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Abstract—For performance reasons, C++, albeit unsafe, is often
the programming language of choice for developing software
infrastructures. A serious type of security vulnerability in C++
programs is type confusion, which may lead to program crashes
and control flow hijack attacks. While existing mitigation so-
lutions almost exclusively rely on dynamic analysis techniques,
which suffer from low code coverage and high overhead, static
analysis has rarely been investigated.

This paper presents TCD, a static type confusion detector
built on top of a precise demand-driven field-, context- and flow-
sensitive pointer analysis. Unlike existing pointer analyses, TCD
is type-aware as it not only preserves the type information in the
pointed-to objects but also handles complex language features of
C++ such as multiple inheritance and placement new, making it
therefore possible to reason about type casting in C++ programs.
We have implemented TCD in LLVM and evaluated it using seven
C++ applications (totaling 526,385 lines of C++ code) from Qt, a
widely-adopted C++ toolkit for creating GUIs and cross-platform
software. TCD has found five type confusion bugs, including one
reported previously in prior work and four new ones, in under
7.3 hours, with a low false positive rate of 28.2%.

Index Terms—type confusion, bug detection, software security,
pointer analysis, static analysis

I. INTRODUCTION

Large software systems, such as Linux kernels, compilers,
browsers, and Java Virtual Machines, are the cornerstone for
the modern software industry. To seek for high performance
and low-level control over memory allocation, almost all of
these fundamental products are implemented in C and/or C++,
both of which lack memory safety [1]–[3] and type safety [4],
leading to severe software security vulnerabilities [5]–[7].

With the rapid increase in both complexity and scale of
software, teamwork is necessary for all large projects. Given
a base-class pointer in a large project, it is harder than ever
before for C++ programmers to figure out which objects this
pointer may point to. If an object is cast from a base class
to a derived one, it is their responsibility to ensure that type
casting is correct at runtime. If this fails, a type confusion
error (or bug) will occur, allowing attackers to corrupt out-
of-bound data and hijack control flow by tampering with
code pointers [6]. As shown in Figure 1, the number of type
confusion vulnerabilities reported on the CVE website [8] has
surged rapidly in recent years. It is thus imperative to develop
program analysis techniques to detect type confusion bugs.
Prior Work: Dynamic Analysis. Existing mitigation solu-
tions [6], [9]–[15] are all dynamic. At compile-time, instru-
mentation code is added to collect the information for the
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Fig. 1. The rapid increase of type confusion vulnerabilities [8].

objects in a program. At runtime, the safety of type casting for
each object is verified. To trace all the objects efficiently, data
structures, such as red-black trees [10], shadow memory [12],
hash tables [6] and low fat pointers [13], have been used.
This Work: Static Analysis. Dynamic analysis tools can
detect type confusion bugs precisely at runtime, but suffer
from the two well-known problems: low code coverage and
high performance overhead. In contrast, static analysis tools
can find potential software security vulnerabilities that are
harder to find dynamically in the entire codebase earlier in
the development life cycle. Thus, recent years have witnessed
widespread adoption of static tools in software industries
[16]. However, there has been little research on developing
static techniques and tools for finding type confusion bugs in
C++ source code. To the best of our knowledge, this work
represents the first such investigation.

There are several challenges faced in finding type confusion
bugs efficiently and precisely in a static manner. First, a precise
and efficient inter-procedural analysis is needed, but current
bug-finding tools [16] perform the majority of their analysis
tasks intra-procedurally. Second, a precise and efficient type-
aware pointer analysis is also needed to track the points-to
information. Due to complex C++ language features such as
multiple inheritance, the pointer analyses developed for C [17]
and Java [18] can not be directly applied in type confusion
detection. Worse still, some type information can be lost in the
Intermediate Representations (IRs) operated by C++ compilers
such as LLVM [19], even under -O0.

