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Code embedding, as an emerging paradigm for source code analysis, has attracted much attention over the past

few years. It aims to represent code semantics through distributed vector representations, which can be used to

support a variety of program analysis tasks (e.g., code summarization and semantic labeling). However, existing

code embedding approaches are intraprocedural, alias-unaware and ignoring the asymmetric transitivity

of directed graphs abstracted from source code, thus they are still ineffective in preserving the structural

information of code.

This paper presents Flow2Vec, a new code embedding approach that precisely preserves interprocedural

program dependence (a.k.a value-flows). By approximating the high-order proximity, i.e., the asymmetric

transitivity of value-flows, Flow2Vec embeds control-flows and alias-aware data-flows of a program in a

low-dimensional vector space. Our value-flow embedding is formulated as matrix multiplication to preserve

context-sensitive transitivity through CFL reachability by filtering out infeasible value-flow paths.

We have evaluated Flow2Vec using 32 popular open-source projects. Results from our experiments show

that Flow2Vec successfully boosts the performance of two recent code embedding approaches code2vec and

code2seq for two client applications, i.e., code classification and code summarization. For code classification,

Flow2Vec improves code2vec with an average increase of 21.2%, 20.1% and 20.7% in precision, recall and F1,

respectively. For code summarization, Flow2Vec outperforms code2seq by an average of 13.2%, 18.8% and

16.0% in precision, recall and F1, respectively.
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1 INTRODUCTION

Static program analysis (or source code analysis) aims to reason about the runtime behavior of

a program without actually running it. It is the cornerstone of many clients, such as program

optimization [Bodík and Anik 1998; Ferrante et al. 1987], program slicing [Gallagher and Lyle 1991;

Weiser 1981], change impact analysis [Acharya and Robinson 2011; Canfora and Cerulo 2005],
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bug detection [Shi et al. 2018, 2010], code classification [Alon et al. 2019b; Frantzeskou et al. 2008;

Ugurel et al. 2002] and code summarization [Alon et al. 2019a; Kamiya et al. 2002; Sajnani et al.

2016]. A key challenge in static analysis is to develop an effective code representation that can

precisely capture code semantics to support a wide range of client applications.

Existing Efforts and Limitations. The recent success of embedding techniques in natural

language processing has opened up new opportunities to develop effective code representations.

Code embedding, as an emerging paradigm to support code analysis, produces low-dimensional

vector representations of code (so called distributed code representation), which enables the ap-

plication of existing machine learning techniques to various code analysis tasks. Many previous

efforts in code embedding have treated source code as textual tokens by using Word2Vec-like

techniques [Allamanis et al. 2016; Hindle et al. 2012; Pradel and Sen 2018; Raychev et al. 2014].

Later, abstract syntax trees have been used to extract the structural information of code in addition

to shallow textual features [Alon et al. 2019b; Chen et al. 2018; Hu et al. 2018; Maddison and Tarlow

2014; Zhang et al. 2019]. Very recently, there have been a few attempts at investigating richer code

semantics in the form of graphs, e.g., the data-flow graphs of a program [Allamanis et al. 2018;

Ben-Nun et al. 2018; Li et al. 2018; Zhao and Huang 2018; Zhou et al. 2019].

However, existing approaches suffer from the following three limitations: (1) Intraprocedural
embedding. Almost all existing embedding techniques are intraprocedural. These approaches

extract the abstract syntax tree [Chen et al. 2018] or the data-flow information [Ben-Nun et al.

2018; Zhou et al. 2019] within each program method, but data-flows across methods are not

preserved. The generated embedding vectors of individual methods are isolated with no calling

context information. Thus, the resulting data dependence in the latent embedding space is context-

insensitive. (2) Alias-unaware. One of the key research in data dependence analysis is memory

aliasing. The state-of-the-art approaches are all alias-unaware. They either extract the data-flow

information from ASTs [Allamanis et al. 2016; Hu et al. 2018; Zhang et al. 2019] or directly from

an intermediate representation, e.g., LLVM-IR [Ben-Nun et al. 2018], without considering pointer

alias information, which results in partial data dependence being embedded in the latent space. (3)

Ignoring asymmetric transitivity. Since the data- or control-flow graphs of a program are directed,

the current approaches which apply an existing network embedding technique (e.g., Gated Graph

Neural Networks [Allamanis et al. 2018, 2016] or Skip-Gram models [Ben-Nun et al. 2018]) fail to

preserve the long-range asymmetric transitivity of context-sensitive program dependence.

Insights and Challenges. To address these limitations, a precise code embedding approach

needs to operate on a compact and comprehensive code representation (e.g., interprocedural value-

flow graphs [Choi et al. 1991; Hardekopf and Lin 2011; Sui and Xue 2016]), which contains both

control-flows and alias-aware data-flows of a program. The approach is also expected to precisely

preserve deep code semantics extracted from the target code representation (e.g., value-flow graphs)

in a low-dimensional vector space.

Traditional graph embedding approaches [Grover and Leskovec 2016; Perozzi et al. 2014; Tang

et al. 2015] leverage random walks on a graph to identify its structure by exploring the bidirectional

connectivity between two nodes through first-order proximity (by looking at directly connected

nodes [Belkin and Niyogi 2002]) or second-order proximity (by looking at nodes with shared

neighbors [Tang et al. 2015]). As such, two nodes with similar proximity are forced to be close

to one another in the latent embedding space. Recently, graph embedding approaches based on

high-order proximity [Lian et al. 2018; Ou et al. 2016; Zhang et al. 2018] have been proposed to

capture the high-level structural information of a graph. The technique is particularly useful for

precisely preserving long-range program dependence information, which often manifests as many

multi-hop def-use (value-flows) edges between program statements within and across methods.
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Fig. 1. Overview of our approach.

Inspired by these approaches, this paper aims to investigate, for the first time, high-order prox-

imity based code embedding by preserving asymmetric transitivity of interprocedural alias-aware

value-flows. Another challenge for interprocedural embedding is to identify and embed "realizable

paths" [Reps 1998] on the value-flow graph in low-dimensional space by distinguishing different call-

ing contexts leading to a procedure, thus producing a precise context-sensitive code representation

to better support subsequent client applications (e.g., code classification and summarization).

Our Solution.We present Flow2Vec, a new code embedding approach that preserves asymmet-

ric transitivity of interprocedural value-flows of a program. To approximate a high-order proximity,

our value-flow embedding is formulated as matrix multiplication by preserving context-sensitive

transitivity through CFL reachability on the interprocedural value-flow graph (IVFG). A higher

proximity from node 𝑖 to node 𝑗 implies the more feasible and the shorter value-flow paths from 𝑖

to 𝑗 on the IVFG. The high-order matrix is then decomposed to generate two types of embedding

vectors, source and target vectors, for each node to represent its incoming and outgoing transitivity

on the IVFG. The reachability information from node 𝑖 to node 𝑗 is then translated into computing

the inner product between 𝑖’s source vector and 𝑗 ’s target vector. In the resulting embedding space,

two nodes that can reach one another along value-flow paths on the IVFG are mapped to close

numerical vectors, thus preserving high-level structural information of code.

Unlike many existing code embedding approaches [Allamanis et al. 2018; Alon et al. 2019a,b; Ben-

Nun et al. 2018; Zhou et al. 2019] that rely on supervised learning and require ground truth data to

train themodel, our value-flow embedding does not depend on prior knowledge. Benefiting from fast

matrix factorization techniques, the new code embedding supports tunable precision and efficiently

solves reachability by approximating high-order proximity through Katz Index [Hochstenbach 2009;

Ou et al. 2016], with theoretical guarantees on the Root Mean Squared Error (RMSE). Furthermore,

our value-flow embedding, which preserves alias-aware value-flow reachability, serves as a new

code representation. It can also be used as inputs to support subsequent client applications, such as

code classification and summarization.

Framework Overview. Figure 1 provides an overview of Flow2Vec with its four phases:

(a) Pre-embedding. A program is first compiled into LLVM-IR. The interprocedural value-flow

graph (IVFG) is built on top of the IR using Andersen’s pointer analysis [Andersen 1994]. The IVFG

is then transformed into an adjacency matrix A with call/return value-flow edges represented by

symbolic elements (i.e., opening/closing parentheses with their corresponding callsite information).

(b) Value-flow reachability via matrix multiplication. Value-flow reachability is formulated as

a chain-matrix-multiplication problem. The number of value-flow paths between any two nodes

with a path length of 𝑛 is obtained by the 𝑛-th power of matrix A. To achieve context-sensitive

results, the symbolic elements in the resulting matrix are resolved by matching calls and returns so

as to filter out unrealizable inter-procedural paths as a balanced-parentheses problem based on the

CFL-reachability [Kodumal and Aiken 2004; Reps 1998].

(c) High-order proximity embedding. Given the matrices representing value-flow reachability

for different path lengths, this phase approximates a high-order proximity matrix M via Katz
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Index [Katz 1953] and decomposing M into source and target embedding vectors for each node on

the IVFG. The reachability between node 𝑖 and node 𝑗 is measured as the dot products between 𝑖’s

source and 𝑗 ’s target vector to preserve asymmetric transitivity of value-flows.

