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Abstract

This paper addresses the fusion of the pseu-
dorange/pseudorange rate observations from
global navigation satellite system (GNSS),
and the inertial-visual simultaneous localisa-
tion and mapping (SLAM) to achieve reliable
navigation of unmanned aerial vehicles (UAVs).
This work extends the previous work on a
simulation-based study [Kim et al.(2017)], and
evaluates the method to a flight dataset col-
lected from a fixed-wing UAV platform. We
propose to use the generalised compressed fil-
ter which can effectively accumulate the infor-
mation gain acquired from a local map, and
update the global map in a much lower rate.
The fusion filter also models and estimates the
receiver clock and drift, which is crucial to in-
tegrate the pseudorange and pseudorange rate
measurements. Evaluation results will show
that the horizontal navigation error is effec-
tively constrained even with 1 satellite vehicle
and 1 landmark observations, thanks to the di-
rect fusion of pseudorange and vision data.

1 Introduction

Autonomous unmanned aerial vehicles (UAVs) have at-
tracted much attention from both industries and defence
over the last several decades. With the advances in the
low-cost inertial sensor technology and global navigation
satellite system (GNSS), the navigation solution (or po-
sition, velocity, attitude and time) can be accurately es-
timated by integrating the information. This data fusion
approach has enabled the higher-level autonomy, such as
intelligent path-planning and decision-making [Parkin-
son et al.(1997)], [Skulstad et al.(2015)].

Simultaneous localisation and mapping (SLAM) has
been quite successful in delivering navigational solutions.
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For example, [Kim and Sukkarieh(2007)] demonstrate
the integration of inertial measurement unit (IMU) and
inertial navigation system (INS) as the core odom-
etry together with a visual perception sensor on a
UAV platform. [Nützi et al.(2011)] integrated monoc-
ular vision and inertial sensor on a drone platform ad-
dressing the monocular scale-ambiguity problem. [Li
and Mourikis(2013)] showed visual-inertial odometry
and SLAM by utilising a sliding-window based bundle-
adjustment optimisation on a 6-degrees-of-freedom ve-
hicle. [Sjanic et al.(2017)] applied the expectation-
maximisation technique for visual-inertial navigation of
a fixed-wing flight data. Recently, [Vidal et al.(2018)]

demonstrated a high-speed drone by combining an event
camera and inertial observations.

Although the abovementioned approaches have been
quite successful particularly for low-dynamic platforms
such as drones, SLAM for high-speed UAV platforms has
had limited success, largely due to the low-quality iner-
tial odometry and the high computational complexity
inherent to SLAM. If the number of landmark observa-
tions is low (in this work it is less than 3 landmarks per
camera frame on average, as illustrated in Fig. 1), the
inertial odometry can drift between the re-observations
of the SLAM map.

To improve the inertial SLAM, we integrate the raw
pseudorange/pseudorange rates and the inertial SLAM
system. Although integrating the global navigation in-
formation can be counter motivational to SLAM, it is
mostly or partially available to aerial vehicles operating
near-Earth environments, and can aid the inertial odom-
etry effectively. To further improve the computational
efficiency, we adopt the generalised compressed filtering
method [Guivant(2017)], in which the local information
gain is accumulated and propagated a much lower rate.
This work extends the previous work on a simulation-
based study by the authors. The contributions of the
work are:

• Compressed Pseudo-SLAM: pseudorange integrated
SLAM using a generalised compressed filtering. As



depicted in Figure 1(b), the number of visual obser-
vations is sparse during this flight and only available
when the vehicle reaches at certain altitude with
clear view. This necessitates the fusion of pseudor-
ange to aid the on-board IMU.

• Evaluation of the method using a real flight dataset.

The remainder of the article is outlined as follows. Sec-
tion 2 provides the system models for the nonlinear state
transition and observation used in this work, and Sec-
tion 3 details the generalised compressed SLAM with a
compressed update of the local and global map. Ex-
perimental results are provided in Section 4, analysing
the filter performance and the computational complex-
ity. Section 5 will conclude with future direction.

2 System Models

A continuous-time stochastic dynamic system with a
nonlinear transition model f(·) and an observation model
h(·) can be written as

ẋ(t) = f(x(t),u(t),w(t)) (1)

z(t) = h(x(t),v(t)), (2)

where x(t) and u(t) are the state and control input vec-
tors at time t, respectively, with w(t) being the process
noise with a noise strength matrix Q, and z(t) is the
observation vector with v(t) being the observation noise
with a strength matrix of R.

