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Dynamic Train Demand Estimation and Passenger Assignment
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Abstract— Understanding real-time train occupancy is a
critical problem for public transport management, especially
in the service disruption scenarios. To address this problem,
this paper proposes a public transport passenger assignment
method for estimating the time-dependent train occupancy
comprising of a three-step modelling approach. Firstly, we make
use of train station tap-on and tap-off information collected by
Automated Fare Collection systems to estimate the initial time-
dependent Origin-Destination matrix (OD) of the train network.
Secondly, we take advantage of real-time train scheduling data
to calibrate the initial OD matrix according to travel time,
transfer time and waiting times across train lines. Thirdly,
the calibrated OD matrix together with train scheduling data
are used to generate entire passenger travel trajectories from
origins to destinations including all path segments, by following
a probabilistic hybrid Markov-driven approach. Lastly, after
knowing all passenger trajectories, we further estimate the
passenger occupancy for every train in the entire network
in a given short time window. The results are applied over
the real Sydney train network in Australia, and showcase that
the proposed method can accurately quantify time-dependent
passenger flows at a station platform level of granularity.

Index Terms— train assignment, public transport, OD
estimation.

I. INTRODUCTION

Several large cities around the world rely on train, metro
or subway systems to accommodate the large travel demand
from continuously increasing population. To cite a few,
Transport for London has suffered a 70% increase in public
transport patronage over the last 20 years [?], the MRT
railways system in Hong Kong 56% [?], while the Sydney
Train Network in Australia has reached 377.1 million annual
patronage in 2019 [?] which represents a further 17.7%
since 2013 [?] raising the maintenance costs to almost
1.46 BilAUD due to extensive track line constructions and
integration with new Metro line to keep the pace with travel
demand. As a result of this increased demand, many rail
systems operate almost at maximum capacity during the peak
periods with passengers crowding on platforms and inducing
event more delays in train operations.

Therefore, estimating a real-time passenger loading for
trains across the entire networks represents a true challenge
and open research problems due to many factors which
can interfere such as: a) train line inter-connectivity, b)
stochastic technical disruptions, c) public events or d) badly
interconnected multi-modal public transport systems. The
problem is manifold and extends from planning perspective
to real-time train operations.
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A. Paper Contributions

The proposed method in this paper takes advantage
of real-time train scheduling data to calibrate an initial
time-dependent OD matrix which is generated based on
train station tap-on and tap-off automatic data collected.
Further on, the calibrated time-dependent OD matrix which
represents the refined travel demand across the train network
is used to assign each individual passengers to the most likely
path from origin to destination, by taking into consideration
several factors such as travel time between stations, transfer
and waiting time. The final steps represents a hybrid
Markov modelling and probabilistic estimation of passenger
occupancy for every train in the entire train network in a
given time window. The entire methodology comprises of
three major steps which are further detailed in Section II and
applied to the Sydney train network case study detailed in
Section III. The current approach makes use of the following
data input: a) the network layout and connectivity between
train tracks, b) the timetable information: the scheduling
of train trips according a master timetable which includes
departures and arrival of each train trips between any stations
in the network and c) tap-on and tap-off information: the
numbers of passengers entering and existing train stations
collected by an Automated Fare Collection (AFC) system
provided in an aggregated hourly fashion.

The available information for modelling poses the
following challenges which we address in this paper:

1) the patronage numbers are aggregated for every 15-min
of time interval for protecting passenger privacy; the
exact tap-on and tap-off times, and the links between
tap-on and tap-off are unknown; this requires a robust
routing methodology for travel path generation;

2) there is an unknown association between tap-on and
tap-off records: as the data contains no information on
where specific passengers tap-on followed by a tap-off
in the network for protecting passenger privacy, the
OD matrix estimation becomes very challenging;

3) train stations currently have multiple platforms so
passengers once entered a train station can direct
themselves towards any train line and board any train
trip; this becomes very challenging for large train
stations such as Central station with more than 30
platforms;

4) in-station transfer: passengers can take various transfer
options for travelling to the same destination and
currently no information is recorded when passengers
interchange at specific train stations to change their
trips and transfer between various segments of their



journey.
The results presented in Section III-A are based on the
main outputs of the methods which are summarized in: a)
the initial train demand comprising the assigned passengers
travelling between any two stations in the network, b)
the recalibrated and final dynamic demand comprising
passengers between any OD pair regardless of their train
trips by each 15-min time-interval, c) the dynamic number
of passengers waiting on each train station platform based on
preferred path choice and d) the number of passenger who
alight from a train trip and board to another train trip inside
the same train station (estimating the transfer passengers at
each train station). Finally, Section IV concludes this paper.