(d) Application scenarios. We demonstrate the effectiveness of Flow2Vec in boosting the perfor-

mance of code2vec and code2seq, two state-of-the-art learning-based code embedding approaches

for two important clients, i.e., code classification and summarization in terms of increased precision,

recall and F1.

Our major contributions are as follows:

• We introduce Flow2Vec, a new approach to code embedding by preserving interprocedural

alias-aware value-flows.

• We formulate value-flow reachability as matrix multiplication to embed context-sensitive

value-flows through CFL reachability in the low-dimensional space.

• We present a comprehensive evaluation of Flow2Vec’s precision, recall and F1-scores for

both code classification and code summarization using 32 popular open-source C/C++ projects

consisting of over 5 million lines of LLVM instructions. The code classification experiments

show that Flow2Vec outperforms code2vec with an average increase of 21.2% in precision,

20.1% in recall and 20.7% in F1. The results for the code summarization show that Flow2Vec

improves upon code2seq’s performance by an average of 13.2% in precision, 18.8% in recall

and 16.0% in F1.

2 BACKGROUND

This section sets out the preliminary knowledge of our work, including LLVM-IR, IVFG and graph

embedding.

2.1 LLVM-IR

Modern compilers (e.g., LLVM) normally support multiple front-ends that compile programs written

in different programming languages into a uniform Intermediate Representation (IR), e.g., LLVM-IR,

for subsequent analysis and transformation tasks. Without loss of generality, our approach works

on top of LLVM-IR, a popular and robust code representation used by many existing program

analyses [Balatsouras and Smaragdakis 2016; Ben-Nun et al. 2018; Lei and Sui 2019; Lhoták and

Chung 2011; Li et al. 2011]. In the LLVM-IR of a program, the set of all variablesV is separated

into two subsets, O which contains all possible abstract objects, i.e., the address-taken variables
of a pointer, and P which contains all top-level variables, including stack virtual registers (the

symbols starting with ł%") and global variables (the symbols starting with ł@") which are explicit,

i.e., directly accessed. Address-taken variables in O are implicit, i.e., accessed indirectly at LLVM’s

load or store instructions via top-level variables.
After the SSA conversion, the LLVM-IR of a program is represented by five types of instructions:

𝑝 =&𝑜 (AddrOf), 𝑝 =𝑞 (Copy), 𝑝 =&𝑞→ 𝑓𝑖 (Field), 𝑝 =∗𝑞 (Load) and ∗𝑝 =𝑞 (Store), where 𝑝, 𝑞 ∈ P
and 𝑜 ∈ O are address-taken variables. 𝑜 is either a stack, global or a dynamically created heap

object for an AddrOf 𝑝 =&𝑜 , known as an allocation site.
Figures 2(a) and (b) show a code fragment (with variable type information ignored for brevity) and

its corresponding LLVM-IR, where p, q, r , t1 , x ∈ P and a, b ∈ O. Note that a is indirectly accessed

at a store ∗p = t1 by introducing a top-level pointer 𝑡1 in the LLVM’s partial SSA form [Lattner

and Adve 2004].

2.2 Interprocedural Value-Flow Graph (IVFG)

The IVFG [Hardekopf and Lin 2011; Shi et al. 2018; Sui and Xue 2016] of a program is built

upon LLVM-IR by considering program control-flow and alias-aware data-flows. IVFG = (𝑁, 𝐸)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 233. Publication date: November 2020.
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Fig. 2. A C code fragment and its LLVM instructions and interprocedural value-flow graph (IVFG).

is a multi-edged directed graph that captures its def-use chains flow-sensitively. 𝑁 is the set of

nodes representing all instructions and 𝐸 is the set of edges representing all def-use chains. More

specifically, an edge ℓ
𝑣−→ ℓ ′, where 𝑣 ∈ V , from the instruction ℓ to ℓ ′ signifies a def-use relation

for 𝑣 with its def at ℓ and use at ℓ ′.
As top-level variables are in LLVM’s SSA form, their uses have unique definitions (with 𝜙

functions inserted at confluence points of a program’s control-flow graph). A def-use chain ℓ
𝑡−→ ℓ ′,

where 𝑡 ∈ P, represents a direct value-flow of 𝑡 . Such def-use chains can be found easily without

the need for pointer analysis.

However, address-taken variables are not in LLVM’s partial SSA form, so their indirect uses at

loads may be defined indirectly at multiple stores. Their def-use chains are obtained by building the

interprocedural memory SSA form following [Chow et al. 1996; Hardekopf and Lin 2011]. Figure 2

provides an example. First, the points-to information in the program is computed by Andersen’s

pointer analysis [Andersen 1994]. The points-to targets of the pointers 𝑝 and 𝑡1 are shown beside

the first two instructions respectively. Second, a store, e.g., ∗𝑝 = 𝑡1 is annotated with a function

𝑎 = 𝜒 (𝑎) for each variable 𝑎 ∈ O that may be pointed to by 𝑝 to represent a potential def and use of

𝑎 at the store. If 𝑎 can be strongly updated [Lhoták and Chung 2011], then 𝑎 receives the value on

the right hand side of the store, i.e., "𝑡1" and the old contents in 𝑎 are killed. Otherwise, 𝑎 must also

incorporate its old contents, resulting in a weak update to 𝑎. Likewise, a load 𝑞 = ∗𝑝 is annotated

with a function 𝜇 (𝑎) for each variable 𝑎 ∈ O that may be pointed to by 𝑝 to represent a potential

use of 𝑎 at the load. Third, we convert all the address-taken variables into SSA form, with each 𝜇 (𝑎)
treated as a use of 𝑎 and each 𝑎 = 𝜒 (𝑎) as both a def and use of 𝑎. Finally, we obtain the indirect

def-use chains for 𝑎 ∈ O as follows. For a use of 𝑎 identified as 𝑎𝑛 (with its version identified by 𝑛) at

a load or store ℓ , its unique definition of 𝑎 is 𝑎𝑛 at a store ℓ ′. Then, an indirect def-use chain ℓ ′
𝑎−→ ℓ

is added to represent the potentially indirect value-flow of 𝑎 from ℓ ′ to ℓ (e.g., ℓ2
𝑎−→ ℓ3 in Figure 2(c)).

The opening/closing parentheses with the callsite information are put on the call/return edges to

differentiate the intra-procedural value-flow edges from the inter-procedural ones. ℓ ′
𝑣−→
(𝑖
ℓ denotes

the call value-flow of 𝑣 from ℓ ′ in a caller to ℓ in its callee via callsite 𝑖 (e.g., ℓ3
𝑞
−→
(1
ℓ5 in Figure 2(c)).

Similarly, ℓ6
𝑟−→
)1
ℓ4 denotes the return edge from ℓ6 to ℓ4 via callsite 𝑐𝑠1. Figure 2(c) shows the final

IVFG of the LLVM-IR. The intra-procedural edges marked as the black arrows and call/return edges

are the red/blue arrows.
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2.3 Graph Embedding

Graph embedding [Cai et al. 2018; Cui et al. 2018] or network embedding is to transform a graph

into a distributed representation in the form of a numerical vector or a set of vectors by capturing

the graph’s topology and vertex-to-vertex relations. The resulting embedding provides a compact

data format, from which to efficiently conduct a wide variety of tasks, such as pattern recognition,

clustering and classification, can be conducted efficiently in both time and space. For example,

computing the (context-sensitive) reachability between two nodes on an IVFG, which previously

requires costly enumeration of all possible paths between any two nodes, can be approximated by

fast high-order proximity [Cui et al. 2018]. As another example, machine learning methods, which

are powerful for solving some software engineering tasks, such as code summarization, require

a precise structure-preserving code representation. In turn, this requires an effective embedding

approach.

Preserving high-level graph structures, such as the reachability relations between two arbitrary

nodes, is a fundamental requirement of graph embedding. Preserving asymmetric transitivity has

recently become an important topic for precisely embedding directed graphs [Ou et al. 2016; Sun

et al. 2019]. Given a directed graph𝐺 = (𝑁, 𝐸), where 𝑁 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is a set of nodes and 𝐸
is a set of directed edges. An edge from 𝑣𝑖 to 𝑣 𝑗 is represented as 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸. The embedding

takes 𝐺 ’s adjacency matrix (denoted as A) as its input and outputs a high-order proximity matrix

M, where M𝑖, 𝑗 preserves the asymmetric transitivity between 𝑣𝑖 and 𝑣 𝑗 . Note that M𝑖, 𝑗 denotes the

element at the 𝑖-th row and 𝑗-th column of M, and the bold lowercase symbol s𝑖 represents the

𝑖-th row of M). There are several commonly used models (e.g., random walk [Mikolov et al. 2013;

Perozzi et al. 2014] and matrix factorization [De Lathauwer et al. 2000; Ou et al. 2016]) to transform

a graph from its original graph space A to its high-order proximity spaceM.

