values. Our idea for deriving these
bounds is based on the Rademacher complexity and the Natarajan dimension [2] , which measure the richness of a class of
real-valued functions. However, before introducing the Rademacher complexity and Natarajan dimension, we need to introduce
the empirical risks.

1. R*(h): Given samples S = {(x5,y%), ..., (X%, y5.)} ~ Pxey iid, let Px:y« be the empirical distribution respect to
S. Then

R(h) = /X G, v)dPy.y- ;i 42)

2. EZ7C+1(h): Given samples Sx = {x],...,x5.} ~ Pxs ii.d, let 13Xs be the empirical distribution respect to Sx. Then

R cir(h) = /Xg(h( x),yo+1)dPxs (x) = 725 1) Yet). (43)

3. }AQZC +1(h): Given samples Tx = {x{,...,x,} ~ Px+ i.i.d, let Px: be the empirical distribution respect to Tx. Then

~

Ry, c41(R) 5:/ ((h(x),yc11)dPye (x) = = Z i) yor)- (44)
X ‘:
We then introduce the definition of Rademacher complexity.

Definition 3 (Rademacher Complexity). Let F be a class of real-valued functions defined in a space Z. Given sample
S ={z1,....,2n} € Z, then the Empirical Rademacher Complexity of F with respect to the sample S is

Re(F) = ;1612_ - ZUZ zi)] (45)
where 0 = (01, ...,0,) are Rademacher variables, with o;s independent uniform random variables taking values in —1,+1.
Lemma 4. (Theorem 26.5 in [2].) Given a space Z, a function | : R x Z — Ry and a hypothesis set H C {f : Z — R}, let

FimloH={I(f(),2): f € H},

where | < B. Then for a distribution Q) on space Z, samples S = {z1, ..., z,} ~ Q i.i.d, we have with probability of at least
1—90>0, foral feF:

~ =~ 2log(2/d
R(S) ~ R(J) < s s (F) + By B0, (o)
where R(f) = [;1(f(z),2)dQ(2) and R(f ) =230 U(f(2), 20).
Using the same techmque of Lemma 4, we can also have: with probability of at least 1 — § > 0, for all f € F:
= ~ 2log(2/d
R() ~ R(f) < 2B (F) + By B0,

Next we provide a proof for Corollary 1.1. We firstly define the Natarajan dimension [2], which is a generalization of the
VC dimension to classes of multi-class predictors.

Definition 4 (Shattering [2]). Given a feature space X, we say that a set U C X is shattered by H if there exist two functions
ho,h1 : U — VY, such that



o For every x € U, ho(x) # hi(x).
o For every V. C U, there exists a function h € H such that Vx € V, h(x) = ho(x) and Vx € U\V, h(x) = hy(x).

Hence, we can define the Natarajan dimension as follows:

Definition 5 (Natarajan Dimension [2]). The Natarajan dimension of H, denoted Ndim(H), is the maximal size of a shattered
set U C X .

It is not hard to see that in the case that there are exactly two classes, Ndim(#) = VCdim(#). Therefore, the Natarajan
dimension generalizes the VC dimension.

Corollary 1.1 Given a symmetric loss function ¢ satisfying the triangle inequality and bounded by B, and a hypothesis
H C {h: X — Y}, with conditions: 1) g = yci11 € H and 2) the Natarajan dimension of H is d, if a random labeled
samples of size n® is generated by Pxsys-i.i.d and a random unlabeled samples of size n' is generated by Px:-i.i.d, then for
any h € H and 6 € (0,1) with probability at least 1 — 35, we have

R'(h)

- <R+ iy (Pxepys, Px:) + Ay + A
C+1

logn® + 16d1 1) + 2log 2
+4B\/8d ogn® + 16dlog(C + 1) + 2log2/§
TLS
t
+2B\/8d1ogn +16d1log(C + 1) 4 2log 2/

2
(1- 7th+1) nt

)

where A = min R*(h) + RL(h) and empirical open set difference A, = Rucpa®) AZ’CH(h) .