B. Related works

In the literature, various approaches have be undertaken
to tackle these challenges out of which we name a few of
them in the following. Auhtors in [2] proposed a probabilistic
passenger to train assignment model by matching the fare
transactions to the automatic vehicle location from tracking
system and taking into consideration the access/egress time.
However, the case study exemplification has been only
applied to few train stations without major interchanges in
between and would need a further a scalability analysis.
In our study we consider the possibility of passengers
moving between any platforms, and transferring between any
crossing stations.

The study presented in [4] developed a regression model
based on automatic fare card data and the distances between
origin and destination stations to decompose the gate-to-gate
journey time and estimate the location of passengers inside
the network. This is a similar approach to what we propose
in this paper, but our methodology considers both physical
distance and ideal travel times between train stations, and
also the real planned and operational travel times based on
the train scheduling data set.

A recent paper [5] focused on estimating the crowding
penalty in a discrete route choice frame-work, by considering
that: a) for single itineraries, the “delayed access time” as
the time between tapping-in and boarding, b) for transfer
journeys, the assignment was based on the delayed access
time distribution at the origin station and egress time
distribution at the destination station. This represents as well
a simplified approach but can face difficulties if several
itineraries might experience very similar delays/egress times.

[6] proposed a collaborative optimization for metro train
scheduling and train connections combined with passenger
flow control strategy applied to a single train line in Beijing
which does not contain any transfers. The authors proposed
a mixed integer non-linear programming model to realise
the trade-off among the utilization of trains, passenger flow
control strategy and the number of awaiting passengers at
platforms, however for transfers train changes the scalability
of the method would become a challenge.

[7] proposed an analysis of subway station capacity
with the use of queueing theory for building a network
analytical model and discrete-time Markov Chain (DTMC).

The main limitation here is application to a single train
station with a high number of decision variables when
generalising the approach. In our study, we consider hybrid-
state Markov chains which have both a continuous and
discrete-time behaviour for modelling the transitions of
passengers between platforms, and this is presented as a third
approach for passenger assignment across across a larger
interconnected train network.

[8] proposed an event-driven model that involves three
types of events, i.e., departure events, arrival events, and
passenger arrival rates change events by considering walking
ans transfer times of passengers. They solve the non-linear
non-convex problem by using evolutionary algorithms (EVs)
applied to a case study area with only two transfer stations.
This is an interesting approach which migth be bounded by
long computational times of the EVs.

[9] built a dynamic simulation model of passenger flow
distribution on schedule-based rail transit networks with train
delays, by considering the origin-to-destination matrices, the
passenger’s alternative choices (by applying a stochastic
dynamic user equilibrium), waiting time and switching to
other transportation modes. While the approach can be
used for validation purposes of analytical train passenger
assignment, its application for fast real-time train network
modelling can represent a limitation.

As a future extension of passenger assignment modelling
approaches, mobile data can bring a solid benefit and this
was shown by [10] who conducted experiments in the Paris
Metro to assess the potential of using cellular phone data
to infer travel times, train loads, and OD flows. The train
trajectory and mobile phone trajectory events were linked.
However, there is currently very limited access to mobile
data and mapping it in high details for movements across
platforms can be quite problematic.

II. METHODOLOGY

The methodology of the current paper is split in three main
parts which represent the major contributions based on initial
data constraints and requirements. The area of our case study
analysis represents the city of Sydney, and the train network
for which we apply the current methodology is represented
in Fig. 1. In the rest of this paper we use the abbreviation
STM to denote the Sydney train metropolitan network.

A. Initial OD matrix estimation

First part of contributions consists in a systematic
modelling approach for estimating the initial Origin-to-
Destination matrices OD(Tr) containing the number of
passenger trips assigned between any pair of two train
stations in the network {Si,S j} i, j ∈ {1, ..,N} during a
time period Tr. All notations in use are provided in Table
I. As stated previously, the main challenge in this first
estimation step consists in the aggregated number of tap-
on/tap-off numbers available in blocks of 15-minute time
interval during a 24-time period (mainly due to privacy
concerns of public transport users). The initial OD estimation
methodology comprises the following steps:



Fig. 1: Network layout of the Sydney train network.

TABLE I: Notations in use for initial OD estimation.