GivenM, the embedding vectors are extracted as D = [D𝑠 ,D𝑡 ], where the 𝑖-th row, d𝑖 , denotes

the embedding vector of 𝑣𝑖 and 𝐾 is the embedding dimension. Unlike the embedding which

maintains only one type of vectors for an undirected graph, asymmetric transitivity preservation

on a directed graph produces two types of vectors: a source vector D𝑠 and a target vector D𝑡 , in

the embedding space R |𝑁 |×𝐾 . The inner product between d𝑠𝑖 and d𝑡𝑗 , i.e., d
𝑠
𝑖 · d𝑡𝑗

⊺

represents the

approximated proximity from 𝑣𝑖 to 𝑣 𝑗 . This proximity value is often normalized between 0 and 1. A

higher proximity means more and shorter paths from 𝑣𝑖 to 𝑣 𝑗 . A proximity value that fails under

the user-defined threshold indicates that 𝑣𝑖 are unlikely to reach 𝑣 𝑗 .

The fundamental difference between code and natural languages is the structural information

available (e.g., IVFG). Exploiting rich code semantics via structure-preserving graph embedding be-

comes increasingly important. This paper fills the gap between the demand for comprehensive code

representation and the lack of code embedding techniques that precisely preserve interprocedural

context-sensitive program dependence.

3 A MOTIVATING EXAMPLE

Figure 3 illustrates the key idea of Flow2Vec. The objective is to show that our interprocedural code

embedding can precisely preserve the context-sensitive value-flow reachability in the embedding

space.

Pre-embedding. The code example in Figure 3(a) is extracted from a real-world program bison.

The IVFG of the code snippet is constructed by following Section 2.2. Each node on the IVFG

represents a definition of a variable at an instruction with its corresponding line number. We

then transform the IVFG into a symbolic matrix A, with each element denoting the first-order

reachability (two directly connected nodes) as depicted in Figure 3(a). If there is an intraprocedural

value-flow between ℓ𝑖 and ℓ𝑗 for any two instructions ℓ𝑖 and ℓ𝑗 , A𝑖, 𝑗 = 1 and 0 otherwise. The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 233. Publication date: November 2020.



Flow2Vec: Value-Flow-Based Precise Code Embedding 233:7

foo(){

    stack = malloc(..);

    queue = malloc(..);

    p = bar(stack);//cs1

    q = bar(queue);//cs2

    //operations on ‘stack’

     via pointer p’

    . . .

}

bar(x){

//initialization for 

objects that ‘x’ points to

    return x;

}

IVFG

a) Pre-embedding (b) Value-flow reachability as matrix multipication

(c) High-order proximity embedding

Fig. 3. A motivating example. (a) shows the code and its corresponding IVFG; (b) gives A1, A2 and A3 which
represent context-sensitive reachability between any two IVFG nodes with a path length of 1, 2 or 3; and
(c) shows a high-order proximity matrix M, the source and target embedding vectors D𝑠 and D𝑡 . The inner

product between d𝑠𝑖 · d
𝑡
𝑗
𝑇
is the proximity from ℓ𝑖 to ℓ𝑗 .

interprocedural value-flows between ℓ𝑖 and ℓ𝑗 are symbolized using their callsite information, i.e.,

A𝑖, 𝑗 = (𝑐𝑠𝐼𝑑 and A𝑖, 𝑗 =)𝑐𝑠𝐼𝑑 for the call and return edges of the callsite 𝑐𝑠𝐼𝑑 , respectively. For the

purposes of context-sensitive analysis, this later can be instantiated to either 1 or 0 for a feasible

flow between 𝑖 and 𝑗 under different call paths. In Figure 3(a), A5,6 = 1 signifies the intraprocedural

reachability from ℓ5 to ℓ6, and A1,5 = (1 represents the interprocedural value-flow from ℓ1 to ℓ5 via

callsite 𝑐𝑠1.

Value-Flow Reachability as Matrix Multiplication. The asymmetric transitivity of value-

flows is formulated as a chain-matrix-multiplication problem as shown in Figure 3(b). The element at

the 𝑖-th row and 𝑗-th column ofAℎ , which is theℎ-th power1 ofA, denotes the number of value-flow

paths with a length of ℎ from node 𝑖 to node 𝑗 . A symbolic element, e.g., A3
1,3 = (1∗1∗)1, indicates

that a feasible path of length 3 from 𝑖 and 𝑗 involves one call edge, one intra-procedural edge, and

one return edge. This multiplication of symbolic elements represents a value-flow concatenation by

strictly preserving the order of call and return edges when traversing on the IVFG. Here, we only

care about the call/return sequence to filter out "unrealizable" interprocedural paths by matching

calls and returns. For example, A3
1,4 = (1∗1∗)2 signifies an infeasible path from ℓ1 to ℓ4 due to

1The power of matrix A is defined as Aℎ
= A · . . . · A
︸      ︷︷      ︸

×ℎ

and A0 is the identity matrix.
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stack call 

Express‐

Smpt 

p Call

Express‐

Smpt 

Method declaration 

BlockSmpt 

queue call 

Express‐

Smpt 

Express‐

Smpt 

q Call

Malloc Malloc bar stack bar queue

Foo

Fig. 4. The AST of foo in Figure 3(a) with two spurious paths, i.e., the path between stack and q (blue line)
and the path between queue and p (red line).

unbalanced parentheses, which implies that stack can not pass its value to 𝑞. Once all the symbolic

elements in a matrix of ℎ-th power of A have been resolved based on CFL-reachability [Reps 1998]

and replaced with either 1 or 0, yielding two context-sensitive reachability matrices A2 and A3 for

paths of lengths 2 and 3.

High-Order Proximity Embedding. To preserve the high-level code structure (e.g., the ensem-

ble of all feasible value-flow paths) and approximate the graph’s high-order proximity, we choose

Katz Index [Katz 1953]. The resulting proximity matrixM =

∑𝐻
ℎ=1 (𝛽 · A)

ℎ preserves the value-flow

reachability, where 𝐻 is the maximum limit for power of A and 𝛽 is the decay parameter that

determines how fast the weight of an edge decays when the length of a path grows. This guarantees

convergence. We choose 𝐻 = 3 and 𝛽 = 0.8 in our example. We adopt the approach in [Ou et al.

2016] to reduce the computational cost of SVD (singular value decomposition) when approximating

and decomposing the high-order proximity matrix into 𝐾-dimensional embedding vectors D𝑠 and

D𝑡 , as shown in Figure 3(c). The parameter 𝐾 , represents the number of feature dimensions to

support tunable precision for our embedding. The higher value of 𝐾 becomes, the more precise the

embedding is.

Figure 3(c) also illustrates the reachability computation using the 3-dimensional embedding

vectors (the first three dimensions of D𝑠 and D𝑡 highlighted in blue). A closer distance between a

source d𝑠𝑖 and a target d
𝑡
𝑖 vector means their inner product d𝑠𝑖 ·d𝑡𝑗

𝑇
will have a higher proximity value.

Compared to ℓ6, ℓ5 is closer to ℓ1 on the IVFG. Accordingly, the value d𝑠1 · d𝑡5
𝑇
=0.75 is higher than

d𝑠1 · d𝑡6
𝑇
=0.71 in the embedding space. A proximity value under a user-defined threshold indicates

that ℓ𝑖 unlikely reaches ℓ𝑗 (our empirical threshold value of 0.003 under 110 feature dimensions can

achieve 96.4% precision and 94.5% recall in our evaluation). Thus, Flow2Vec precisely preserves

reachability from ℓ1 to ℓ3 with the proximity value of d𝑠1 · d𝑡3
𝑇
= 0.5 and it also identifies two

infeasible value-flows from ℓ1 to ℓ4 with d𝑠1 · d𝑡4
𝑇
= −0.02 and from ℓ2 to ℓ3 with d𝑠2 · d𝑡3

𝑇
= −0.02.

Note that d𝑡1 and d𝑡2 are zero vectors, implying that no directed edges go to these two nodes.

Applications. Our embedding provides a new code representation that is useful to support,

for example, code classification and summarization tasks that require comprehensive interpro-

cedural alias-aware program dependence information. Unlike code2vec [Alon et al. 2019b] and

code2seq [Alon et al. 2019a] which embed the paths on a program’s ASTs, Flow2Vec extracts

deeper code structure information by exploring context-sensitive value-flow paths. Figure 4 shows

foo’s AST, which is intra-procedural and flow- and context-insensitive by nature. There two spu-

rious paths on the AST. One is between stack and 𝑞 (blue); the other is between queue to 𝑝 (red).

These spurious paths suggest false information that 𝑝 may operate on the queue. In fact, 𝑝 only

accesses stack and there is no operation on queue in the remaining part of foo, as indicated in
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the comments (green). Therefore, imprecise code information, such as spurious AST paths, can

adversely affect the accuracy of code classification and summarization, as also demonstrated in our

experiments in Section 5.2 and our case studies in Figure 12.

4 FLOW2VEC APPROACH

This section details our value-flow embedding approach, including pre-embedding, value-flow

reachability via matrix multiplication and high-order proximity approximation by preserving

asymmetric transitivity of value-flows in low-dimensional embedding space.