T
heH I-mo

Proof. Step 1. We prove that with probability of at least 1 — § > 0, for all h € H:

~ I s +16d1 1 2log(2
Rs(h)SRs(h)—i—QB\/Sd ogn® + 16dlog(C + 1) + 2log( /5)

nS

Let the source samples be S = {(x5,y5), ..., (X3.,¥5.)}. Recall that the Natarajan lemma (Lemma 29.4 of [2]) tells us that
if Ndim(#) is d, then
{h(x5), ... h(x}.) : h € H}| < (n*)4(C +1)*

Denote A = {(¢(h(x3),y3),....L(h(x:),y5:) : h € H}. This clearly implies that
|A| < {h(x3), ..., h(x5.) s h € H}| < (n*)4(C + 1)
Combining this with Lemma 26.8 of [2], we obtain the following bound:

1 > 2dlog n® + 4d1 1
7EU[SUPZU¢6L¢] SB\/ ogn® + 4dlog(C + 1)

nS
acA =1

ns ’

where a; is the i-th coordinate value of a and ¢ = (o4, ...,0,,) are Rademacher variables, with o;s independent uniform
random variables taking values in —1,+1.

Let F be
{l(h(x),y): h e H, (x,y) € X x YV},

then

~ 1 -
%5(]:) = EEU[SESZO]QZ‘] S B
acs =1

\/leog n® + 4dlog(C + 1)

nS

Following Lemma 4, we have with probability of at least § > 0, for all h € H:
2dlogn® + 4dlog(C + 1) B \/ 21log(2/6)

ns ns

8dlogn® + 16dlog(C + 1) + 21log(2/9)

nS

< ES(h)+2B\/

Step 2. We prove that with probability of at least 1 — § > 0, for all h € H:

R*(h) < RS(h)+23\/

Ds s 8dlogns + 16dlog(C + 1) + 2log(2/d
7R1L,C+1(h) < 7Ru,C+1(h) + 2B\/ ( : ) ( / )

nb

Let the source samples be Sx = {x],...,x5.}. Recall that the Natarajan lemma (Lemma 29.4 of [2]) tells us that if Ndim(#)
is d, then
Hh(x}),..., h(x5.) : h € H}| < (n*)4(C + 1)



Denote A = {({(h(x5),yc+1), -, L(R(X5:),¥Yc+1)) : b € H}. This clearly implies that
Al < [{R(x}), ... h(x}.) - B € HY| < (n°)4(C + 1)

Combining this with Lemma 26.8 of [2], we obtain the following bound:

2d1 s+ 4dlog(C +1
bup Z Ulal < \/ ogn + Og( + ) 7
acA’ n®

where a; is the i-th coordinate value of a and ¢ = (oy,...,0,,) are Rademacher variables, with o;s independent uniform
random variables taking values in —1,+1.

Let F be
{l(h(x),yc+1) :h e H,x € X},
then
2dlogn® + 4dlog(C + 1)
ER - su o'laz \/ .
Sx( aegz s

Following Lemma 4, we have with probability of at least § > 0, for all h € H:

8dlogn® + 16dlog(C + 1) + 21og(2/9)

nS

—R; ci1(h) < —R;, ciq(h) + 2B\/
Step 3. We prove that with probability of at least 1 — § > 0, for all h € H:

2B\/8dlog nt 4+ 16dlog(C + 1) + 2log(2/4)
nt '

ﬁtu,C—H(h) <R, cp(h)+

Let the source samples be Tx = {x},...,x!,}. Recall that the Natarajan lemma (Lemma 29.4 of [2]) tells us that if Ndim(#)
is d, then
{R(xE), o h(xte) s h € MY < (n)C + 1)

Denote A = {({(h(x}),yc+1), ... £(h(xL:)),yc+1) : h € H}. This clearly implies that
Al < [{h(x}), ..., h(xL:) : h € H}| < (n")H(C + 1)*
Combining this with Lemma 26.8 of [2], we obtain the following bound:

2dlognt + 4dlog(C + 1)
S = |

where a; is the i-th coordinate value of a and ¢ = (o4, ...,0,,) are Rademacher variables, with o;s independent uniform
random variables taking values in —1,+1.