In the inertial-based SLAM, the state vector consists
of a vehicle state which represents the kinematics of the
inertial navigation, inertial sensor errors, and map land-
mark states. In this work, a 17-state model is designed
to estimate the vehicle position and attitude (6), internal
velocity and sensor biases (9), receiver clock states (2),
as well as the variable-size map states. The control input
is the IMU measurements and drives the inertial kine-
matic equations. Thus the state vector x = (xTv ,m

T )T

becomes,

xv = [pnT ,vnT ,ψnT ,bbTa ,bbTg , ctb, ctd]
T (3)

m = [mnT
1 ,mnT

2 , · · · ,mnT
N ]T (4)

u = [f bT ,ωbT ]T , (5)

where

• Vehicle position in the navigation frame1 pn =
[x, y, z]T

• Vehicle velocity vn = [vx, vy, vz]
T

• Vehicle attitude (Euler angles in roll, pitch and yaw)
ψn = [φ, θ, ψ]T

1A superscript-n denotes a navigation frame. In this work,
MGA94 (Map Grid of Australia 1994) is used as a local-fixed,
local-tangent frame with North, East and Down (NED) (m)

• Accelerometer bias in the body frame2 bba =
[bax, bay, baz]

T

• Gyroscope bias bbg = [bgx, bgy, bgz]
T

• Receiver clock bias ctb with c being the speed of
light

• Receiver clock drift ctd

• Map position mn
i = [mix,miy,miz]

T

• Accelerometer measurement f b = [fx, fy, fz]
T

• Gyroscope measurement ωb = [ωx, ωy, ωz]
T .

2.1 Dynamic Model

The system dynamic model consists of the kinematic
equations of the inertial navigation driven by the IMU
measurements which are the specific force (or the sum
of dynamic acceleration of the vehicle and gravity) and
angular rate. The IMU bias errors are modelled as a
random walk process, while the map states are modelled
as a random constant due to their stationary nature,

ṗn = vn

v̇n = Cn
b (f b − bba) − 2ωnie × vn + gn(pn)

ψ̇n = Enb (ωb − bbg)

ḃba = wa, ḃbg = wg

ċtb = ctd, ċtd = wd

ṁn
1···N = 0,

where

• ωnie is the Earth rotation rate in the navigation
frame

• gn(pn) is the gravitational acceleration

• wa,wg, wd are noise processes for accelerometers,
gyroscopes, and receiver clock drift respectively

• Cn
b and Enb are the direction cosine matrix trans-

forming a vector from the body- to the navigation-
frame, and the matrix transforming a body rate to
an Euler angle rate, respectively,

Cn
b =

 cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ


Enb =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 ,
where s(·), c(·), and t(·) are shorthand notations for
sin(·), cos(·), and tan(·), respectively.

2A superscript-b denotes a body frame attached to the
vehicle.



2.2 Observation Model

In all-source aiding strategy, the observations consist of
all-available aiding information which are, in this work,
a set of pseudoranges (ρ) and pseudorange rates (ρ̇ mea-
sured from a GNSS receiver, and/or a set of bearing φ,
elevation θ, and/or range r observations from a camera
sensor in which the range is estimated from the known
visual landmark size (white plastic sheets of 1m× 1m),

ρi =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + ctb + vρ

ρ̇i = lxi(Vxi − vx) + lyi(Vyi − vy) + lzi(Vzi − vz) + cṫb + vρ̇

rj =
√

(mjx − x)2 + (mjy − y)2 + (mjz − z)2 + vr (6)

φj = arctan
(mjy − y)

(mjx − x)
+ vφ (7)

θj = arctan
(mjz − z)√

(mjx − x)2 + (mjy − y)2
+ vθ, (8)

where (Xi, Yi, Zi) denotes the ith satellite vehicle’s posi-
tion computed from the ephemeris data, which is con-
verted from the ECEF (Earth-Centred, Earth-Fixed)
frame to the navigation frame, with vρ being the noise
process, and (lxi, lyi, lzi) is the line-of-sight vector of
the ith SV seen from the vehicle which projects the
relative velocity along the line-of-sight direction. For
the range, bearing and elevation measurement, we first
compute the relative position vector ((mjx − x), (mjy −
y), (mjz − z)) of the jth-landmark seen from the vehi-
cle, and then transform it to the polar coordinate quan-
tities. (vρ, vρ̇, vr, vφ, vθ) represent the observation noise
processes. A new landmark position is initialized by util-
ising the inverse function of Eqs. (6) to (8) with the
estimated vehicle state and observation information.

