
Clairvoyance: Cross-contract Static Analysis for Detecting
Practical Reentrancy Vulnerabilities in Smart Contracts

Jiaming Ye
sa517462@mail.ustc.edu.cn

University of Science and Technology

of China

Mingliang Ma
sa517245@mail.ustc.edu.cn

University of Science and Technology

of China

Yun Lin
llmhyy@gmail.com

National University of Singapore

Yulei Sui
yulei.sui@uts.edu.au

University of Technology Sydney

Yinxing Xue
yxxue@ustc.edu.cn

University of Science and Technology

of China

ABSTRACT

Reentrancy bugs in smart contracts caused a devastating financial

loss in 2016, considered as one of the most severe vulnerabilities in

smart contracts. Most of the existing general-purpose security tools

for smart contracts have claimed to be able to detect reentrancy

bugs. In this paper, we present Clairvoyance, a cross-function and

cross-contract static analysis by identifying infeasible paths to de-

tect reentrancy vulnerabilities in smart contracts. To reduce FPs,

we have summarized five major path protective techniques (PPTs)

to support fast yet precise path feasibility checking. We have im-

plemented our approach and compared Clairvoyance with three

state-of-the-art tools on 17770 real-worlds contracts. The results

show that Clairvoyance yields the best detection accuracy among

all the tools.

KEYWORDS

reentrancy detection, path feasibility analysis, cross contract

analysis, smart contract security

ACM Reference Format:

Jiaming Ye, Mingliang Ma, Yun Lin, Yulei Sui, and Yinxing Xue. 2020.

Clairvoyance: Cross-contract Static Analysis for Detecting Practical Reen-

trancy Vulnerabilities in Smart Contracts. In 42nd International Confer-

ence on Software Engineering Companion (ICSE ’20 Companion), October

5–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3377812.3390908

1 INTRODUCTION

Smart contract applications, built upon the block-chain platform

Ethereum [1], belong to the most security-critical and data-sensitive

application category. These contracts aremainly written by a turing-

complete language Solidity. The majority of concerns on smart

contracts security begins in 2016 since a devastating financial loss

because of the DAO attack [3].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390908

The principal reason of this attack is due to the fallback mech-

anism. Users often misconceive that smart contracts provide se-

cure transactions and easy-to-use interfaces, by assuming that the

other side in the transaction is trustworthy. Unfortunately, this as-

sumption does not always hold. We find that attackers can write a

function call in fallback function and form an end-to-end call chain,

and execute functions in the chain without paying to the seller.

We further find that, this attack often utilizes cross-contract calls,

which are not considered by the state-of-arts. To understand the

functionality of state-of-the-art tools (e.g., Oyente [4], Securify [6]

and Slither [5]), we revisit the state-of-art available tools and find

that they have limited capability in identifying the cross-contract

reentrancy vulnerabilities. Besides, they usually focus on generic

categories of vulnerabilities, not specific to the reentrancy. Even

when this fatal vulnerability has been reported for years, it still

appears unknown why the weakness in these tools is not patched.

Overall, the existing work cannot represent the leading compre-

hension of this vulnerability, and the state-of-arts are ineffective in

identifying cross-contract reentrancy bug.

To study the essential property and various evolutions of reen-

trancy and help to ensure the smart contract security, in this paper,

we propose a more-sound cross-contract and cross-function static

analyzer. We further propose a light-weighted symbolic analysis

to help to precisely detect bugs. In summary, this paper makes the

following contributions:

• We present a large-scale empirical study to evaluate the

effectiveness of three recent general-purpose static tools

using 11714 real-world contracts from Etherscan[2].

• We present a new static reentrancy detection approach to

enable (1) more sound analysis by modeling cross-function

cross-contract behaviors, and (2) more precise analysis by

applying a light-weight symbolic analysis based on PPTs.

• Our tool, named Clairvoyance has significantly better ac-

curacy than all the other tools.

2 APPROACH

To identify cross-contract reentrancy effectively, we construct the

cross-contract call graph and CFG (named XCFG) among the in-

put smart contracts. Next, we identify the suspicious objects or

addresses, and track how they are used and propagated along the

call chain from XCFG. In this step, a path matches our criterions

will be added to the candidate pool. Meanwhile, in order to mitigate

274

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



Figure 1: System diagram

the FPs of reported paths, we summarize 5 PPTs for reentrancy

attack by reviewing the state-of-arts detection results on 11714

contracts. For these PPTs, we define the corresponding filtering

patterns via program analysis. Finally, we filter out infeasible ways

and the remaining reachable paths are produced as results.