Let F be
{l(h(x),yct1) :h e H,x € X},
then
D 2dlog nt + 4dlog(C + 1)
R ]: s \/ .
Tx 21611220 a;] < -

Following Lemma 4, we have with probability of at least § > 0, for all h € H:

8dlognt + 16d1og(C + 1) + 21log(2/4)

nt

Ru ci1(h) <R, oy (h) + 23¢

Combining Steps 1, 2, 3 with Theorem 1, we obtain the result. O



Lastly, we provide an empirical analysis for Theorem 4.
Theorem 5. Let Hj, be an RKHS with a universal kernel. Suppose that ((y,y') = |y — y'||3 is the squared loss, and
consider the hypothesis set H = H* U F, where

H* = {[hl,...7hc+1}T She € Hiy |hellm, < M, |Jhel|looe < mb,
and F is a set which only contains a constant vector value function |0, s 0, ] e RC*TD here M,m >0 is a constant

If a random labeled labeled samples S of size n® is generated by Pxsy= i.id and a random unlabeled samples T of size nt
is generated by Px: i.i.d, then for any h € H, 6 € (0,1) with probablllty at least 1 — 30, we have

}ﬁ
<\/R \/LMMDHk (Pxtys, Pxs)
11—k, 7rc+1

/By + LMMDy,, (Pyijye, Pxo) + A

m(C+1)+14
LA B

+4\/(1 +m)(1+ C)Rsy (HE) +2\/ R (H5)

1—7rc+1

4T G (L))
+2\/(1 +m)2t+ Cm? (210g(4/5)>‘11’

_ t
1 Tei1 n

where A = min\/RS ) + /RL(R), empirical open set difference A, = M ;C+1(h’) L = max{8Mm(C +
heH

1— 7rc+1

1),2(C + 1)Mm + 2M}, Sx is unlabeled source samples and H = {h € Hy, : ||hlln, < M, ||h]oo < m}.

Proof for Theorem 5. This proof is divided into three parts.

1.Consider R;(h).

Let F := {{(h(x),y) : h € H,(x,y) € X x Y*}. According to Lemma 4, we get that for ¢ € (0,1) with probability at least
1-4,

(47)

R*(h) < R*(h) + 2Rs(F) + 4B 21%(4/5)

where B is (1 +m)? 4+ C'm?, which is the upper bound of /(h(x),y), here h € H, y € V!
Then

n*Rg(F)

=E, [Sl}p Z ail(h(x;),y7i)]
i=1

n® C+1 9 (48)

Bofoup 305 o (hsx) - v1,) |

i=1 j=1
C+1 9
_Z Supzoz( y”) ],
j=

heH

where y? j is the value of jth coordinate for ¢th source sample’s label y;.



2
We study E, [supy,cy Z 10 (hj(xf) — yfj) ]

2
sup 0 -y
he?—[z ( J) ]
n’ 2
=E, LSLEE (o1 (hj( y1]> + ;07 (hy yij) )]
1 [ >
= -E, ops | S h; S —yi)? i(h; 9 —yi)? S —h 5 )2
5Eos o 225 (( i(x)) = v71;) +;U( i(x5) = v3;) )+;161%( (hi(x5) —¥5)) +Zoz -yi))
1 [ >
= =Boy e | sup | (hy(x5) —yi,)% = (95(x5) — ¥5,)° + Z oi(hi(x}) = yi;)2 + > 0ilg; (%) — v3,)°
2 | hgeH i—2
1 i S ns S ns S
< 5Eoson S (2(1 +m)(hyi(x}) — g;(x) + D ou(hi(x}) —yi;)2 + > 0ilg; (x}) — .ij)zﬂ
L"9€ i=2 i=2