In this paper, we address these challenges by introducing
TCD, a static type confusion detector built on top of a C++
compiler front-end modified to provide some cast-related type
annotations required in the IR and a precise demand-driven



1  struct A{
2     virtual ~A(){};
3  };
4  struct B{
5     int y;
6  };
7  struct C : public A, public B{
8    int z;
9  };
10 B * getObj(){
11   return new B;
12 }
13 void test(){
14   B *bptr = new C;
15    if(hard_to_satisfy()){
16   bptr = getObj();
17   }
18   C *cptr = static_cast<C*>(bptr);
19   delete cptr;
20 }
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Fig. 2. A motivating example of TCD.

field-, context- and flow-sensitive pointer analysis leveraged
to compute the points-to information inter-procedurally. How-
ever, unlike existing pointer analyses for C and Java, TCD is
type-aware as it not only preserves the type information in
the objects pointed to by a pointer but also handles complex
language features of C++ such as multiple inheritance and
placement new, making it therefore possible to reason about
type casting in C++ programs.

Figure 2 illustrates how a type confusion bug occurs and
why both existing pointer analyses and dynamic analyses
are inadequate. Here, class C inherits from both A and
B, with the memory layout of B and C objects shown. If
hard_to_satisfy() in line 15 evaluates to true (even
though very infrequently), bptr in line 18 will point to a
B object created in line 11. Due to multiple inheritance, the
downcasting from B to C in line 18 will trigger a pointer
adjustment as shown by the single-head arrow. As a result,
the B object will be mistakenly treated as a C object, lead-
ing to a type confusion error. The out-of-bound area will
be misunderstood as containing a virtual table pointer. The
delete operation in line 19 will attempt to invoke the virtual
destructor of class C (inherited from A), causing an illegal
dereference for the out-of-bound area, and consequently, a
program crash. Worse still, if this area is controlled by some
motivated attackers, they can easily hijack control flow by
forging a virtual table pointer inside [20]–[22]. Note that if
hard_to_satisfy() in line 15 evaluates to false, there
are also pointer adjustments for the C object created, once
from C to B in line 14 (upcasting) and once from B to C in
line 18 (downcasting), as shown by the two-head arrow.

The state-of-the-art pointer analyses for C such as SVF [17]
cannot be directly applied in detecting type confusion bugs
in C++ programs. There are two reasons for this. First, the
pointed-to objects discovered for a pointer do not carry enough
type information. Second, the missing type information, even
if added directly, can be incorrect in the presence of multiple
inheritance, as the pointer adjustments as shown in Figure 2
are not taken into account. SVF [17] expects every C program

being analyzed to be C-compliant. Given p = q + offset,
where p and q are pointers and offset is a non-negative
integer (which is not necessarily known at compile time), SVF
therefore assumes that p will always point to the objects that
q points to (regardless of what offset is). For a C++ program,
however, this assumption no longer holds due to the pointer
value adjustments between B and C, as shown in Figure 2.
Specifically speaking, the pointer adjustment from B to C in
line 18 will generate a negative offset (-8) in the LLVM-
IR. In order to figure out the type of a pointed object obj,
the information we need can be represented as (t,

∑n
1 offi),

where t is the type of the object containing obj and
∑n

1 offi is
the offset accumulated during field-sensitive pointer analysis.
Ignoring the negative offset caused by downcasting (e.g., in
line 18) will eventually lead to an incorrect offset accumulated
in (t,

∑n
1 offi) during program analysis, thereby resulting in a

wrong type inferred for the object obj.
Dynamic analysis tools [6], [9], [10], [12]–[15] can hardly

find the type confusion bug in line 18. To find bugs at
testing stage, these tools are usually driven by a fuzzer like
AFL [23] to repeatedly run the program with different inputs.
Suppose that hard_to_satisfy() in line 15 consists of
testing an 8-byte integer (read as the standard input) against a
magic number, 0x12345678deadbeef. The modern grey-
box fuzzer, AFL, could not expose the bug in 24 hours (as line
16 was never reached during a total of 431 million program
runs). Recent fuzzing tools such as T-Fuzz [24] attempt to
alleviate this issue. However, constraint solvers they rely on
may still not be powerful enough to solve complex constraints.

In contrast, as a static detector, TCD does not need to really
run the program, thus bypassing the hard_to_satisfy()
condition in line 15 that thwart dynamic detectors.