Fig. 1 shows an overview of our approach. In Fig. 1, each rectan-

gle represents an artifact, each ellipse represents a step (or process),

each edge represents the workflow of how a step takes some arti-

facts and outputs some new artifact. As illustrated in the diagram,

our system takes Solidity code as input, then outputs reentrancy

paths after path collecting and path filtering steps.

3 EMPIRICAL STUDY

In our empirical study, Slither [5], Oyente [4], Securify [6]

run on 11714 frequently-used real-world contracts from the well-

known third-party website Etherscan [2] for contract indexing

and browser. For the detection result, we recruit 4 researchers to

spend 2 months in reviewing the results and summarizing the pat-

terns of FPs for rules in these tools.

In our findings, these four tools are not sufficiently effective in

handling the reentrancy bug. The reason is that most of their reports

are false negatives. So as to avoid these false positives happening

to our tool, we audit incorrect reports manually and summarize the

following PPTs. The filtering pattern for PPT1 is to check whether

msg.sender is within a list of authorized contracts or addresses, or

has the permission to do this (e.g., msg.sender==owner) The filtering

pattern for PPT2 is to check whether the tainted address or object

has been initialized in declaration or modified before the external

call. The filtering pattern for PPT3 is actually applying the above

two patterns in self-defined modifiers of the function. The pattern

for PPT4 is to check the existence of the execution lock. The pattern

for PPT5 is to check the existence of checks-effects-interactions

pattern.

To make the PPT-based filtering more accurate, a light-weight

symbolic analysis is employed across PPT1-PPT4, assisting the

reentrancy detection. Our light-weight symbolic analysis leverages

the intra-procedural symbolic execution for synthesizing a symbolic

path from tainted source to the fallback call. Then we feed the path

into Z3 solver to check its feasibility. In this work, our approach is

designed to favor soundness over completeness.

4 EVALUATION

To evaluate the effectiveness of Clairvoyance, we conduct exten-

sive experiments. Specifically, we attempt to answer the research

questions: How effective are the summarized PPTs? Compared with

the three available static tools, how is the precision of Clairvoy-

ance?

The experiments are performed on 17770 new contracts obtained

from Google Big Query open dataset. Tools employed in this ex-

periment are all in their latest version. Further, Clairvoyance is

implemented in Python using 5000 lines of code, processing and

accepting SlithIR.During the evaluation, all the experiments and

tools are conducted on a machine running on Ubuntu 18.04.

For the numbers of detection results of the four static tools,

Slither reports 162 vulnerabilities in total, of which 3 reports are

true positives (TPs), while the other 159 reports are false positives

(FPs). Oyente has least 28 reports, of which 4 results are TPs, while

the rest 24 reports are FPs. Securify reports 3 TPs, but it has 605

FPs. Comparatively, Clairvoyance has outstanding precision in

this experiment, for 124 true positives in total 168 reports.

Securify, Oyente, Slither reports more bugs, but most of their

result are false positives. Comparatively, Clairvoyance has the

highest true positives. The reason behind the FPs reported by three

tools is due to the inconsideration of PPTs. In our observation:

1 Securify fails to consider permission controls, hard-coded

addresses and self-defined modifiers. It also falsely reports

the write operations after calling built-in functions send()

and transfer() as vulnerable, causing FPs since it does not

consider PPT5.

2 Oyente basically ignores the protections in self-definedmod-

ifiers and has many FPs mostly because it ignores PPT3.

3 Among all the FPs of Slither, it generally has a good sup-

port for PPT3 by considering the code of security check in

modifiers. Considering a relatively small number of cases

in using execution lock (PPT4), Slither totally ignores the

protection by execution lock(s).

4 The 44 of FPs of Clairvoyance are due to the complicated

path conditions, which cannot be easily handled by our light-

weighted symbolic analyzer.

5 CONCLUSION

In this paper, we present a reentrancy detection approach based on

two steps, first applying the cross-contract static taint analysis to

find reentrancy candidates, then integrating the PPTs to refine the

results. On the publicly collected 17770 contracts, Clairvoyance

significantly outperforms the three static tools in terms of precision.

In future, we will extend our approach for other types of bugs and

also combine with dynamic approaches.

REFERENCES
[1] 2015. Ethereum: Blockchain App Platform. https://www.ethereum.org/. Online;

accessed 29 January 2019.
[2] 2019. A Block Explorer and Analytics Platform for Ethereum. https://etherscan.io/.

Online; accessed 29 January 2019.
[3] David Siegel. [n.d.]. Understanding the DAO Attack. Website. https://www.

coindesk.com/understanding-dao-hack-journalists.
[4] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.

Making Smart Contracts Smarter. In CCS 2016. 254–269.
[5] trailofbits. 2019. Slither. github. https://github.com/trailofbits/slither.
[6] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-

rian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis of
Smart Contracts. In CCS 2018. 67–82.

275