Variable Definition
N the total number of train stations in the network,
Si, i ∈ {1, ..,N} station ID,
di, j distance between stations i, j ∈ {1, ..,N},
D =

[
di, j
]

i, j∈{1,..,N} matrix of distances between any 2 stations i, j,
~DSi =

[
min(di, j)...max(di, j)

]
the vector of all distances from station i to any
station j in the network ordered from the closest
to the farthest station,

TT =
[
tti, j
]

i, j∈{1,..,N} matrix of travel time between any 2 stations i, j,
~T T Si =

[
min(tti, j)...max(tti, j)

]
the vector of all crescent travel times from station i to any
station j, using maximum speed of each train segment

N pSi
Ton

(t) total number of passengers entering station Si
at time t, regardless of stopping station

N pSi
To f f

(t) total number of passengers exiting station Si

at time t, regardless off departing station
~ri, j =

[
seg1

i, j, ...segK
i, j

]
the route trip between stations i, j

which contains several train segments segK
i, j ,

where K is the total number of train segments
between stations {i, j}

T d~ri, j the departure time of a route ~ri, j ,

~tt~ri, j =
[
tt1

i, j, ...tt
K
i, j

]
the travel time of each segment in a route trip ~ri, j

recorded when travelling between stations {i, j},
ETo f f (~ri, j) the estimated time off for a route trip ~ri, j ,
Tr the 15-min time interval during a 24-hour period

where r ∈ {1...96};
w~ri, j (Tr) the weight associated with a routing path between

stations i, j calculated at time interval Tr ,
OD(Tr) the Origin-Destination matrix containing the

number of assigned passengers between any pair of
train stations estimated at time Tr ,

N̂ p
Si ,S j
To f f−i

(Tr) total number of passengers exiting station S j

during time interval Tr after departure from Si

1) Given any two stations Si,S j in the STM network,
calculate the matrix of distances denoted D =
[di, j]i, j∈{1,..,N}, where by distance we refer to the
physical distance in meters calculated between train
stops.

2) For each of the train stations Si, calculate the vectors
of all distances between Si and any station S j in
the network ordered from the closest to the farthest
station ~DSi = [min(di, j)...max(di, j)]. This is essential
in determining the shortest path finding between the
station at later stage.

3) For each station Si, build random samples from
the total number of entering/exiting passengers using
aggregated data sets detailed previously (denoted
N pSi

Ton
(t), N pSi

To f f
(t) respectively), at 1-min time-

interval frequency and batched as well in 15-min
time interval blocks. The final purpose is to able to

assign/distribute the entering number of passengers
across all train stations, by following an initial
assignment method based on route weighted detailed
in steps 4-7 below.

4) Calculate and store all the possible paths between any
pair of two stations and rank them from shortest to
longest path based on their estimated end of trip time.
This translates in:

a) calculate all route trips ~ri, j =
[
seg1

i, j, ...segK
i, j

]
between stations Si,S j, containing several train
segments segK

i, j, each having its own travel time

denoted as ~tt i, j =
[
tt1

i, j, ...tt
K
i, j

]
(calculated by

using the maximum speed defined by Sydney
train network and the total distance between
origin and destination),

b) for each route trip between two stations, calculate
the estimated time-off, denoted ETo f f (~ri, j), where

ETo f f (~ri, j) = T d~ri, j + tti, j (1)

c) for each ETo f f (~ri, j), identify the 15-min time interval
in which the trip will finish, noted as Tr, where r ∈
{1...96} (as there are 4 ∗ 24 = 96 time intervals in a
day). For example, T1 represents the time interval from
12 : 00AM−00 : 15AM and T96 the time interval from
11 : 45PM− 12 : 00AM. An example of such ranking
and estimated time of arrival at this stage is provided
in Table II here below.

TABLE II: Routing and estimated time of arrival example.
Time Entries OD Route Estimated arrival time Allocated time interval
T d~ri, j N pSi

Ton
(t) Si−S j ~ri, j =

[
seg1

i, j, ...segK
i, j

]
ETo f f (~ri, j) = T d~ri, j + tti, j Tr = r, r ∈ {1, ..96}

07 : 01 120 S1−S2 ~r1,2 =
[
seg1

1,2,seg2
1,2,seg3

1,2

]
ETo f f (~r1,2) = 07 : 09(07 : 01+8′) AM Tr = 29, (07:00-07:15 AM)

07 : 01 200 S1−S3 ~r1,3 =
[
seg1

1,3,seg2
1,3

]
ETo f f (~r1,3) = 07 : 16(07 : 01+15′) AM Tr = 30, (07:15-07:30 AM)

... ... ... ... ...
07 : 01 450 S1−S250 ~r1,250 =

[
seg1

1,250, ...seg4
1,250

]
ETo f f (~r1,250) = 07 : 46(07 : 01+45′) AM Tr = 32, (07:45-08:00 AM)

07 : 01 60 S2−S1 ~r2,1 =
[
seg1

2,1,seg2
2,1

]
ETo f f (~r2,1) = 07 : 07(07 : 01+6′) AM Tr = 29, (07:00-07:15 AM)

... ... ... ... ...
07 : 01 610 S2−S250 ~r2,250 =

[
seg1

2,1..seg6
2,250

]
ETo f f (~r2,250) = 08 : 01(07 : 01+60′) AM Tr = 33, (08:00-08:15 AM)

... ... ... ... ...