4.1 Pre-embedding

Our pre-embedding phase accepts the source code of a project and compiles the code into LLVM-IR.

The memory SSA form and the interprocedural value-flow graph are then built using Andersen’s

pointer analysis [Andersen 1994; Sui and Xue 2016]. The indirect function calls are resolved using

the points-to information from pointer analysis. The IVFG is then translated into a symbolic matrix

A with the call site IDs as placeholders for interprocedural value-flows. For example, if the two

value-flows are passing to and returning from a callee through the same callsite 𝑖 , the call and the

return value-flow edges are labeled with an opening parenthesis (𝑖 and a closing parenthesis )𝑖
respectively.

4.2 Value-Flow Reachability as Matrix Multiplication

The context-sensitive value-flow reachability is formulated as a chain-matrix-multiplication problem

to compute a high-order proximity matrixM given the adjacency matrix A of an IVFG. Note that A

is sparse based on our sparse value-flow graph (Section 2.2). In Section 4.2.1, we introduce the matrix

multiplication to obtain the context-insensitive value-flow reachability. Then, in Section 4.2.2, we

move to context-sensitive reachability.

4.2.1 Context-Insensitive Value-flow Reachability. For context-insensitive value-flow reachability,

the symbolic matrix A is treated as a binary adjacency matrix, where the variable name on a

value-flow edge and the callsite information on an interprocedural edge are ignored for context-

insensitive analysis. The element A𝑖, 𝑗 of A is 1 if there a directed edge from 𝑖 to 𝑗 (with a path of

length of 1) exists in the graph, otherwise A𝑖, 𝑗 is 0. The matrix element A𝑖, 𝑗 in the ℎ-th power of the

adjacency matrix represents the number of paths from node 𝑖 to 𝑗 with a length of ℎ. For example,

the element at the 𝑖-th row and 𝑗-th column of A2 is 1 if there exists one path with a length of 2

from node 𝑖 to node 𝑗 .

Asum
=

𝐻∑

ℎ=1

Aℎ, (1)

Equation 1 formulates value-flow reachability as the sum of all powers of the adjacency matrix A

over the natural number latticeN. The equation can be used to compute the reachability information

between any two nodes on IVFG for path lengths from 1 to 𝐻 .

Example 1. Figure 5 depicts a context-insensitive value-flow graph without labeled edges. A1

represents the first-order reachability and A2 represents the second-order reachability through

paths of length of 2 between any two nodes. Asum is the final matrix considering all reachability

closures for path lengths of both 1 and 2. Asum
1,3 = 2 means that there are two paths on the graph

from ℓ1 to ℓ3, i.e., ℓ1 → ℓ3 of path length 1 and ℓ1 → ℓ2 → ℓ3 of length 2.
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Fig. 5. Value-flow reachability via matrix multiplication (A𝑠𝑢𝑚 represent value-flow reachability between
any two nodes for path lengths from 1 to 2).

Fig. 6. Context-sensitive value-flow reachability via symbolic matrix.

4.2.2 Context-Sensitive Value-flow Reachability. When applying Equation 1 to the symbolic matrix

A for context-sensitive analysis, the value of an elementAsum
𝑖, 𝑗 in the resulting matrixAsum may not

be a numeric value, but it can be a symbolic expression, which represents the interprocedural value-

flow path(s). The multiplication of two symbolic elements represents a value-flow concatenation by

preserving the order of call and return IVFG edges. The addition of two symbolic elements, same

as the context-insensitive analysis, represents that there are multiple possible paths between two

nodes.

Unlike in the insensitive analysis, an interprocedural value-flow path involving call and/or

return edges between two nodes can not be simply treated as feasible. Rather, it is recognized as a
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feasible interprocedural path using CFL-reachability [Reps 1998; Sridharan and Bodík 2006]. CFL-

reachability is an extension of standard graph reachability which allows filtering out unrealizable

paths on the graph. We define the context-free grammar 𝐶𝐹𝐺 = (𝑄, 𝑁, 𝑃, 𝑆) for our analysis,
where 𝑄 is the alphabet over the sets of opening and closing parentheses, i.e., { (1, (2, ..., (𝑛 } and
{ )1, )2, ..., )𝑛 } and an empty string 𝜖 . 𝑁 denotes nonterminal symbol. 𝑃 is a set of production rules

and 𝑆 is the start symbol. The language 𝐿 of size 𝑛 (the number of callsites in a program) using the

context-free grammar 𝐶𝐹𝐺 is defined as follows:

𝐿 : 𝐶 = 𝐶𝐶 | (1 𝐶 )1 | . . . | (𝑛 𝐶 )𝑛 | 𝜖
where 𝐶 is the start symbol and the only nonterminal in the grammar. This language supports a

special and restricted CFL, also called Dyck-CFL, which only generates strings of properly balanced

parentheses [Kodumal and Aiken 2004]. Given an IVFG𝐺 with edge labels taken from alphabet 𝑄 .

Note that intraprocedural edges are labeled with 𝜖 . Each path 𝑝 in 𝐺 is labeled with a string 𝑠 (𝑝)
in 𝑄 , obtained by concatenating edge labels in order. We say 𝑝 is a 𝐿-path if 𝑠 (𝑝) ∈ 𝐿. A 𝐿-path

is a realizable path if after entering a method𝑚 from callsite 𝑖 , it exits from𝑚 back to callsite 𝑖 .

Following [Sridharan and Bodík 2006], a realizable also allows partially balanced parentheses (i.e.,

a prefix with unbalanced closed parentheses and a suffix with unbalanced open parentheses) since

a realizable path may not start and end in the same method.

Example 2. Figure 6 shows an IVFG consisting of one intraprocedural edge (labeled with 𝜖) and

four call edges and two return edges. The symbolic matrix Asum
= A1 + A2 + A3 represents the

value-flow reachability with path lengths of 1, 2 and 3. The symbolic element Asum
2,4 = 𝜖 ∗ (3+(2∗)2

represents two paths ℓ2
𝜖−→ ℓ3

(3−→ ℓ4 and ℓ2
(2−→ ℓ6

)2−→ ℓ4. According to our CFL-reachability

analysis, both paths are realizable, one partially and the other fully-balanced. Similarly, the element

Asum
2,7 =

(

𝜖 ∗ (3+(2∗)2
)

∗ (4 represents two feasible paths from ℓ2 to ℓ7 with a common suffix

)4. However, Asum
1,4 = (1∗)2 signifies an infeasible path from ℓ1 to ℓ4 because the string (1∗)2 is

unbalanced, which violates our CFL grammar.

4.3 High-Order Proximity Embedding

After obtaining the matrices with different path lengths, this section details the high-order proximity

embedding and decomposing the high-order proximity matrix into source and destination matrices

for the nodes on the IVFG to preserve context-sensitive asymmetric transitivity of value-flows.

We also mathematically measure the approximated error of our graph embedding in the low-

dimensional space. The key is to choose an appropriate high-order proximity of the IVFG to

precisely approximate the two embedding matrices:

M ≈ D𝑠 · D𝑡⊤, (2)

where D𝑠 is the source embedding matrix (with 𝑁 source vectors for 𝑁 nodes) and D𝑡 is the target

embedding matrix (with 𝑁 vectors).

As one of many high-order proximity measurements, the Katz Index [Katz 1953], which ensembles

all paths between each pair in a directed graph, is a commonly used measurement for all-pair

reachability:

M =

𝐻∑

ℎ=1

(𝛽 · A)ℎ, (3)

where the high-order proximity matrix M is a weighted summarization over the paths between

two nodes. A symbolic matrix Aℎ is concretized by mapping each of its symbolic elements to a

numerical value based on CFL-reachability (Section 4.2.2).M adds a decay parameter 𝛽 to Equation 1
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to determine the speed at which the weight of a path decays when the length of a path extends.

Therefore, a higher proximity value of an matrix element, e.g.,M𝑖, 𝑗 from node 𝑖 to node 𝑗 implies

the more and the shorter feasible value-flow paths from 𝑖 to 𝑗 .

The final high-order proximity matrix M is then decomposed through SVD (Singular Value

Decomposition) to produce the source and target embedding matrices:

M = U𝚺V⊤
=

𝑁∑

𝑖=1

𝜎𝑖u𝑖v
⊤
𝑖 , (4)

where 𝜎𝑖 is the 𝑖
𝑡ℎ singular value, u𝑖 and v𝑖 are the corresponding left singular vector and right

singular vector. The largest 𝐾 singular values and the corresponding singular vectors are then used

to generate the 𝐾-dimensional embedding vectors:

D𝑠 =
[√
𝜎1 · u1, · · · ,

√
𝜎𝐾 · u𝐾

]

=

[

d𝑠1, · · · , d𝑠𝑁
]

(5)

D𝑡 =
[√
𝜎1 · v1, · · · ,

√
𝜎𝐾 · v𝐾

]

=

[

d𝑡1, · · · , d𝑡𝑁
]

(6)

where 𝐾-dimensional vector d𝑠𝑖 (d
𝑡
𝑖 ) is the 𝑖-th row of D𝑠 (D𝑡 ) in the embedding space R𝑁 ∗𝐾 . The

inner product between d𝑠𝑖 and d𝑡𝑗 (i.e., d
𝑠
𝑖 · d𝑡𝑗

⊺

) is used to represent the proximity from node 𝑖 to

node 𝑗 .