3 Generalised Compressed Filter

Using the state and observation models described in the
previous section, and their corresponding linearised state
and observation models, a standard extended Kalman fil-
ter can predict and update the state and covariance ma-
trix as detailed in [Kim and Sukkarieh(2007)]. In a gen-
eralised compressed filtering framework [Guivant(2017)],
the state vector is still partitioned into 1) a local map
state including the vehicle state and local map, and 2)
a global map for the remainder landmarks. However, a
clone of the vehicle state is augmented to the state vector
whenever the local map boundary changes. This aug-
mented clone state is used to compute the information
gain accumulated within the local region, which in turn
is used to propagate the information to the global state.
Compared to the standard compressed filter, in which
the correlation between the local and global states was
calculated explicitly using a closed-form expression, the
generalised method is based on the Bayesian framework

and can be used with various local filters, as well as being
easily extended to multiple vehicles applications. The
underlying assumption is that the evolution of correla-
tion is only dependent on the local states, thus enabling
the accumulation (thus compression) during the local fil-
tering cycles. Consequently, compressed (accumulated)
correlation enables the global updates at a much lower
rate. This assumption is quite valid for the downward-
looking camera configuration as in this work where the
camera field-of-view naturally defines the boundary of
the local map. During the local processing, the informa-
tion gain is the information increment with respect to
the initial clone state (modelled as a random constant).
This information gain is then used to update the global
map state, whenever the local region boundary changes.

4 Experimental Results

A flight dataset recorded from a UAV platform [Kim
and Sukkarieh(2007)] is used to verify the method. An
IMU sensor was from Inertial Science and is a low-grade
sensor with a gyroscope bias stability of 10◦/hr, de-
livering the specific force and angular velocity at 400
Hz. A GPS receiver from Canadian Marconi Commu-
nication (CMC, now Novatel) was used to record the
pseudorange and pseudorange rate measurements at 1
Hz, as well as the satellite ephemeris data. The re-
ceiver provides integrated-carrier-phase (ICP) measure-
ments which are used to compute the pseudorange rates.
A Sony monochrome camera (with a frame rate of 25 Hz)
was installed in a down-looking configuration. Artificial
visual landmarks, white plastic sheets of 1m×1m to esti-
mate the depth, were installed on the ground, and those
positions were surveyed using a real-time-kinematic GPS
receiver. An intensity-based fast detection algorithm is
used for real-time processing on a PC104 embedded com-
puter. Due to the known size of the sheet, the number
of pixels provides the depth information. The detected
landmarks are recognised within the SLAM filter us-
ing the joint-compatibility branch and bound algorithm
which can effectively match a set of landmarks to the
whole SLAM map. In this work, however, the number
of landmarks detected in each image frame is quite low
(1− 2), and thus the recognition performance is close to
the nearest neighbour (NN) method.

The flight segment used has around 6 minutes of dura-
tion from the taking off along multiple racehorse tracks
(each track is about 5 km). The average flight speed is
around 120 km/hr, and the altitude is maximum 150 me-
tres above the ground. Figure 1(a) shows the sky plot of
the visible SVs in the azimuth-elevation form showing 9
visible SVs. Figure 1(b) shows the change of the number
of satellite vehicles during the flight, which is simulated
to drop to 3 and then 1 from 250 seconds to test the per-
formance of the system. The number of visual landmarks
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Figure 1: (a) The sky view plot of the satellite vehicle (SVs) during the flight experiment. (b) A dropout of the
satellites from 250 seconds was simulated together with the number visual landmarks observed.

(in red) is also shown in the figure which is 1 − 2 on av-
erage. These sparse visual observations make the height
aiding of the inertial navigation system quite challeng-
ing, due to the extensive range errors in the landmark
observation. In this work, we stabilise the vertical height
using the barometric-pressure altitude information. The
absolute pressure measurements from the air data sys-
tem are converted to barometric height and climb-rate
and then used to aid the vertical inertial outputs using
a simple α-β filter. Although this is a suboptimal ap-
proach, it simplifies the SLAM filter-tuning process with
reliable performance, and thus adopted in this work.