11 : 01 PM 20 S250−S1 ~r250,1 =
[
seg1

250,1, ...seg3
250,1

]
ETo f f (~r250,1) = 11 : 23(11 : 01+22′) PM Tr = 94, (11:15-11:30 PM)

... ... ... ... ...
11 : 01 PM 85 S250−S249 ~r250,249 =

[
seg1

250,249, ...seg8
250,249

]
ETo f f (~r250,249) = 11 : 48(11 : 01+47′) PM Tr = 96, (11:45PM-12:00AM)

5) By using initial aggregated Tap-off information
sampled over 15-min time intervals, we calculate the
total number of passengers ending their trips in each of
the Tr time interval, at any station of the STM network
(SSi

to f f (Tr)) by using:

SSi
to f f (Tr) =

N

∑
i=1

N pSi
To f f

(Tr) (2)

We make the observation that due to the length and
departure-time of each trip, the ending of the trips in each Tr
produces an optimised and reduced data set of all possible
tap-off journeys which is different than if we would have
considered all passengers exiting the train network stations
in each 15-min time interval.

6) For each route ending in a specific time interval Tr, we further
calculate the weight associated with a routing path between
stations Si,S j at time interval Tr, which we denote w~ri, j (Tr),
as follows:

w~ri, j (Tr) =
N pSi

To f f
(Tr)

SSi
to f f (Tr)

(3)

which satisfies the condition that:

∑w~ri, j (Tr) = 1 (4)



7) By using Eq. 3, we finally calculate the initial assigned
number of passengers tapping-off per time-interval as an
expression of the total number of passenger entering the
stations and their associated exiting weights:

N pSi,S j
To f f−i

(Tr) = w~ri, j (Tr)×N pSi,
Ton

(T d~ri, j ) (5)

8) Calculate the error between the total assigned number of
passengers across all stations, per each time-interval against
the original sampled passengers exiting the stations at each
time interval and re-iterate steps 1-7 if the error is more than
a maximum error threshold which we establish at 15%:

Err(Si) =

∣∣∣∣∣SSi
to f f (Tr)−

N

∑
j=1

N pSi,S j
To f f−i

(Tr)

∣∣∣∣∣ (6)

9) Results obtained in Eq. 5 are finally used to obtain the OD
matrix of assigned number of passengers departing from any
station as origin in the network; this is a time-dependent
OD matrix and we estimate 96 matrices per each 24-h time
interval as expressed below:

OD(Tr) =
[
N pSi,S j

To f f
(Tr)

]
i, j∈{1,..,N}

(7)

This step ends the initial assignment and represents the
entry point of more complex passenger assignment procedure
detailed in the following two subsections.

B. Recalibration of passenger OD assignment

The second part of the current contributions translates
into a recalibration of the initial OD matrices by taking
into consideration more complex information of the train
trip scheduling across the STM network, coupled together
with planned real timetable information obtained from API
connection to GTFS data stream on a daily basis.

TABLE III: Notations in use for OD recalibration.

Variable Definition
ttGT

i, j the GTFS total travel time recorded between stations {Si,S j},
~T T

GT
Si

matrix of GTFS travel times recorded between any 2 stations {Si,S j},
T F~ri, j the recorded transfer time along a route between {Si,S j},
Str

k transfer station ID,
WT~ri, j the waiting time before boarding a train,
WT~ri, j waiting travel time for a route ~ri, j
T F~ri, j transfer time between segments for a route ~ri, j

EA
To f f

(~ri, j) expected time-off of a train (route) trip using WT~ri, j and ttGT
i, j

EB
To f f

(~ri, j) expected time-off of a train (route) trip using WT~ri, j , ttGT
i, j and T F~ri, j .

SSi
to f f−c(Tr) the total number of recalibrated passengers ending their trip at Si

w~ri, j (TrA) the recalibrated weight of a route recorded in TrA

N p
Si ,S j
To f f−c

(Tr) the recalibrated number of assigned passengers tapping-off at each Tr

ODc(Tr−c) the recalibrated matrix of passenger trips

The following steps are currently proposed and use the
notations provided in Table III:

1) Given any two stations in the STM network, extract the
total number of passengers initially assigned in the OD
matrix obtained previously, for each Tr time interval.