=E, Repeat the process n® times

[on ()]

sup (2(1 +m)orh;(x]) + nzsgi (hj(x?) - yfj)2>

heH i—2

<2(1+m) glsgg (Zm )1
<21+ m)E, l sup ("Z Uih(xf)>] =2(1+m)E

heHFU{1}
(49)
According to inequalities (48) and (49), we have
Rs(F) < 2(1+m)(1+ O Ry (Hp). (50)
which implies that for 6 € (0,1) with probability at least 1 — 4,
~ =~ 2log(4/6
R(h) < R*(h) + 4(1 + m)(C + DRs(Hy) + 4B # s1)
2.Consider R, -, (h).
According to Lemma 4, we have that for § € (0,1) with probability at least 1 — §,
~ =~ 2log(4/0
Rl () < R opa () + 207 (7) 48y 280, 52
where F is a functional space
F={l(h(x),yc+1) :h e H,x e X} (53)

here yc1 is the one-hot vector [0, ...,0,...,0,1]7 € RE*1,
Repeating the process shown for the inequality (49), we have

Ry (F) < (20m +2(1+ m)) Rr, (H5), (54)
which implies that for 6 € (0,1) with probability at least 1 — 4,

2log(4/9) (55)

R ci1(h) < Rl oy (h) +4((C + Dm+ 1) Ry (M) +4By| =

3.Consider R;, -, (h).
Repeating the process shown for the inequality (55), we obtain for § € (0,1) with probability at least 1 — 6,

2log(4/0) (56)

— R c41(h) < =R gy (B) +4((C + m+ 1) R (HG) + 4By =

Incorporating the above three inequalities (49), (55) and (56), we have the result. O



V. APPENDIX E: EXPERIMENTS
A. More experiments

We conduct experiments on different features extracted from different deep frameworks: VGG16, VGG19 and ResNet-50.

Office-Home [3] consists of 4 different domains: Artistic (Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). Each domain
contains images from 65 object classes. We constructed 12 OSDA tasks: Ar — Cl, Ar — Pr,..., Rw — Ar. In alphabetical
order, we used the first 25 classes as known classes and classes 26-65 as the unknown classes. Following the standard protocol
and for fair comparison with the other algorithms, we extracted feature vectors from ResNet-50, VGG16, VGG19. The results
of ResNet-50 are listed in Table IV of the main text.

ImageCLEF-DA [4] is a benchmark dataset for ImageCLEF 2014 domain adaptation challenge, which aims to classify 12
categories shared in three datasets: Caltech-256 (C), ImageNet ILSVRC 2012 (I), Bing (B) and PascalVOC 2012 (P). We used
the first 8 classes as known classes and classes 9-12 as the unknown classes. By considering each as a domain, we build 12
transfer tasks: C -+ B, C — I, C — P,... P — 1. Following the standard protocol and for a fair comparison with the other
algorithms, we extracted feature vectors from ResNet-50, VGG16 and VGGI19.

The results are shown in Tables III, IV.

TABLE II: Acc(OS) (%) on Office-Home datasets using different features.

VGG16 Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl—Pr Cl—Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Pr Rw—Cl AVE

JGSA 39.4 56.5 67.5 42.7 59.3 63.2 49.7 42.6 72.6 55.0 68.4 46.6 55.3
ATI 40.6 63.8 68.6 51.5 57.7 67.5 57.8 35.1 76.0 59.9 62.9 41.7 56.9
OSBP 47.0 66.3 72.8 47.5 57.7 65.6 53.3 45.6 74.9 64.9 72.3 49.4 59.8
DAOD 424 63.8 71.0 49.0 63.9 68.7 56.2 53.4 77.4 65.3 71.7 53.2 61.8
VGG19 Ar—Cl  Ar—Pr Ar—Rw Cl—Ar Cl—Pr Cl—-Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Pr Rw—Cl AVE
JGSA 40.7 61.8 67.0 45.8 59.4 64.8 51.0 45.1 73.8 58.1 67.5 46.7 56.8
ATI 43.7 66.0 74.5 44.7 65.4 68.1 46.9 48.1 77.2 60.5 73.6 50.3 59.9
OSBP 47.8 67.5 76.4 51.2 64.4 66.4 58.8 47.5 77.6 66.0 75.3 48.8 62.3
DAOD 48.0 72.2 74.0 50.9 63.4 72.4 58.2 54.8 79.4 66.3 79.2 54.5 64.4

TABLE IV: Acc(OS) (%) on ImageCLEF-DA datasets using different features.

