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Abstract

This paper presents a novel integration of the
nonlinear observer theory and simultaneous lo-
calisation and mapping for aerial navigation
applications. This extends the previous work
by the authors in which a nonlinear observer
was applied to the attitude estimation and in-
tegrated navigation problem. The key novelty
of this work is in the feedback correction mech-
anism from the linear SLAM estimator to the
nonlinear observer, which enables the attitude
correction from the feature position measure-
ments. We utilise the relationship between the
acceleration error and the attitude error, and
the pseudo-inverse of a skew-symmetric matrix
for the attitude feedback. Lyapunov-based sta-
bility analysis is provided for a simplified model
without considering the gyroscope bias. Flight
dataset is used to confirm the method. Thanks
to the robustness of the nonlinear observer and
the optimal linear estimator, the vehicle pose
and map features are estimated effectively.

1 Introduction

Robust pose, or position and attitude (orientation), es-
timation is a fundamental problem for autonomous un-
manned aerial vehicles (UAVs), in particular operating
with high-speed and high-dynamics manoeuvres. With
the growing number of availability of small-scale UAV
platforms, the development of a robust yet simple pose
estimation algorithm has drawn significant attention
from robotics, control and navigation community. The
most commonly used techniques have been based on
extended Kalman filtering (EKF) or its nonlinear vari-
ants to handle the nonlinearity in the vehicle dynamics
and observations [Vidal et al., 2018][Li and Mourikis,
2013]. For example, the EKF has been widely applied
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for aerospace applications such as attitude-heading refer-
ence systems, integrated inertial navigation systems, and
simultaneous localisation and mapping (SLAM) [Kim et
al., 2020 in press][Vidal et al., 2018][Bjorne et al., 2017].

Such filtering methods, however, are computationally
demanding for an embedded processor in a small-scale
platform. More importantly, it is difficult to guarantee
the robustness of the filter due to the nonlinearity of
the system. To address these issues, researchers have
actively investigated a nonlinear observer (NLO) for
the attitude estimation problem [Mahony et al., 2011],
GNSS/Inertial integrated navigation [Grip et al., 2012],
and visual-inertial SLAM [Wang and Tayebi, 2018]. One
of the critical elements of such approach is in the use of
accelerometer output, called a specific force as it con-
tains both vehicular and gravitational accelerations, to
estimate the gravitational direction (or the plumb-bob
direction). If the vehicular dynamics are moderate or
low, as in the most land vehicles or hovering drones, a
complementary filtering (or EKF) of the accelerometer
and gyroscope outputs can provide a robust attitude es-
timate as well as the gyro biases.

On the contrary, if the vehicular dynamics is suffi-
ciently high, additional aiding information is required.
[Euston et al., 2008] utilises the air-data information
to compensate for the centripetal acceleration by esti-
mating the angle-of-attack during the coordinated turns
of a UAV. [Grip et al., 2012] fuses GNSS information
to determine the acceleration using the nonlinear atti-
tude observer and linear position observer, thus in an
observer-observer framework, and [Bjorne et al., 2017]

investigates the use of visual information with fixed-gain
nonlinear observers.

In this work, we propose a cascaded observer-
estimator system, in which a nonlinear observer han-
dles the attitude nonlinearity, while a linear Kalman fil-
ter handles the linear translational dynamics. This ap-
proach is particularly advantageous for SLAM applica-
tions, as the linear Kalman filter (LKF) can optimally
handle the large-sized map features, whilst the observer-



Figure 1: The cascaded observer-estimator architecture consisting of a nonlinear observer (NLO) for the attitude
estimation, and a linear Kalman filter (LKF) for SLAM. The key aspect of this structure is the attitude correction
term (δψLKF ) from the LKF to enhance the NLO performance.

based method relies on the manual tuning of the gains
typically from the steady-state analysis as in [Bjorne et
al., 2017]. The added computational complexity of LKF
can be handled effectively by using the compressed esti-
mator as in [Kim et al., 2020 in press]. The main con-
tributions of this paper are:

• An observer-estimator framework is proposed, in
which a nonlinear attitude observer provides robust
stability while the linear SLAM estimator offers the
optimality for the linar part. The key novelty is in
aiding of the observer from the acceleration error
estimated from SLAM through the use of pseudo-
inverse.

• An asymptotic stability proof is provided using the
Lyapunov stability analysis.