2) Refine all previous paths that have been previously
found at step I.4.a by reconstructing the entire possible
journeys not just by using distance between stops and
maximum speed, but information from real time-table
scheduling, total number of transfers between each
train segments, waiting time, etc. This step represents
a further enhancement and refinement of Table II by
adding more features of each possible route such as:

a) real travel time of the entire journey from origin
to destination extracted from train GTFS data
specifications; let’s denote this as ttGT

i, j ; the vector
of all travel times of all possible paths from from
station i to any station j will now be based on
real time-table scheduling, and we denote it as
~T T

GT
Si

,
b) the recorded transfer time between platforms in

each transfer station along the route, denoted
as: T F~ri, j by taking into consideration the
synchronisation between the arrival of a train
from origin station (Si) to a transfer station
(Str

k ), and the scheduled departure or the
interconnecting trains from Str

k to the final
destination S j.

c) the waiting time which is determined from the
tap-on time of passengers every minute until de
departure of the next scheduled train trip which
we denote as WT~ri, j .

3) Based on the previous measures defined above, for
each possible routes between two stations we now
define two different possibilities of calculating the
estimated time-off for a trip, by further adjusting Eq.1
to take one of the following forms:

EA
To f f

(~ri, j) = T d~ri, j +WT~ri, j + ttGT
i, j (8)

EB
To f f

(~ri, j) = T d~ri, j +WT~ri, j + ttGT
i, j +T F~ri, j (9)

4) rank all possible routes (paths) from shortest to longest,
which are obtained for each of the cases above (A,B)
proposed above. Each solution will provide different
paths/routes as being the preferred ones and these will be
evaluated using various performance metric criteria detailed
in the last step of this procedure.

5) for each EA
To f f

, EB
To f f

, identify the 15-min time interval in
which the trip will finish, noted as TrA, TrB, where r ∈
{1...96} as stated before.

6) By using initial aggregated Tap-off information sampled over
15-min time intervals, we calculate the total number of
passengers ending their trips in each of the TrA, TrB time
interval, at each station of the STM network by using:

SSi
to f f−c(TrA) =

N

∑
i=1

N pSi
To f f

(TrA) (10)

SSi
to f f−c(TrB) =

N

∑
i=1

N pSi
To f f

(TrB) (11)

7) For each route ending in a specific time interval TrA, TrB, we
further calculate the weight associated this route, by using
the following equations:

w~ri, j (TrA) =
N pSi

To f f
(TrA)

SSi
to f f−c(TrA)

(12)

w~ri, j (TrB) =
N pSi

To f f
(TrB)

SSi
to f f−c(TrB)

(13)

which satisfy the conditions that:

∑w~ri, j (TrA) = 1 (14)

∑w~ri, j (TrB) = 1 (15)



8) Finally, by using Eq. (14)-Eq. (15), we calculate the
recalibrated number of assigned passengers tapping-off per
time-interval as an expression of the total number of
passengers entering the stations and their associated exiting
weights:

N pSi,S j
To f f−c

(TrA) = w~ri, j (TrA) ·N pSi,
Ton

(T d~ri, j ) (16)

N pSi,S j
To f f−c

(TrB) = w~ri, j (TrB) ·N pSi,
Ton

(T d~ri, j ) (17)

9) In order to evaluate the effectiveness of each case (A,B), we
compute various key performance indicators, by comparing
results from Eq. (16)-Eq. (17) to original sampled tap-off
passengers information:

R2
A = 1−

∑
N
i=1

(
N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

)2

∑
N
i=1

(
N pSi,S j

To f f−i
(TrA)− 1

N ∑
N
i=1 N pSi,S j

To f f−c
(TrA)

)2

RMSEA =

√√√√ 1
N

N

∑
i=1

(
N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

)2

SMAPEA =
100%

N

N

∑
i=1

2 ·
∣∣∣N pSi,S j

To f f−i
(TrA)−N pSi,S j

To f f−c
(TrA)

∣∣∣∣∣∣N pSi,S j
To f f−i

(TrA)
∣∣∣+ ∣∣∣N pSi,S j

To f f−c
(TrA)

∣∣∣
Similarly, we calculate R2

B, RMSEB and SMAPEB. Based on
final comparison between the performance of each approach,
we will choose the best method achieving minimal results
on all/most of the metrics. This approach will be the one
defining the final calculation of the recalibrated OD matrix
as presented in the next and final step.

10) Finally, we compute the recalibrated time-dependent OD
matrix of assigned number of passengers departing from any
station in the network as follows:

ODc(Tr−c) =
[
N pSi,S j

To f f−c
(Tr−c)

]
i, j∈{1,..,N}

(18)

where Tr−c ∈ {TrA,TrB} and is chosen based on final
assessment from previous step.