We have adopted the algorithm in [Ou et al. 2016] to approximate the embedding vectors directly,

without the calculation of the high-order proximity matrixM if all the elements of A are numerical.

The decay parameter 𝛽 is set to be less than the spectral radius of A to ensure its invertibility.

With the Jacobi-Davidson iteration of GSVD [Hochstenbach 2009], the total time complexity is

𝑂 ( |𝐸 | ·𝐾2 · 𝐿), where |𝐸 | is the number of edges on the IVFG, 𝐾 is the embedding dimension and 𝐿

is the number of iterations. When 𝐾 << 𝑁 , the time complexity is linear to the number of edges.

Note that IVFG is usually a sparse graph [Choi et al. 1991; Hardekopf and Lin 2011], making |𝐸 |
much smaller than 𝑁 2.

Approximation Error, Recall and Precision. Approximation errors (losses) are common in

graph embedding techniques due to their approximation nature (e.g., dimensionality reduction to

trade precision for efficiency) [Ou et al. 2016; Perozzi et al. 2014; Song et al. 2009; Tang et al. 2015].

This loss can cause imprecise and/or unsound preservation of value-flow reachability. The aim of this

section is to mathematically define the approximation error of Flow2Vec to quantify its precision,

with theoretical guarantees on the Root Mean Squared Error (RMSE), which is often missed by

many blackbox learning-based approaches [Allamanis et al. 2018; Ben-Nun et al. 2018; Li et al.

2018; Zhou et al. 2019]. For a given high-order proximity matrix M and the learned approximation

M̃ = D𝑠 · D𝑡⊤, the error in the Frobenius Norm is calculated as



M − M̃





𝐹
=

√
∑𝑁
𝑖=𝐾+1 𝜎

2
𝑖 , and the

standard RMSE is:

𝑅𝑀𝑆𝐸 =

√



M − M̃





2

𝐹

𝑁 2
=

√
∑𝑁
𝑖=𝐾+1 𝜎

2
𝑖

𝑁
, (7)

where 𝜎𝑖 is the 𝑖
𝑡ℎ singular value ofM and 𝐾 is the number of embedding dimensions. Additionally,

for a given embedding dimension 𝐾 , the lower the rank ofM is, the smaller the error is. When 𝐾 is

equal to 𝑟𝑎𝑛𝑘 (M), the error becomes zero. The precision and recall (soundness) are computed as

follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|E𝑐 |
|E𝑝 |

, 𝑅𝑒𝑐𝑎𝑙𝑙 =
|E𝑐 |
|E𝑜 |

, (8)

where E𝑝 is the set of predicted reachability between any two nodes, E𝑜 is the set of observed

reachability relations on the original graph, and E𝑐 = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ (E𝑝 ∩ E𝑜 }) Note that the
high-level reachability information can still be preserved with very high precision and soundness
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given a small approximation error in the low-level embedding space, as also explained in Example 3

and evaluated in Figure 5.2 in Section 7.

Example 3. Let us revisit the motivating example to measure the approximation error ofD𝑠 andD𝑡 .

The singular values forM are 𝜎 = [1.92, 1.09, 0.51, 0.49, 0.00, 0.00]. In a 3-dimensional embedding

(i.e., 𝐾 = 3), RMSE=

√∑
6

𝑖=4 𝜎
2

𝑖

6
= 0.08, while in the 2-dimensional embedding, RMSE=

√∑
6

𝑖=3 𝜎
2

𝑖

6
=

0.12. Given 0.25 as the threshold to determine the inter product between two embedding vectors,

the 3-dimensional embedding perfectly preserves the graph’s context-sensitive reachability with

100% precision and recall, while the 2-dimensional embedding achieves 97% precision and 97%

recall in this example.

4.4 Applications of Flow2Vec

This section discusses the Flow2Vec’s embedding results as inputs to boost the performance of

two recent learning-based approaches, i.e., code2vec for code classification [Alon et al. 2019b] and

code2seq for code summarization applications [Alon et al. 2019a].

4.4.1 Code Classification. As the name implies, code classification aims to perform semantic

labeling of a code fragment. This application is essentially a multi-class classification problem.

Given a code fragment 𝑥 (in the form of a program method), the objective is to train a prediction

model to learn the label distribution conditioned on the code, i.e., 𝑃 (𝑦𝑖 |𝑥), where the label 𝑦𝑖 is
from a pre-defined vocabulary 𝑌 , that is a set of tags/names in the training corpus. The predicted

distribution of the model 𝑞(𝑦𝑖 ) is computed using a softmax function, the dot product between the

code vector v of 𝑥 and the vector representation 𝑙𝑎𝑏𝑖 of each label 𝑦𝑖 ∈ 𝑌 .

𝑓 𝑜𝑟 𝑦𝑖 ∈ 𝑌 : 𝑞(𝑦𝑖 ) =
exp(v⊤ · labj )

∑

𝑦 𝑗 ∈𝑌 exp(v⊤ · labj )
, (9)

UnlikeWord2Vec-like techniques [Mikolov et al. 2013] which use textual code tokens to produce

the code vector, whereas the code2vec [Alon et al. 2019b] approach leverages the structural features,

that is, the abstract syntax tree (AST) of each program method. The approach aggregates multiple

syntactic paths on an AST into a single code vector representation v, which is then used for multi-

class classification. To further improve the precision, code2vec includes an attention mechanism

to focus on important AST paths that contribute more to predication accuracy [Allamanis et al.

2016; Luong et al. 2015].

However, by its nature, a tree data structure is an undirected graph that can not preserve

asymmetric transitivity. Moreover, the paths on an AST can not reflect the alias-aware data-

flow information. To demonstrate that Flow2Vec can preserve more comprehensive structural

information than code2vec, we embed value-flow paths rather than AST paths to generate the

code vector for code classification. Given the asymmetric vectors d𝑠𝑖 ∈ D𝑠 and d𝑠𝑗 ∈ D𝑡 for a

code fragment computed by Equations 5 and 6, the path vector c𝑛 of a value-flow path vfp𝑛 from

statement ℓ𝑖 to ℓ𝑗 is:

c𝑛 =tanh(W · 𝑒𝑚𝑏𝑒𝑑 (⟨ℓ𝑖 , vfp𝑛, ℓ𝑗 ⟩)) = tanh(W · [ℓ𝑖 ;d𝑠𝑖 · d𝑡𝑗
⊺

; ℓ𝑗 ]) (10)

where W is a learned weights matrix that serves as a fully connected layer before aggregating

all the path vector and 𝑡𝑎𝑛ℎ is the monotonic nonlinear activation function. The value of the dot

product d𝑠𝑖 and d𝑠𝑗 indicates two important distance relations, i.e., the length of each path and the

number of paths between 𝑖 and 𝑗 , relative to all other value-flows in the embedding space. A higher

proximity value means the more and the shorter paths from 𝑖 to 𝑗 .
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The final code vector v is an aggregation of all the path vectors constructed by embedding 𝑆

value-flow paths between any two nodes on the IVFG of a code fragment:

v =

𝑆∑

𝑛=1

𝛼𝑛 · c𝑛, (11)

where 𝛼𝑛 =

exp(c𝑛⊤ ·a)
∑𝑆

𝑗=1 exp(c𝑗⊤ ·a)
is the attention weight of vector c𝑛 and a is a global attention vector

learned during model training [Alon et al. 2019b].

4.4.2 Code Summarization. The aim of code summarization is to translate a code fragment

into a sequence of words to describe the semantic meaning of the code. The summarization is

performed under an encoder-decoder framework, which has been widely used in the neural machine

translation [Luong et al. 2015] and image captioning [Xu et al. 2015].

The encoder first transforms the code snippet x into a sequence of hidden states in the form

of a code vector v, while the decoder generates one word 𝑦𝑡+1 at a time step. Generating the

summary is conditioned on all previously generated words 𝑦1:𝑡 and the hidden states from the

encoder. Hence, the objective of code summarization is to model the conditional probability:

𝑃 (𝑦1, . . . , 𝑦𝑚 | x) = ∏𝑚
𝑡=1 𝑃 (𝑦𝑡 | 𝑦1:𝑡−1, v).

As with the code classification task, the value-flow paths are encoded to generate the code vector

v as opposed to the AST paths from code2seq [Alon et al. 2019a]. Note that, to improve precision,

both approaches use the same attention mechanism to produce the final attentional code vector.

5 EVALUATION

The objective of this evaluation is to determine whether Flow2Vec is effective at preserving

value-flows in low dimensional embedding space. For this, we evaluate two aspects of Flow2Vec:

(1) approximation error, precision and recall through graph reconstruction, and (2) the performance

improvement over code2vec and code2seq on code classification and code summarization tasks.