• The convergence of the attitude error is verified for
a high-speed UAV flight dataset.

To the best of our knowledge, integrating the nonlin-
ear observer and linear SLAM estimator has not been
addressed elsewhere, as well as its related stability anal-
ysis. Following the introduction, Section 2 provides an
overview of the cascaded observer-estimator structure.
Section 3 discusses the nonlinear observer for the atti-
tude estimation, focusing on the feedback loop from the
external estimator. Section 4 details the linear Kalman
filter in the context of SLAM. It describes the linear
dynamics and linear/nonlinear observation models. Sec-
tion 5 presents an experimental study using a fixed-wing
UAV flight dataset followed by conclusions.

2 Cascaded Observer-Estimator
Structure

A continuous-time stochastic dynamic system with a
transition model f(·) and observation model h(·) can be
described as

ẋ(t) = f(x(t),u(t),w(t)) (1)

z(t) = h(x(t),v(t)), (2)

where x(t) and u(t) are the state and control input vec-
tor at time t, respectively, with w(t) and v(t) being the
process and observation noise, respectively. The system
can be further partitioned into a nonlinear (NL) and lin-
ear (L) parts as below

ẋNL(t) = f(xNL(t),uNL(t),wNL(t)) (3)

ẋL(t) = A(t)xL(t) + BwL(t), (4)

where A and B are the linear dynamic and input matrix,
respectively.

Figure 1 illustrates the cascaded observer-estimator
architecture used to solve the SLAM problem in this
work. The nonlinear observer utilises the IMU (in-
ertial measurement unit) angular-velocity measurement
(ωb

IMU ) as an input to the nonlinear attitude dynamic
model. The specific force (f bIMU ) is used as a nonlinear
observation by providing an indirect angular measure-
ment through the estimated gravity direction. The out-
put of the nonlinear observer is the estimated rotation
matrix (R̂n

b ) which converts a vector defined in the body
frame1 to the one in the navigational frame2.

1The body frame is defined with roll (x-axis), pitch (y-
axis) and yaw (z-axis).

2The navigation frame is defined with North (x-axis), East



The observer output is used to transform the obser-
vations, that is, 3D feature and IMU specific force mea-
surements are converted to the ones in the navigational
frame, which enables the linear observation updates in
the filter. A linear Kalman filter (LKF) accounts for
the linear translational dynamics of the system, and a
constant-acceleration model is utilised in this work. A
highly efficient compressed fusion algorithm is incorpo-
rated by partitioning the state into a local and global
state [Kim et al., 2020 in press]. Compared to the
other cascaded methods, our approach has a feedback
correction loop from LKF to NLO to enhance perfor-
mance. The underlying intuition is that any positional
error observed in the LKF implies an acceleration error,
which then carries information on the misalignment er-
ror. Thanks to the LKF framework, the large size of
the gain matrix is not manually tuned, but optimally
computed, which is the key benefits compared to the
previous work as in [Grip et al., 2012].

3 Nonlinear Attitude Observer

The attitude of the vehicle is estimated using a non-
linear observer. The attitude can be parameterized in
several different ways, such as quaternion or Euler an-
gles, we adopt the rotational matrix parameterization
Rn

b ∈ SO(3). With the augmented bias state bb, the
nonlinear dynamic model becomes

ẋNL = f(xNL,uNL,wNL), (5)

with,

Ṙn
b = Rn

b [ω + wNL]× (6)

ḃb = 0, (7)

where [ω + wNL]× ∈ so(3) is a skew-symmetric ma-
trix of the input ω ∈ R3 and the noise wNL, with
the superscript-n denoting the navigation frame and the
superscript-b a body frame attached to the vehicle.

The gravity observation is a vector measurement of the
plumb-bob direction from the IMU accelerometers. If
the vehicle manoeuvring is not severe, the specific force
measurement (f bIMU ) can be reasonably approximated
to the plumb-bob direction (gb

IMU ). However, this is
not valid for the UAV dataset used in this work, and
additional knowledge on the vehicle acceleration âb is
required from the LKF,

gb
IMU = f bIMU + âb

LKF . (8)

The compensated gravitational vector is then com-
pared with the predicted gravity direction (ĝb) from the

(y-axis) and Down (z-axis). In this work, the Map Grid
of Australia 1994 (MGA94) is used as a local-fixed, local-
tangent frame.

observer, generating a multiplicative error (e). Follow-
ing the spirit in [Mahony et al., 2008], a proportional and
integral controller is adopted. In our observer-estimator
framework, the estimator (that is SLAM) provides infor-
mation on the navigational error which can be used to
correct attitude estimate in the observer. To utilise this
information, we implement an additional proportional
feedback loop for δψ̂LKF estimated from the LKF block
(more details in Section 4.1),

ω = (ωb
IMU − bb) +

(
KPe +KI

∫
edt

)
+KAδψ̂

b
LKF ,

where KP ,KI ,KA are the proportional, integral and an-
gular (misalignment) control gain, respectively.