C. Platform passenger assignment

As previously mentioned, the known variables that we
have for each train stations are the total number of
passengers tapping on and off at the main entrance in
each station, together with the recalibrated numbers of
passengers travelling between any two stations. However,
this provides an overview of the train network performance
and does not reflect the total number of passengers assigned
to each train and each platform arriving/departing to/from a
stations Si, which would provide a higher level of granularity
and insight regarding the overall train performance and
passengers assignment across the entire train service.

Fig. 2 represents the modelling of passenger arriving
and departing from a train station which contains several
platforms, and for which the total number of passengers is
known between specific time intervals. Table IV presents the
notations used in this subsection which are detailed in the
following as well.

We first start by describing the total number of passengers
inside a station Si at time t, including those transferring,
waiting and remaining in train as:

N pinSi(t) =
∣∣∣N pSi

To f f
(t)−N pSi

Ton
(t)
∣∣∣ (19)

NpSia2(t) ... NpSiaM (t) NpSid1(t +∆ t1) NpSid2(t +∆ t2) ... NpSidM (t+∆ tR)

Si N
inSi
p (t) = |NpSiton(t)−NpSitof f (t)|

NpSia1(t)

NpSiton(t)NpSitof f (t)

T1
tripI D (t)

...

T2
tripI D (t)

...
TR
tripI D (t)

T1
tripI D (t+∆ t1)

TR
tripI D (t+∆ tR)

...T2
tripI D (t+∆ t2) ...

Fig. 2: Modelling schema of passengers arriving/departing from
train stations.

TABLE IV: Notations in use for platform assignment.

Variable Definition
M number of platforms of a station Si,
R daily number of train trips arriving at a station Si,
N pinSi (t) number of passengers inside a station Si at time t,

including those transferring, waiting and remaining in train,
N pSi

ak (t),k ∈ 1, ..M number of passengers arriving at a platform k
belonging to a station Si at time t,

t +∆tr scheduled departure time of a train trip r ∈ {1,R}
N pSi

dk
(t +∆tr),k ∈ 1, ..M number of passengers departing from a platform k

belonging to a station Si after a scheduled departure time,
T r

tripID(t) the scheduled train trip ID arriving at Si at time t,
T r

tripID(t +∆tr) the scheduled train trip ID departing from Si at time t +∆tr

where N pSi
To f f

(t) is expressed as the total number of persons arriving
at platform k of station Si at time t from various trains and heading
towards the exit:

N pSi
To f f

(t) =
M

∑
k=1

N pSi
ak
(t) (20)

and N pSi
Ton

(t) becomes the total number of persons entering the
station Si and heading to departing from one of the platforms k at
time (t +∆tr):

N pSi
To f f

(t) =
M

∑
k=1

N pSi
dk
(t +∆tr),r ∈ 1,R. (21)

These arrival/departing number of passengers are represented
with red/blue arrows respectively in Fig. 2, which we will further
identify as a hybrid Markov Chain model (HMCM) due to the dual
continuous-discrete behaviour (continous variables of passengers
and discrete state representing each platform at a specific time).
As an observation, we could have represented the states of arrival
and departing from platforms as single states, described by two
continuous-time variables (number of passengers arriving/departing
at each platforms) and returning arcs for those staying on the same
platform after getting off, but we wanted a clear separation of
automata modelling based on train arrival/departing at each train
platform, during a specific time interval ∆tr,r ∈ {1,R}.

By continuing our analysis we further express N pSi
ak (t),k ∈

{1, ..M} as:

N pSi
ak
(t) = N pexit−Si

ak
(t)−N premain−Si

ak
(t)+N ptrans f er−Si

ak (t) (22)

where N premain−Si
ak (t) is the total number of passengers remaining

in the same train which can be expressed as:

N premain−Si
ak

(t) = N pSi
ak−>dk

(t +∆tk) (23)

and N ptrans f er−Si
ak (t) represents the total number of passengers

randomly transferring from platform ak to other platforms of
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Fig. 3: Heat Map for selected stations as a) initial OD at 8AM, b)initial OD at 12PM, c) initial OD at 5PM, d) calibrated OD at 8AM,
e) calibrated OD at 12PM and f) calibrated OD at 5PM.

departure dt , after a specific time interval ∆tr,r ∈ {1, ..R} (all
transfers possible from current platform):

N ptrans f er−Si
ak (t) =N pSi

a1−>d2
(t+∆t2)+ ...N pSi

a1−>dM
(t+∆tM) (24)

Similarly, we express N pSi
dk
(t +∆tr) as:

(25)
N pSi

dk
(t + ∆tr) = N penter−Si

dk
(t + ∆tr)− N premain−Si

dk
(t + ∆tr)

+ N ptrans f er−Si
dk

(t + ∆tr).