5.1 Dataset and Evaluation Methodology

Implementation and Datasets. The interprocedural alias-aware value-flow graph of a program

is built on top of LLVM-IR (with LLVM version 9.0.0) and its sub-project SVF [Sui and Xue 2016].

Program functions, which are represented as global variables in the LLVM-IR, are modeled as

address-taken variables (Section 2.1). The callgraph of a program is built on-the-fly (with indirect

calls discovered) when performing Andersen’s pointer analysis [Andersen 1994]. The value-flows

across procedures are soundly captured on top of the conservative callgraph built using Andersen’s

analysis. We have implemented the CFL-reachability algorithm (Section 4.2.2) to recognize realizable

context-sensitive value-flow paths on IVFG. Katz Index [Katz 1953] is used to produce high-order

proximity matrix, through which the asymmetric embedding vectors are generated.

We evaluated Flow2Vec using 32 popular open-source C/C++ projects (with their statistics

shown in Table 1) across a variety of domains: a2ps (postscript filter tool), bash (sh-compatible

shell), bc (basic calculator), bison (parser generator), ctypes_test (builtin test tool), dc (desk

calculator), decimal (python tool), echogs (port upgrate), gdbserver (remote debugging), gzip

(file compress), grep (commandline search tool), hashcat (passwd recovery), htop (process viewer),

keepalived (IP link checker), less (pager program), lua (interpreter), libsass (sass engine), make

(executable builder), msg-convert (messagepack switcher), msg-structure (messagepack pattern

former),msg-map (messagepack multi-keys API), mkromfs (file system), mocktracer (a code tracer),

ossaudiodev (python audio API), redis-client (database client), redis-server (database server),

redis-benchmark (redis benchmark), sample (Unix selection tool) screen (terminal emulator),
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Table 1. The statistics of the open-source programs. #LOI denotes the number of lines of LLVM instructions.
#Function, #Pointer, #Object, #Call, |V| and |E| are the numbers of functions, pointers, objects, method calls,
IVFG nodes and IVFG edges, respectively.

#LOI #Method #Pointer #Objects #Call |V| |E|

a2ps 118173 490 94173 6912 9036 122345 210783

bash 312144 783 235887 17630 24998 372242 503357

bc 18683 86 14744 909 1583 23207 32202

bison 98575 400 79820 3404 15978 160506 237364

ctypes_test 1467 93 1275 150 232 1203 1013

dc 11629 97 9167 871 1132 14651 17825

decimal 72546 193 57496 3278 22291 85989 98107

echogs 1034 18 743 46 146 589 575

gdbserver 64324 348 53196 3225 15091 108522 119497

gzip 32411 136 24944 1950 2030 32846 49806

grep 37796 221 28134 1639 8141 39532 52788

hashcat 177602 412 150885 5318 16281 234648 459262

htop 62554 293 29170 1456 7416 37367 43980

keepalived 214163 575 99354 3066 24142 162032 215899

less 37372 224 28843 2524 3333 81584 91222

lua 68222 346 52585 1869 4764 100701 106830

libsass 818989 2734 605654 39805 47343 553499 882694

make 42676 190 33200 2027 7209 82157 99750

msg-convert 241287 449 18417 3447 1757 25854 28499

msg-structure 222986 498 20065 3856 1873 35354 35650

msg-map 293360 640 24370 4784 2204 24876 34965

mkromfs 18751 155 15614 589 3196 19054 28448

mocktracer 214038 3688 176632 40666 19342 197830 300333

ossaudiodev 3107 61 2990 302 769 2833 2481

redis-client 322115 557 172664 5262 66297 241070 284082

redis-server 735275 1875 401520 14461 119216 654495 778854

redis-benchmark 299719 505 183609 4527 59041 253210 295056

sample 69720 383 55608 4797 5965 65894 94460

screen 117552 286 90984 3601 13899 321269 597668

sed 40708 177 30401 1570 5944 52405 83748

sendmail 153184 616 121604 6216 25384 529537 744380

tar 87418 386 66191 5052 17279 183538 207659

Total 4922162 17529 2913748 190157 536033 4637301 6531578

sed (Unix editor), sendmail (mail agent), tar (file compression). Our experiments were conducted

on a machine with Intel Xeon Gold 6132 @ 2.60GHz CPUs and 128GB of RAM.

Evaluation Methodology. Like all existing embedding approaches, Flow2Vec does not aim to

achieve 100% precision and recall, but rather to obtain a comprehensive code representation to

better support subsequent client applications. To validate Flow2Vec’s effectiveness, we conducted

three evaluation tasks, graph reconstruction, code classification and code summarization.
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Graph reconstruction is a typical method to evaluate graph embedding results [Ou et al. 2016;

Perozzi et al. 2014; Tang et al. 2015]. We reconstructed the graph edges on the IVFG of each of

our 32 benchmarks based on the reconstructed proximity, i.e., the inner products between the

embedding vectors for each node pair. Note that 𝐻 and 𝛽 in Equation 3 were set to be 3 and 0.01 to

produce the proximity matrix. Nodes with no incoming or outgoing edges on the IVFG were not

included in the proximity matrix to reduce computational overhead. Following [Ou et al. 2016],

we calculated the ratio of real links for the top 𝑘 pairs of nodes as the reconstruction precision by

randomly sampling about 0.1% of the node pairs to evaluate the approximation error, precision and

recall for graph reconstruction.

To further validate the effectiveness and practicality of our approach, we choose two important

and challenging clients, classification and summarization, for which prior results still have much

room for improvement [Allamanis et al. 2016; Alon et al. 2019a, 2018, 2019b; Iyer et al. 2016]. We

then compared Flow2Vec with the two recent open-source tools code2vec [Alon et al. 2019b]

and code2seq [Alon et al. 2019a]. From the 32 open-source projects, we extracted 11,291 program

methods with informative comments, including the method names and the comments of each

method, with the AST path of each method extracted by pathminer [Kovalenko et al. 2019]. A

method is not used for our training if it does not have any comment or it is an unused method

in the project (i.e., it never calls other methods or being called by others). For both clients, we

randomly split our collected programs into three subsets, of which the proportions are about 80%,

10% and 10% for training, validation and testing, respectively. Note that code2vec and code2seq

have already shown that they have better performance compared with CodeNN [Iyer et al. 2016],

ConvAttention [Allamanis et al. 2016], Paths+CRFs [Alon et al. 2018] and TreeLSTM [Tai et al.

2015], therefore, we did not compare Flow2Vec with these approaches.

To produce the path vectors based on Equation 10, we collected a set of IVFG nodes (with each

node being a definition of a variable) for each program method. The context-sensitive value-flows

between any two nodes are represented by the dot product of the nodes’ embedding vectors. Note

that the value-flow paths between two nodes in the same method can be interprocedural (e.g., p and
stack in Figure 3(a)). Following [Alon et al. 2019b], the value-flow paths are randomly sampled for

each method (i.e., S = 200 in Equation 11). The path vectors are then aggregated into a fixed-length

code vector using the attention mechanism (Equation 11). The attention network is trained in a

batch-wise fashion and the batch size is set to 512. The dropout is set to 0.25 and the number of

epochs is set to 20. ADAM [Kingma and Ba 2015], a commonly-used adaptive gradient descent

method, is used for training. We used grid search to perform hyper parameter tuning in order

to determine the optimal values for a given model. Note that our focus here is on evaluating the

effectiveness of our value-flow embedding, not on different backend learning models. Picking

different models and feeding Flow2Vec’s embedding vectors into these backend models to further

enhance the performance is an orthogonal topic.

The evaluation metrics used to assess code classification and summarization performance are

precision, recall and F1-score. The generated sequence of words were evaluated in a case-insensitive

manner and calculated over (sub)tokens following previous studies [Allamanis et al. 2015, 2016;

Alon et al. 2019a,b]. The key idea is to measure the quality of a sequence prediction by decomposing

it into sub-tokens and calculate correct predictions based on them. Take method name prediction

for example, given a method named swapElements, we first decompose it into swap and elements.

A prediction of elementsSwap is an exact match, while a prediction of swapAbstractElements

has a full recall but low precision and a prediction of swap has a full precision but low recall.

Furthermore, the unseen sub-token in the token vocabulary from the test label is considered as

a false negative. We used a similar strategy to evaluate the code summarization by measuring

precision and recall based on tokens of the generated code comments.
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5.2 Experimental Results and Analysis

Precision, Recall and RMSE. Figure 7 gives the precision, recall and approximation error of

the reconstructed graph based on Equations 8 and 7 for each of the 32 projects. RMSE is normally

used when evaluating graph embedding techniques [Ou et al. 2016; Song et al. 2009] to measure

the gaps between the prediction result and the ground truth. A smaller RMSE indicates a better

embedding result. During value-flow embedding in the latent space, we assessed different feature

dimensions, ranging from 10 to 210.