This paper makes the following contributions:
• We describe a new type-aware pointer analysis that can

reason about the type information in the pointed-to ob-
jects for C++.

• We introduce TCD, a type confusion detector imple-
mented in LLVM, for finding type confusion bugs.

• We have evaluated it using seven C++ applications (to-
taling 526,385 lines of C++ code) from Qt, a widely-
adopted C++ toolkit for supporting GUIs and cross-
platform software. TCD has found five type confusion
bugs, including one reported previously in prior work
and four new ones, in under 7.3 hours, with a low false
positive rate of 28.2%.

The rest of this paper is organized as follows. Section II
reviews type casting and pointer analysis. Section III presents
the design and implementation of TCD. Section IV evaluates
TCD, showing that TCD is able to detect new bugs that evaded
previous approaches. Section V discusses the related work.
Finally, Section VI concludes the paper.

II. BACKGROUND

A. Type Casting in C++
C++ introduces four keywords to support four different

kinds of casts, static_cast, reinterpret_cast,



dynamic_cast and const_cast. In particular,
static_cast, which is checked at compile time, is
mainly used to cast a pointer of a base class to a pointer of a
derived class. As illustrated in Figure 2, pointer adjustments
will be performed for both upcasting and downcasting in the
case of multiple inheritance if the two related types have
different offsets. Unlike static_cast, dynamic_cast
performs a type conversion between two polymorphic classes
(with virtual tables). At compile time, a C++ compiler
inserts code to call __dynamic_cast(), a C++ library
function, to enforce the semantics required. At runtime,
__dynamic_cast() will search the type information
stored in virtual tables to check whether a dynamic_cast
is safe or not. In other words, dynamic_cast does not
lead to any type confusion bug.

As the C++ version of C-style casting,
reinterpret_cast will not modify the underlying
pointer, even in the presence of multiple inheritance.
Furthermore, reinterpret_cast can be used between
unrelated classes while static_cast and dynamic_cast
are often conducted in the same class hierarchy. As for
const_cast, its main purpose is to discard the read-only
constness on an object. While const_cast may still
introduce security issues [6], its protection is an orthogonal
issue that we do not address in this paper.

In this paper, we consider the type confusion bugs caused by
static_cast and reinterpret_cast. If a base-class
pointer is cast to a derived-class pointer when the underlying
object is incompatible with the derived class (at runtime), then
a type confusion bug is said to have occurred.

Type confusion bugs can be used to corrupt sensitive data,
code pointers or virtual table pointers. How to exploit these
vulnerabilities is beyond the scope of this paper.

B. Pointer Analysis

Pointer analysis, which is virtually the basis of all other
program analyses, determines statically the set of objects that
may be pointed to by a pointer. To achieve precision, a
pointer analysis is expected to be field-sensitive [25] (by distin-
guishing different fields of an object), flow-sensitive [26] (by
distinguishing the flow of control), and context-sensitive [27]
(by distinguishing the calling contexts for a function). A
pointer analysis is a whole-program analysis if it computes the
points-to information for all the pointers and demand-driven
if it computes the points-to information only for some given
pointers in the program.

SVF [17] is an open-source pointer analysis platform for
C/C++ implemented in LLVM [19]. It has been used in a
number of research projects, including a framework for ana-
lyzing Linux kernels [28] and a directed grey-box fuzzer for
software testing [29]. SVF can perform both whole-program
and demand-driven pointer analyses for C/C++ programs [30].
As discussed in Section I, however, SVF cannot be used
directly in detecting type confusion bugs in C++ programs. In
this paper, SVF will be leveraged to accomplish this objective.
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Fig. 3. The TCD framework for detecting type confusion bugs for C++.

III. TCD: DESIGN AND IMPLEMENTATION

We have designed and implemented TCD in LLVM for
detecting type confusion bugs in C++ programs. As shown in
Figure 3, TCD consists of three components: a type-casting-
preserving C++ compiler front-end, a type-aware pointer anal-
ysis and a type confusion bug detector. Given a C++ program,
its source files are compiled and linked by the LLVM tool
chain into a single LLVM-IR (known as bitcode) with the
type annotations added for all cast-related expressions by our
modified C++ compiler front-end in LLVM. WLLVM [31], a
python-based compiler wrapper, is used to facilitate building
whole-program LLVM bitcode files. Our type confusion bug
detector issues a points-to query for a cast expression and then
reports whether the cast is safe or not based on the points-to
information computed on-demand by our type-aware pointer
analysis, which operates on the LLVM-IR of the program.