VGGI16 B—C B—I1 B—P I—B 1I-C I—-P C—B C—I C—P P—B P—C P—I AVE
JGSA 59.6 64.6 53.5 41.6 68.2 57.1 45.7 61.8 57.3 38.2 72.2 64.4 57.0
ATI 74.1 69.3 66.0 46.6 74.1 66.3 46.5 68.6 65.6 42.8 73.9 69.7 63.6
OSBP 76.3 67.8 62.0 48.6 68.6 61.5 46.7 75.4 64.2 47.0 77.0 70.0 63.8
DAOD 82.0 66.6 63.4 48.7 83.2 68.0 48.1 73.0 65.8 454 81.7 72.1 66.5
VGG19 B—C B—I B—P 1—-B 1-C 1—P C—B C—l1 C—P P—B P—C P—I AVE
JGSA 66.9 52.1 60.2 45.7 67.7 58.2 49.9 62.1 54.2 40.3 63.6 58.1 55.9
ATI 73.5 69.1 63.5 48.6 73.2 64.0 45.7 68.6 62.8 429 73.6 68.2 62.8
OSBP 75.4 67.8 60.0 50.3 64.9 59.5 49.5 75.6 62.6 50.9 75.4 68.8 63.4
DAOD 80.8 71.1 60.4 49.5 81.2 66.4 51.1 71.7 61.3 46.0 80.8 73.2 66.1
ResNet-50 B—C B—I B—P I—-B 1I—-C I—-P C—B C—Il C—P P—B P—C P—I1 AVE
JGSA 63.8 58.3 54.3 47.3 74.5 60.3 46.1 66.6 56.8 43.9 67.3 60.8 58.3
ATI 73.8 72.2 64.8 46.8 74.5 65.3 49.0 72.2 65.1 48.1 73.5 72.4 64.8
OSBP 74.8 70.7 61.9 48.1 68.5 61.7 50.0 75.7 64.7 49.0 73.8 72.2 64.3
DAOD 78.8 73.3 61.7 53.3 814 66.5 52.1 75.8 64.7 50.2 79.8 75.3 67.7

Then, we show that manifold regularization matters via conducting more ablation studies. Though Fig. 4 (b) has shown that
there is no significant change in performance when the coefficient p of manifold regularization is set in range O to 1, we have
conducted more experiments and found that the manifold regularization does make a positive impact on many UOSDA tasks.

We have conducted the ablation study on datasets Office-31 (AlexNet,VGG16, VGG19, ResNet50) and ImageCLEF-DA
(VGG16, VGG19, ResNet50). We show the results in Tables V-VI (D w/o M means DAOD (p = 0) without the manifold
regularization and DAOD means DAOD (p = 1) with the manifold regularization ).

DAOD with the manifold regularization has achieved better performance Acc(OS) than DAOD without manifold regularization
on most tasks (55 out of 60). The average classification accuracy of DAOD with the manifold regularization on 60 tasks
is 75.3%, gaining a performance improvement of 1.04% compared to DAOD without the manifold regularization. The
average classification accuracy of DAOD with the manifold regularization on datasets ImageCLEF-DA is 66.77%, gaining
a performance improvement of 1.07% compared to DAOD without the manifold regularization. The average classification
accuracy of DAOD with the manifold regularization on datasets Office-31 is 88.15%, gaining a performance improvement of
1.00% compared to DAOD without the manifold regularization.

Though the contribution of manifold regularization is not significant (improving around 1.00%), the manifold regularization
can make a positive impact on many UOSDA tasks.