From the results in Figure 7, we can see that the error rate (RMSE) of each program decreases

dramatically, while the precision and recall increase very quickly, particularly, in the beginning part

(less than 60 dimensions). The results demonstrate that Flow2Vec is effective at preserving the

asymmetric transitivity with low-dimensional embeddings. With 110 dimensions, the average error,

precision and recall for the 32 projects were 2.46*10−4, 96.9% and 95.5% respectively and an error

up to 8.3*10−4 for program mocktracer. Additionally, the RMSE was very small, but precision and

recall are high both for the smallest program, i.e., ossaudiodev with 1.58*10−4 error, 0.99 precision
and 0.99 recall, and the largest program, i.e., libsass with 6.2*10−4, 0.83 and 0.87, respectively.

These results confirm that Flow2Vec precisely preserves asymmetric transitivity of value-flows in

the embedding space.

Efficiency. Figure 8 shows the total running time (in seconds) of Flow2Vec, including the times

for value-flow construction (red) and high-order proximity embedding (blue). The embedding

dimension was set to 110. In summary, Flow2Vec finished analyzing the largest program libsass

within 64.2 mins and for all programs consisting of over 5 million lines of LLVM instructions with

272.5 mins, showing that Flow2Vec scales to large projects for value-flow construction and graph

embedding using fast high-order proximity computation. Note that although our interprocedural

embedding consumes longer analysis time than intraprocedural analysis (e.g., collecting AST

paths of individual methods [Alon et al. 2019a,b]), the embedding process is only done once to

produce the distributed code representation before feeding into subsequent learning tasks. Moreover,

the increase in precision, recall and F1 outweighs the interprocedural analysis overhead as also

illustrated in Table 2 and Figure 9.

Code Classification. The second and third Columns in Table 2 compare the results of Flow2Vec

and code2vec for code classification. It is clear that Flow2Vec significantly outperforms code2vec

in terms of precision, recall and F1-score with an average improvement of 21.2%, 20.1% and 20.7%,

respectively. This confirms that our comprehensive code representation yields better results than the

approaches that extract shallow code structure information to predict the names of code fragments.

Figure 9 gives the changes of the F1-scores as the size of a program method grows. Flow2Vec

gave the best (or equal best) results for all code lengths. With small lengths of code (e.g., 1-10 lines)

both code2vec and Flow2Vec observe their best performance. The F1-scores of both approaches

decreased as the size of the method increased. However, at larger sizes, i.e., 35 lines and above,

Flow2Vec was more stable and performed consistently better than code2vec. Note that code2vec’s

F1-score in Table 2 is lower than that presented in the code2vec paper, in which code classification

was performed on Java and C# programs. There are two reasons behind. First, the method body

of a program in C/C++ is generally larger than that in Java or C#, where the value-flows of each

code fragment is simpler. In our C/C++ dataset, the average length of a method is around 35 lines,

while in code2vec’s dataset, it is around 7 lines per method. The F1-score only becomes stable

in after round 35 lines as shown in Figure 9. Second, from our manual investigation of our code

bases, we found that many methods in C/C++ have more complicated data and control dependence
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Fig. 7. Precision, Recall and RMSE of Flow2Vec under different embedding dimensions after graph recon-
struction.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 233. Publication date: November 2020.



Flow2Vec: Value-Flow-Based Precise Code Embedding 233:19

Fig. 8. Total running time (secs).
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Fig. 9. F1-score under different the lengths of code.

than those in Java or C# programs, which makes code classification more difficult for C/C++ than

Java/C#. It also demonstrates the necessity for a more comprehensive code representation.
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Table 2. Precision, recall and F1 for the two applications.

Client Model Name Precision(%) Recall(%) F1-score(%)

Code code2vec 35.5 34.2 34.8

Classification Flow2Vec 56.7 54.3 55.5

Code code2seq 43.9 41.1 42.5

Summarization Flow2Vec 57.1 59.9 58.5

Code Summarization. The second task we used for comparison was code summarization,

pitting Flow2Vec against code2seq [Alon et al. 2019a] using the same set of methods with their

corresponding comments. In Table 2, we can see that Flow2Vec performed better than code2seq in

all the three metrics. Flow2Vec’s F1-score was 58.5% compared to 42.5% of code2seq. Flow2Vec’s

precision and recall were also higher, at 57.1% and 59.9% respectively, while code2seq only achieved

43.9% and 41.1% respectively.

Figure 9 shows the F1-scores for Flow2Vec and code2seq with different code lengths. The trend

here is similar to the comparison with code2vec. Overall, Flow2Vec outperformed code2seq

for all code lengths. The F1-scores for both Flow2Vec and code2seq were at or above 50% with

small code lengths (i.e. under 5 lines), but both became stable as the length increases. Notably,

Flow2Vec delivered similar performance for both code classification and code summarization,

whereas code2seq provided a much better result at code summarization than code2vec. This is

because we used the identical structural information of code (i.e., value-flow paths) for both tasks.

Additionally, code2vec encodes AST paths monolithically, so it cannot represent paths unless they

are included in the path vocabulary, while code2vec improves this by using a bi-directional LSTM

to embed AST paths token-by-token. Thus, it can represent any syntactic path assembled from a

limited size of path token vocabulary.

Note that code2vec and code2seq perform path analysis on top of ASTs of a method through

intra-procedural analysis and their dataset contains only disparate methods with each averaging

7 lines, rather than complete projects, making embedding less challenging under the small-code-

length setting. Analyzing them one at a time, though the large number, is less costly than analyzing

them together. However, adding more methods is subject to diminishing returns on precision. The

limitations of its intraprocedural approach are further exemplified when evaluated against our

complex large-scale projects where Flow2Vec’s interprocedural embedding yields better results by

extracting substantial structural information of code, i.e., flow- and context-sensitive value-flows.

The result is a more comprehensive code representation and, in turn, improved performance for

code classification and summarization tasks.

Embedding Dimension. Figure 10 further evaluates Flow2Vec’s F1-scores under different

feature dimensions during our value-flow embedding. There are similar trends in both tasks with

an increased F1-score by around 17% from dimension 10 to 110. The F1-scores are capped at

around 56.0% and 59.0% for code classification and summarization, respectively, when the number

of dimensions become even larger. This is consistent to the trends of the approximation error,

precision and recall when performing graph reconstruction under different feature dimensions,

where the results become stable and precise enough when the number of dimensions is around

110, a relatively low dimensional space. Note that the performance did not improve much when

over 110 dimensions. This is due to the nature of the distributed representation of code whose

semantic meaning is distributed across its vector components (dimensions). In our evaluation, 110
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Fig. 10. F1-score under different embedding dimensions.

dimensions is already precise enough to preserve the value-flows of a program in the latent space.

Adding more dimensions yields diminishing returns in performance as shown in Figure 10.
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Fig. 11. Ablation analysis for inter-procedural analysis, pointer aliases, asymmetric transitivity and context-
sensitivity.

Ablation Analysis. We conducted ablation analysis to evaluate each of Flow2Vec’s four proper-

ties, i.e., interprocedural analysis, aliases, asymmetric-transitivity and context-sensitivity, to further

understand their contributions to the final accuracy for the two tasks. We evaluated Flow2Vec’s

performance by removing each property at a time. (1) We removed the method-call edges to

see the influence of inter-procedural information. (2)We removed the indirect value-flow edges

(Section 2.2) to remove the pointer analysis results to observe the effectiveness of pointer aliases.

(3)We transformed the adjacency matrix of a value-flow graph to symmetric matrix when doing

graph embedding to evaluate the importance of asymmetric transitivity. And (4) we produced

a context-insensitive matrix rather than a symbolic matrix for the IVFG of a program without

performing CFL-reachability analysis in order to evaluate the context-sensitive property.

Figure 11 shows the result of ablation analysis for each property of Flow2Vec. Overall, Flow2Vec

(with four properties combined) performs better when one of its properties is disabled, with an

improvement ranging from 3.7% to 7.3% and 4.6% to 7.8% in terms of F1-score for code classification

and summarization respectively. It also demonstrates that the usefulness of all the four properties

for producing the final distributed code representation. The properties of interprocedural analysis

and pointer aliases have relatively high contributions to the precision/recall/F1 compared to the

other two properties when evaluating using our dataset. By looking into the methods collected

from our real-world projects, 91.0% methods have inter-procedural method calls. On average, there
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int ____________(dict *d){

  int minimal;

  minimal = d->ht[0].used;

  if (minimal<INITIAL_SIZE) minimal=INITIAL_SIZE;

  return dictExpand(d, minimal);

}

int dictExpand(dict *d, unsigned long size){

  dictht n;

  unsigned long realsize = _dictNextPower(size);

  n.table = zcalloc(realsize*sizeof(dictEntry*));

  return DICT_OK;

}

Ground truth

Code2Vec

Code2Seq

Flow2Vec

resize   to   the   minimal

isMinimal

Expand   size

reset   minimal   memory

Souce code (A)

Ground truth

Code2Vec

Code2Seq

Flow2Vec

Souce code (D)

char* ________(const char* name){

  Dir* directory = find_dir(name);

  if(directory==NULL) return NULL;