4 Linear SLAM Estimator

Given the rotation matrix estimated from the NLO, the
translational vehicle dynamics becomes linear. We em-
ploy a constant acceleration model for the vehicle aug-
mented with a constant receiver clock-drift and a random
constant landmark model.

ẋL = AxL + BwL, (9)

where A and B are defined from the linear dynamic mod-
els,

ṗn = vn, v̇n = an, ȧn = w1 (10)

˙ctb = ctd, ˙ctd = w2 (11)

ṁn
1···N = 0, (12)

with the state vector xL = [xT ,mT ]T defined as

x = [pnT ,vnT ,anT , ctb, ctd]T (13)

m = [mnT
1 ,mnT

2 , · · · ,mnT
N ]T , (14)

where, pn represents the vehicle position, vn the vehi-
cle velocity, an the vehicle acceleration, ctb and ctd the
receiver clock bias and drift, and mn

i the ith-landmark
position, respectively.

The SLAM system in this work follows the all-source
navigation framework, fusing three types of observations:
IMU, 3D visual features with depth estimator, and pseu-
dorange observations from GPS satellites. The observa-
tions and corresponding covariance are transformed into
the navigation frame using the estimated attitude from
the NLO, resulting in linear observation models. That
is the IMU specific force measured in the body frame is
transformed into that of the navigation frame, and fused
in the filter. The range (rb), bearing (φb) and elevation
(θb) measurement from the ith-landmark is also trans-
formed to a relative 3D position vector in the navigation
frame, enabling linear filter update. Using the linear
state and observation models, and their corresponding
covariance, the filter predicts and updates the state es-
timates and the covariance matrix.



4.1 Pseudo-inverse of Specific Force

The estimated acceleration error (ãn) in the LKF is re-
lated to the misalignment error of the rotation matrix
[Kim and Sukkarieh, 2007] as

R̂n
b , Rn

b (I + [δψ]×) (15)

ãn = −fn × δψ = −[fn]×δψ
n. (16)

[fn]× is a skew-symmetric matrix and thus not invert-
ible. In this work, we utilise the SVD (singular value de-
composition) of the matrix, yielding the pseudo-inverse,

[fn]× = UΣVT (17)

[fn]†× = VΣ†UT , (18)

with Σ† being the reciprocal matrix of each non-zero ele-
ment on the diagonal, leaving the zeros in place. There-
fore, the feedback term to the NLO becomes

δψn
LKF = −[fn]†×ãn. (19)

The resulting control signal ω becomes

ω = ωb
IMU︸ ︷︷ ︸

Feedforward

+

(
KP +

KI

s

)
e︸ ︷︷ ︸

Gravity Feedback

− KAδψ
b
LKF︸ ︷︷ ︸

LKF Feedback

, (20)

in which, the first two terms are the feedforward and
feedback terms from the IMU information, and the last
term is for the observer-estimator coupling.

5 Stability of the Nonlinear Observer

To understand the stability of the observer-estimator
system, we consider the simplified feedback terms with-
out the bias estimation. Tthe stability analysis with the
bias term was provided in [Grip et al., 2012] by utilis-
ing the bias projection function in a observer-observer
framework. We consider the stability of the observer-
estimator system and the simplified control signal be-
comes

ω = KP (gb ×Rgn)−KA(Rb
n[fn]†×ãn), (21)

in which, the first term accounts for the misalignment
between the measured gravity and predicted one. The
second term represents the misalignment due to the ac-
celeration error provided from the LKF estimator.

Theorem 1 The system (3) with an injection (21) be-
comes asymtotocailly stable for the region given a suffi-
ciently large proportional gain KP1,

KA1‖r̃0‖
KP1‖r̃‖

< s̃ < 1, (22)

in which s̃ and r̃ are the scalar and vector parts of the er-
ror quaternion, and KA1 and KP1 are the feedback gains
of the LKF estimator and observer, respectively.