where N premain−Si
dk

(t + ∆tr) is the total number of passengers
remaining in the same train (not changing platforms and
N ptrans f er−Si

dk
(t + ∆tr) is the total number of passengers arriving

at platform dk for departure at time interval (t +∆tr) (all transfers
possible to a current platform); similarly, these are expressed as:

N premain−Si
dk

(t +∆tr) = N pSi
ak−>dk

(t +∆tk) (26)

(27)
N ptrans f er−Si

dk
(t + ∆tr) = N pSi

a1−>d2
(t + ∆t2)

+ ...N pSi
a1−>dk−1

(t + ∆tk−1)

where

t +∆tk−1 ≤ t +∆tk,etc. (28)

We make the observations that we can model the transitions
between various platforms of station, by taking into considerations
the transition probability matrix of the HMCM which need to satisfy
the conditions across the above transition probabilities as follows:

Pr(N pSi
a1−>d2

(t +∆t2))+ ...Pr(N pSi
a1−>dM

(t +∆tM)) = 1

Pr(N pSi
a1−>d2

(t +∆t2))+ ...Pr(N pSi
a1−>dk−1

(t +∆tk−1)) = 1.

III. CASE STUDY

As shown in Fig. 1, our study has been applied over the Sydney
train network in Australia. The entire train network expands over
various states in Australia, but for the purpose of keeping the
analysis concise, we only focus on the New South Wales and most
specifically on the Sydney region which contains in total over 175
train stations with a total of 506 platforms.

A. Results
OD estimation: Firstly we followed the method detailed in

Section II-A to estimate an initial OD matrix based on tap-
on/tap-off data which contains 175x175x24x4=2.94 million OD
pairs. The OD matrix covers every 15-min of time window from
00:00:00AM to 24:00:00AM and each pair represents the number
of passengers travelling from one Origin Station to a Destination
Station departing within a 15-min time window. We run the OD
estimation algorithm (multiple threads) on a machine with Intel i7
CPU and 16GB RAM and it took more than 10 hours to obtain
the results. The considerable time cost is mainly due to the path
routing computation. The error of initially estimated OD matrix is
13.6% calculated by Eq. (6) which will be further reduced after
calibration in next step. To illustrate the OD matrix, Fig. 3 (a), (b)
and (c) show a selection of OD matrix heat maps for the selected
stations at 08:00AM, 12:00PM and 17:00PM respectively. The 11
selected stations consists of 3 major stations in Sydney CBD and 8
interchange stations outside CBD. We observe that already the OD
matrix heat maps disclose a pattern that in the morning peak hours
passengers are travelling from other stations outside Sydney CBD
to the main Central station, Town Hall station and Wynyard station,
whereas in the afternoon peak hours they are travelling from CBD
to other areas. Due to lack of space in this paper we further provide
three sample representations of the entire 175x175 OD matrices in
the online supplement material provided at [1, Fig. 9a,b,c] which
showcase overall traffic patterns across the entire train network in
the city.

OD calibration: After obtaining the initial OD matrix, we
calibrated it using calibration schema A and B detailed in Section II-
B. Their effectiveness is evaluated using R2, RMSE and SMAPE



TABLE V: Performance metrics of calibration approaches A,B

Calibration Approach R2 RMSE SMAPE

A 0.8611 75.84 33.51%

B 0.8604 62.39 32.09%

Fig. 4: Coefficient of determination of calibrated OD matrix for
approach a) A and b) B.

which are shown in Table V. The performance of each approach
seems to be very effective (R2 > 0.85, a low RMSE < 80 and good
SMAPE thresholds below 35%) with a improvement for method
A; this indicates that for our case study in Sydney, including the
waiting time in the route choice estimation improves considerably
the performance of the train passenger assignment (RMSE is
reduced to 62.39 from 75.84).

Further more, Fig. 4, Fig. 5 and Fig. 6 illustrate the R2

distribution and box-plot performance of each train station after
the calibration. The R2 of recalibrated OD versus the initial one
indicates a large number of passengers falling under the threshold
of 200 passengers per 15-min time interval with few outliers
reaching 600 passengers across highly circulated CBD train stations
during peak hours. There are however no missing information or
large number of small outliers being detected after the calibration
procedure which reinforces the method efficiency. RMSE values
indicate very good accuracy (majority fall below 5) for both
A,B approaches. Similarly SMAPE values maintain strong records
between 50−60% across majority of stations, including the busiest
ones, for both approaches.