  Pro* p = init_pro(directory);

  Dir* r = p->get_root();

  return generate_file(r, p->sz);

}

Pro* init_pro(Dir* dir){

  Pro* program = create_pro();

  program->set_root(dir);

  return program;

}

generate  file  under  directory

generateFile

get  file

generate  file  in  directory

void _____________(NODE *cur_node){

    NODE *c = fd_node(cur_node);

    NODE *n = fd_node(c->next);

    char * value = node_value_get(c);

    if (n != NULL)

      node_value_set(n, value);

}

Souce code (C)

Ground truth

Code2Vec

Code2Seq

Flow2Vec

set   current   value    to    next    node

getNodeValue

set   next    node   current    value  

set   node   value

void _____________(NODE *cur_node){

    NODE *c = fd_node(cur_node);

    NODE *n = fd_node(c->next);

    char * value = node_value_get(c);

    if (n != NULL)

      node_value_set(n, value);

}

Souce code (C)

Ground truth

Code2Vec

Code2Seq

Flow2Vec

set   current   value    to    next    node

getNodeValue

set   next    node   current    value  

set   node   value

Ground truth

Code2Vec

Code2Seq

Flow2Vec

Souce code (B)

SIG __________(char* inp){

    if (!is_valid(inp)) return FAULT;

    CMD *cmd = parse(inp);

    return process(cmd);

}

SIG process(CMD *cmd){

    Executor *e = get_glb_executor();

    if(e->is_full) return FULL;

    e->execute(cmd);

    return SUCESS;

}

parse  and  execute  command

check

parse

parse  command  and  execute

Ground truth

Code2Vec

Code2Seq

Flow2Vec

Souce code (B)

SIG __________(char* inp){

    if (!is_valid(inp)) return FAULT;

    CMD *cmd = parse(inp);

    return process(cmd);

}

SIG process(CMD *cmd){

    Executor *e = get_glb_executor();

    if(e->is_full) return FULL;

    e->execute(cmd);

    return SUCESS;

}

parse  and  execute  command

check

parse

parse  command  and  execute

Fig. 12. Case studies.

are 30 interprocedural value-flows coming in and going out of a method. The 91.0% methods have

indirect value-flows with an average of 37 indirect value-flows per method. It demonstrates the

importance for considering interprocedural and alias-aware value-flows for code embedding. When

looking at the other two properties (i.e., asymmetric-transitivity and context-sensitivity), their

precision benefit is slightly lower but the average improvement still reaches approximately 5% in

terms of F1-score. The results confirm that all four properties are essential to comprehend and

preserve the structural feature of source code to deliver better results for complicated tasks (e.g.,

code classification and summarization).

Case Study. Figure 12 gives four real-world code snippets together with the ground truth

of their corresponding code comments, which are extracted from redis-server, bison, bash

and libsass respectively. Source code (A) and (B) are used to demonstrate the effectiveness of

Flow2Vec’s interprocedural analysis. Source code (C) and (D) are used to show the usefulness of

context-sensitivity and pointer aliases preserved by Flow2Vec.

The first method of source code (A) is to resize hash table to the minimal size that contains

all the elements. It can be seen that Flow2Vec can precisely capture the key words minimal and

resize from the ground truth, while code2vec failed to predict the token resize and code2seq can

not distinguish resize and expand. This is because the semantic of the current method depends on

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 233. Publication date: November 2020.



Flow2Vec: Value-Flow-Based Precise Code Embedding 233:23

its callee dictExpand. code2vec and code2seq generated partial and imprecise results due to their

intra-procedural analysis. On the other hand, Flow2Vec’s inter-procedural analysis successfully

comprehended and incorporate the callee information into the summary, yielding more precise

prediction results.

The first method of in source code (B) is to parse a command sequence and then invoke a global

executor to execute the command. It is clear that Flow2Vec produced a more precise prediction by

capturing the three key words parse, command and execute through analyzing value-flows across

methods, while code2seq and code2vec failed to capture all these important tokens due to its

intra-procedural analysis nature.

The method in source code (C) is similar to our motivating example in Figure 3. The code snippet

is a helper method used to set the value of next node given current node’s value. As can be seen from

the prediction results of Flow2Vec and the two baselines, the summary produced by Flow2Vec

is more precise because it distinguishes the different operations of current node and the next

node. The prediction result is closer to the ground truth since our context-sensitive analysis is

able to recognize that operations on object c->next only occur through pointer n. Similarly, object

cur_node only operates through c when considering different calling contexts to callee fd_node.

code2vec and code2seq, however, are unable to differentiate the current node from its next node.

Because the intra-procedural paths on the AST of the code (as also explained in Figure 4) will

establish false relations between c and c->next and n and cur_node, as such, the final results are

imprecise.

The method presented in source code (D) is to generate files under a given directory. Flow2Vec

precisely identified the key word directory by capturing the alias relation between directory

and r through set_root and get_root to infer the more expressive name directory of the first

parameter at callsite generate_file. However, code2vec and code2seq which failed to capture

this complicated interprocedural alias relation, produced the imprecise summary result.

6 RELATED WORK

We limit our discussion to the work that is most relevant to Flow2Vec, namely, program dependence

analysis, graph embedding and code embedding.

Program Dependence Analysis. Program dependence analysis or value-flow analysis, which

reasons about the control- and data-flows of a program, has been well-studied over the past decades.

Initially, the program dependence analysis has been used for compiler optimizations [Ferrante et al.

1987; Kuck et al. 1981]. Later, the analysis has been shown as an enabling technique for a wide

variety of client applications, such as program slicing [Weiser 1981], software maintenance [Gal-

lagher and Lyle 1991], change impact analysis [Acharya and Robinson 2011], program complexity

metrics [Rilling and Klemola 2003] and precise software bug detection [Livshits and Lam 2003; Shi

et al. 2018]. By leveraging the advances in pointer alias analysis [Barbar et al. 2020; Hardekopf and

Lin 2007, 2011], some recent works [Shi et al. 2018; Sui and Xue 2016] have developed a more sound

and precise approach to program dependence analysis by considering memory aliases. The result

is a so-called sparse value-flow graph representation that captures the def-use relations of both the

top-level and address-taken variables. Flow2Vec is the first technique that can embed a compre-

hensive sparse value-flow representation into low-dimensional space while preserving asymmetric

value-flow transitivity to support two important clients, code classification and summarization.

Graph Embedding and Code Embedding. Graph embedding transforms nodes in a graph

into distributed representations and effectively preserves the network structure. There have been

some significant advances recently in graph embedding in a wide range of applications, including

classification [Sen et al. 2008], clustering [Wang et al. 2017], link prediction [Wang et al. 2014]
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and data representation for machine learning methods. For many software analysis tasks, directed

graphs are the major representation for source code. Preserving asymmetric transitivity of graphs is

the fundamental requirement for an accurate graph embedding. HOPE [Ou et al. 2016] approximates

the high-order proximity to preserve the high-order structure of directed graphs. Later, ATP [Sun

et al. 2019] has subsequently emerged to improve upon HOPE with an ability to solve cycles on a

directed graph during high-order proximity embedding. Inst2Vec [Ben-Nun et al. 2018] presents a

distributed representation of code statements based on contextual data-flow on top of LLVM IR.

However, the underlying data-flow graph used is intraprocedural and alias-unaware. Allamanis et

al. [Allamanis et al. 2018] proposes a code embedding technique that embeds a program’s data-

flows using gated graph neural networks (GGNNs) for analyzing variable renaming and misuses

in C# programs. This approach is alias-unaware and the underlying embedding technique does

not support context-sensitivity. DeepSim [Zhao and Huang 2018] transforms the control- and

data-flows of a program using a feed-forward neural network to measure functional code similarity.

ASTNN [Zhang et al. 2019] is an intraprocedural and context-insensitive embedding technique

mainly for code clone detection based on the ASTs of a program. Like code2vec [Alon et al.

2019b] and code2seq [Alon et al. 2019a], the embedding does not preserve a program’s data- and

control-flows.

7 CONCLUSION

This paper presents Flow2Vec, a new code embedding approach that preserves interprocedural,

context-sensitive and alias-aware value-flows in the low-dimensional vector space. The value-

flow reachability is formulated as a chain-matrix-multiplication problem to support filtering out

infeasible value-flow paths through CFL-reachability. The resulting embedding vectors can be

used as a comprehensive code representation to better support subsequent learning tasks. We

have evaluated Flow2Vec using 32 popular open-source projects with over 5 million lines of code.

When evaluated using graph reconstruction, Flow2Vec achieved a high precision (96.9%) and recall

(95.5%) by successfully preserving interprocedural alias-aware value-flows. When evaluated using

the two client applications, Flow2Vec significantly boosted the performance of code2vec and

code2seq, two recent embedding approaches. For code classification, Flow2Vec outperformed

code2vec with an average increase of 21.2% in precision, 20.1% in recall, and 20.7% in F1. For code

summarization, Flow2Vec improved code2seq by an average of 13.2% in precision, 18.8% in recall,

and 16.0% in F1.
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