Remark 1 Two assumtions are used:

• The gyroscope bias term is assumed known and cal-
ibrated, and thus KI = 0

• The misalignment error estimated from the LKF
estimator is assumed a bounded signal, that is,
‖[fn]†×ãn)‖ < ‖r̃0‖.

Proof 1 For a unit error quaternion q̃ = [s̃, r̃T ]T , we
can define the Lyapunov candidate function as

V = ‖r̃‖2 = 1− s̃2. (23)

Along the state trajectory, V̇ becomes

V̇ = −2s̃ ˙̃s

= −2s̃

(
1

2
Rn

b r̃Tσn

)
= −s̃r̃TRn

b

(
KP (gb ×Rb

ngn)−KA(Rb
n[fn]†×ãn)

)
≤ −2s̃2KP ‖r̃× σn‖2 + s̃KAr̃T r̃0

≤ −2s̃2KP ‖r̃‖2‖σn‖2 + s̃KA‖r̃‖‖r̃0‖

≤ −2KP1‖r̃‖2s̃
(
s̃− KA1‖r̃0‖

KP1‖r̃‖

)
,

where the result from [Grip et al., 2012] is used, and
([fn]†×ãn) < ‖r̃0‖ represents the bounded misalignment

angle. If V̇ < 0, then the proposed feedback system will
be asymptotically stable. Thus,

V̇ < 0 ⇐⇒ KA1‖r̃0‖
KP1‖r̃‖

< s̃ < 1, (24)

which can be guaranteed by selecting the observer gain
KP1 as sufficiently large compared to the estimator gain
KA1.

6 Experiment Results

To verify the proposed method, we utilise a flight dataset
recorded from a UAV platform as detailed in [Sukkarieh
et al., 2003]. The dataset includes measurements from
a low-grade IMU sensor, a low-cost GNSS receiver from
CMC-Novatel, and a monochrome camera installed in
a down-looking configuration. A total of 150 artificial
visual landmarks, white plastic sheets of 1m × 1m to
estimate the depth, were installed on the ground, and
those positions were surveyed using a real-time kine-
matic GNSS receiver with ≤ 20cm accuracy.

Figures 2(a) and 2(c) compare the Euler angles (roll
and heading) with the reference-EKF outputs (dashed
line in red), NLO+accelerometer (solid line in cyan),
NLO+gyroscope (dashed-dot in black), and the pro-
posed NLO+SLAM (solid blue). From the enhanced
plots ((b) and (d)), it can be visibly observed that the es-
timated angles from NLO+SLAM converge to the EKF



(a) (b)

(c) (d)

Figure 2: (a) Estimated roll from the NLO with (b) enhanced views. (c) Estimated heading from the NLO with
(d) enhanced views. It can be seen that the NLO+SLAM results show convergence to the full-EKF solutions, while
NLO+accelerometer (solid in cyan) or NLO+gyroscope (broken-line in black) diverge from the reference.

solutions consistently, while the NLO+gyroscope solu-
tions diverge. The NLO+acceleration outputs show fluc-
tuating solutions due to the low signal-to-noise ratio of
the IMU acceleration. This is particularly the case for
the high-speed, high-manoeuvring vehicles, in which the
approximated gravity vector from the specific force con-
tains large errors due to the dynamic manoeuvres. It
can be observed that the yaw angle is indirectly observed
from the LKF aiding, converging to the EKF solution.
This is due to the fact that the SLAM system can es-
timate the acceleration error in the navigation frame,
from the landmark observations, which in turn provides
the information on the misalignment angles, making the
full attitude state observable. This is one of the key
benefits of the proposed observer-estimator method.

7 Conclusions

This article presented a novel integration of a nonlin-
ear attitude observer and a linear SLAM estimator, in
which the nonlinear observer handled the nonlinear at-
titude dynamics. In contrast, the linear Kalman filter
estimates the linear translational dynamics of the vehi-
cle and map. The acceleration error calculated from the
SLAM filter was converted to a misalignment correction
term through the pseudo-inverse of the specific force.
Lyapunov-based stability analysis was provided, show-
ing an asymptotic convergence for a region controlled by
the feedback gains. For a UAV flight dataset, the pro-
posed method confirmed the convergence of the attitude
estimates to the reference solutions. Future work is on
performing a more rigorous stability analysis, including
the IMU biases.
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