Figures 2(a) and 2(b) show more detailed results on
the estimated trajectory and the map compared to the
reference trajectory and the surveyed map. The esti-
mated trajectory from the Pseudo-SLAM is almost iden-
tical to that of the full-rate SLAM (without compres-
sion), while there is some mismatch with the on-board
solution. This error seems to be the differences in pro-
cessing the pseudorange measurements within the CMC-
Novatel GPS receiver and the Pseudo-SLAM. A total of
85 landmarks are registered in the Pseudo-SLAM. The
estimated map and uncertainty (10σ is used for presenta-
tion) are matched well to the surveyed map, although the
map covariance seems over-confident with some biases.
The poor visual-depth information seems to contribute
to the bias errors in the estimated landmark positions, as
well as the use of different GNSS receiver (Novatel RTK)
for the landmark survey. Further work on SLAM filter
tuning can address these errors and the over-confident
uncertainty. Figures 2(c) and 2(d) present the estimated
clock bias error and the gyroscope bias error along the x-
axis with the estimated uncertainty, respectively. It can
be observed that the clock bias error start drifting when

the number of SVs drops to 3 and 1. Thanks to the sub-
sequent visual-aiding, the clock bias error is adequately
constrained within the uncertainty bound.

4.1 Computational Complexity

Figure 3(a) presents the change of the total number of
landmarks (in blue) and the number of local landmarks
(in red) registered in the Pseudo-SLAM filter. The di-
mension of the final state vector is 272, consisting of
the vehicle state (17) and the landmark map (255 corre-
sponding to 85 landmarks with 3 dimensional position).
It can be seen that the number of local landmarks is less
than 20 throughout the flight, although it increases to-
wards the end of the flight. This increase was due to the
higher altitude of the vehicle resulting in a bigger local
map, and thus more local landmarks.

Figure 3(b) compares the computational times of the
filter update from the Full-SLAM (without compres-
sion) (in red) and Pseudo-SLAM (in blue), showing
the improved computational performance of the Pseudo-
SLAM. The computational complexity of the Full-SLAM
update is O(N2) with N being the total number of land-
marks, while the Pseudo-SLAM has the complexity of
O(L2) with L being the local map size, which is less than
the total map size. It can be seen that the pseudorange
update times are nearly constant with 1 milliseconds on
average, while the local landmark update times increase
towards 1.5 ms. The local-go-global updates, however,
sometimes show peaks during the map transitions, which
was affected by the additional data association and sort-
ing process. During the last 60 seconds of the GNSS
drop-out period, the update time is dominated by the
visual updates. This result confirms that the effective-
ness of the compressed filtering, and it is suitable for the
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Figure 2: (a) The estimated vehicle trajectory, (b) map with uncertainty, (b) receiver clock-bias error with uncertainty,
and (d) x-gyro bias error with uncertainty. The Pseudo-SLAM trajectory is compared with the full-SLAM (thus no
compression) and the on-board loosely-coupled GPS/INS solution, showing the consistent performance. The receiver
clock-bias error shows some large error when the number of SVs drops to 3 and 1. However, thanks to the SLAM
aiding, the bias error is constrained adequately.

real-time processing showing on average 1.5 milliseconds
processing time (using Matlab in Intel i5-core CPU with
1.7 GHz).

5 Conclusions

This article presented a pseudorange integrated SLAM
(Pseudo-SLAM) which integrates GNSS pseudor-
ange/pseudorange rates and inertial-visual SLAM to en-
hance the inertial-aiding during sparse landmark mea-
surements. A computationally, efficient generalised com-
pressed filter is implemented to achieve real-time com-
putation. A flight dataset recorded from a high-speed,
fixed-wing UAV platform was used to demonstrate the
proposed method. The results showed sustained and re-
liable navigation solutions under a single SV and sparse

landmark observations while calibrating the INS/IMU
errors, and the receiver clock errors. The compressed
implementation improved the computational complexity
achieving the filter update time of less than 1.5 ms on av-
erage for the state dimension of 272, consisting of 17 for
the vehicle states and 255 for the map (or 85 landmarks),
demonstrating real-time feasibility of the method. The
performance can be further improved by selecting in-
formative satellites and landmarks, and a more precise
receiver clock modelling.
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Figure 3: (a) The comparison of the total number of landmarks registered (in blue) and the number of local landmarks
in Pseudo-SLAM (in red), and (b) the comparison of the update time of the Full-SLAM (in red) and Pseudo-SLAM
(in blue). The smoothed average values of the update times clearly show the benefits of the Pseudo-SLAM.
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