Similarly, the heat maps of calibrated OD Matrix for 11 selected
stations on 08:00AM, 12:00PM and 17:00PM are presented in
Fig. 3 (d), (e) and (f) respectively revealing a slight re-distribution
of passenger across Central station, Parramatta (in the west of
the city) and Epping (to the North). Afternoon peak seem to the
busiest across Town Hall, Central and Wynyard stations (inside
CBD) maintaining the same trends as before. The entire recalibrated
matrices can also be found in the online supplement at [1, Fig.
9d, e, f] which reveal more pregnant morning and afternoon peak
patterns across several stations in the network.

Platform passenger assignment: was lastly conducted for the
entire network. Fig. 8 and Fig. 7 show the number of passengers in
Central station and Town Hall station on 08:00AM, 12:00PM and
17:00PM respectively.

Both figures showcases the time-dependent evolution of: a) off
board passengers arriving at each station and going towards the
exit (as per Eq. (22)), b) the onboard passengers departing after
entering the station (as per Eq. (25)) as well as the number of
passenger transferring in and out of platforms (as per Eq. (24) and
Eq. (27) respectively).

The passenger assignment results demonstrate a consistent
pattern with the above OD matrix heat maps. There are more
passengers entering in both Central station and Town Hall station
in the morning peak hours than the afternoon peak hours and
the reverse applies. It also can be observed that the number of
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Fig. 5: RMSE values for selected stations for approach a) A and
b) B.
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Fig. 6: SMAPE values for selected stations for approach a) A and
b) B.

Fig. 7: Platform Passenger Assignment for Town Hall station.



Fig. 8: Platform passenger assignment for Central station by each time interval, and a selected number of platforms (to fit the chart).

passengers transferring between platforms in the two stations are
significant and it is comparable with the number of passengers
entering and existing the stations, which implies that both stations
are very circulated transport hubs. The passenger assignment can
reveal large amounts of activities inside stations other than station
tap-on/tap-off activities, which is helpful for understanding station
performances and improving situation awareness. The current
methodology and analysis provide as well a powerful insight
into the implications of train disruptions and load impact across
platforms, and the entire stations in general.

IV. CONCLUSION

This paper studied the train demand estimation and public
transport passenger assignment problem, which are critical steps
for any public transport management centers. To address these
problems, we proposed a three-step modelling approach leading
to the final estimation of train occupancy. The results are carried
in a case study focusing on the entire Sydney region train network.
The main contributions of this work consist of:
• a method for estimating the initial time-dependent OD matrix

under data constraint circumstance,
• a method for calibrating the initial OD matrix using real-time

train scheduling data,
• a method for platform passenger assignment to quantify

passenger flow at platform level of granularity, and
• an application case study on a large scale train network in a

real-life setting which adds up to almost 2.94 million of time-
dependent OD pairs; this implies significant computational
challenges and scalability which the current approach has
demonstrated.

Future extensions of the current work include: a) showcasing
the performance of the method on a high variety of train paths
across the network before/after the calibration, b) considering more
accurate real-time information such as train delay and modelling the
impact of this delay on daily commuters and finally c) embedding
the impact of large disruptions across the entire train network
in order to estimate the most crowded platforms of each train
stations pending on interconnection train lines. We are looking at
further using mobile data for train passenger assignment refinement
and validation. This however raises complexities in terms of geo-
location, aggregation of passengers movement inside/outside of
trains stations, etc.
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APPENDIX

This document is accompanying the submission Dynamic Train
Demand Estimation and Passenger Assignment. The information in
this document complements the submission, and it is presented here
for completeness reasons. It is not required for understanding the
main paper, nor for reproducing the results.

Fig. 9 presents the Heat Map for all 175 Sydney train stations as
a) initial OD at 8AM, b)initial OD at 12PM, c) initial OD at 5PM, d)
calibrated OD at 8AM, e) calibrated OD at 12PM and f) calibrated
OD at 5PM. These represent the before and after calibration results
and are used to understand what station have a higher weight in
attracting passengers throughout the day, compared to the initial
assignment when passengers were assigned between trips in a more
uniform manner.

Fig. 10 represents a sample of the averaged daily data set for
the Central station, accumulated by every 15-min time interval
throughout a 24-hour timespan. The majority of passengers seen to
arrive at central in the morning (almost 10,000 passengers) between
7-9 AM and only half of them depart in the afternoon (almost 5,000)
between 4-7 PM. These patterns are different for each train station
depending on the suburb they are located in and can be used to
understand number of passengers that can be affected in case of
disruptions.
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Fig. 9: Heat Map for all 175 Sydney train stations as a) initial OD
at 8AM, b)initial OD at 12PM, c) initial OD at 5PM, d) calibrated
OD at 8AM, e) calibrated OD at 12PM and f) calibrated OD at
5PM.

Fig. 10: Total number of tap-on and tap-off records on a daily basis
across all train stations.
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