TABLE V: Ablation Study on manifold regularization: Acc(OS) (%) on ImageCLEF-DA datasets.
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VGG16 B—C B—I1 B—P I—-B 1—-C I—-P C—B C—I C—P P—B P—C P—1 AVE
D w/o M 81.1 64.7 63.0 48.3 83.4 66.3 479 71.6 63.9 44.6 73.3 69.2 64.8
DAOD 82.0 66.6 63.4 48.7 83.2 68.0 48.1 73.0 65.8 45.4 81.7 72.1 66.5
VGG19 B—C B—I1 B—P I—-B I-C I—P C—B C—I C—P P—B P—C P—I1 AVE
D wio M 81.0 69.1 59.3 48.4 81.0 65.4 49.9 69.6 61.1 44.6 81.0 72.0 65.1
DAOD 80.8 71.1 60.4 49.5 81.2 66.4 51.1 71.7 61.3 46.0 80.8 73.2 66.1
ResNet50 B—C B—I B—P I—-B 1—-C I—P C—B C—l1 C—P P—B P—C P—I1 AVE
D wio M 78.0 72.5 62.2 52.9 80.9 66.4 51.6 75.3 63.9 49.1 78.5 75.4 67.2
DAOD 78.8 73.3 61.7 53.3 81.4 66.5 52.1 75.8 64.7 50.2 79.8 75.3 67.7
TABLE VI: Ablation Study on manifold regularization: Acc(OS) (%) on Office-31 datasets.
AlexNet A—W A—D W—A W—D D—A D—W AVE
D w/o M 82.6 89.6 72.2 95.9 73.6 93.2 84.5
DAOD 84.2 88.5 72.6 96.0 74.2 96.3 85.3
VGG16 A—W A—D W—A W—D D—A D—W AVE
D wo M 86.8 90.1 73.1 95.5 71.2 96.7 85.6
DAOD 88.5 90.5 75.2 97.6 74.2 97.7 87.3
VGG19 A—W A—D W—A W—D D—A D—W AVE
D w/o M 89.5 88.9 74.9 97.2 73.5 97.7 87.0
DAOD 89.2 90.5 75.4 98.6 75.6 98.6 88.0
ResNet50 A—-W A—D W—A W—D D—A D—W AVE
D/M 96.2 93.9 82.0 94.9 84.6 97.1 91.5
DAOD 96.4 94.9 82.3 96.2 85.0 97.3 92.0
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Fig. 1: Accuracy (OS) w.r.t. different openness levels in the target domain
B. Openness

Similar to the open set recognition [5], [6], we define openness O as

the number of unknown classes

the number of all classes
The above formula estimates the level of openness. @ = 0 represents a completely closed problem and larger values denote
more open problems.

In our experiments, we only tested the special cases O ~ 0.5, 0.6 and 0.7. To verify that DAOD is robust to different levels
of openness, we conducted experiments on the Office-Home datasets with openness ranging from 0.10 to nearly 0.85. We
took classes from 1 to 10 as the known classes and the classes from 11 to 11 +4 (¢ = 0,1,2,3,4) as the unknown classes.
The openness O therefore ranged from 0.10 to 0.30. We also took classes from 11 to 65 — 10 %4 or 20 (i = 0,1,2,3,4) as
unknown classes. In this setting, the openness O ranged from 0.50 to 0.85.

To show that DAOD is robust to openness change, we used the same parameters for all openness values. Due to space
limitations, the average results are reported in Fig. 1. Compared with the best baseline algorithm OSBP, DAOD performed
steadily and achieved the best performances for almost all values of openness.

C. Time Complexity

We empirically checked the time complexity of DAOD and compared it with the top two baselines ATI and JGSA on
different tasks. The environment was an Intel Core i7 — 7700HQ CPU with 32.0 GB memory and all algorithms relied on the
same input features. Based on papers [7], [8], we implement JGSA and DAOD for 10 iterations, and ATI for 5 iterations. Note
that the time complexity of deep algorithm OSBP is not comparable with DAOD since it requires many backpropagations. The
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TABLE VII: Running Times of JGSA, ATI and DAOD.

Task #Sample X #Feature JGSA ATI DAOD
A—-W 1,326 4,096 171.2s 55.3s 32.5s
Ar — Cl 5,454 2,048 98.3s 77.3s 83.8s
Pl — P2 2,609 x 1,024 42.5s 68.5s 15.0s

results in Table VII reveal that, beyond its superiority in classification accuracy, DAOD also has a comparable running time
to the two best baselines.
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