For a pointed object obj, its type information can be
represented as (t,

∑n
1 offi), where t is the type of the ob-

ject containing obj and
∑n

1 offi is the sum of field offsets
accumulated during field-sensitive analysis. The code added
into LLVM is used to make sure that t is not missing during
compiling, as discussed in III-A. The code added into SVF will
initialize, accumulate and propagate type information such as
(t,

∑n
1 offi) during pointer analysis. We respect the negative

offsets caused by complex C++ language features such as
multiple inheritance, which are ignored in previous research.

A. Type-Casting-Preserving C++ Compiler Front-End
When translating a C++ program into LLVM-IR, LLVM

does not maintain all the type information required for de-
tecting type confusion bugs. Below we describe how to rely
on type-annotating stubs to provide such missing type infor-
mation. Without these modifications, some type information
would be lost. Similarly, we have also added corresponding
stubs for static_cast and reinterpret_cast. These
stubs are introduced to facilitate static analysis only and will
be removed during program execution.

Placement new is widely used in a variety of C++ libraries
and applications, by separating memory allocation from ini-
tialization. In Figure 4(a), ptr in line 6 points to a Derived
object, which is created by a placement new expression at
the specified memory location buf. However, in the LLVM-
IR in Figure 4(b), generated by the default LLVM even under
-O0, the type Derived for the object created is not available.
Thus, a pointer analysis cannot correctly model the types of
the objects created by such placement new expressions.



1  struct Base{int x;};
2  struct Derived: public Base{int y;};
3  void test(Base * b);
4  char buf [1024];
5  int main (){
6     Base *ptr = new (buf)Derived;
7     test(ptr);  
8     return 0;
9  }

10 define i32 @main(){
11   call void @_Z4testP4Base(
        %struct.Base* bitcast (
    [1024 x i8]* @buf 

   to %struct.Base*))
12   ret i32 0
13 }

(a) C++ source code

14 !3 = !{%struct.Derived* null}
15 define i32 @main(){
16   %0 = call i8* @__placement_new_stub(i8* getelementptr inbounds 
        ([1024 x i8], [1024 x i8]* @buf, i32 0, i32 0)) !DstTypeInfo !3
17   %1 = bitcast i8* %0 to %struct.Derived*
18   %2 = bitcast %struct.Derived* %1 to %struct.Base*
19   call void @_Z4testP4Base(%struct.Base* %2)
20   ret i32 0
21 }

(b) IR generated by the default LLVM

(c) IR emitted by the modified LLVM

Fig. 4. Placement new stubs annotated with types.

Therefore, we have modified the LLVM C++ front-end
to emit the LLVM-IR code shown in Figure 4(c). The type
Derived is now made available as metadata (line 14) in a
call to __placement_new_stub() in line 16. This stub
can be modeled as a special memory allocator for a placement
new expression during the pointer analysis, so that an object
of an appropriate type can now be created for the placement
new expression.

B. Type-Aware Pointer Analysis
We have developed our type-aware pointer analysis on

top of the open-source SVF [17]. We describe only how to
enrich SVF with the type information required for finding type
confusion bugs.

1) Program Representation: For the purposes of perform-
ing pointer analysis, it suffices to consider the following six
types of statements in LLVM-IR: p=&a (ADDROF), p= q
(COPY), p = ∗q (LOAD), ∗p = q (STORE), p = &(q→ fld)
(FIELD), and fp(a1, · · · , an) (CALL). Note that fp represents
both a virtual and a static call. Passing arguments into and
returning results from functions are modeled by copies. For
an ADDROF statement p=&a, known as an allocation site, a
is a stack or global variable or a dynamically created abstract
heap object. An array object is analyzed with its elements
collapsed to a single field, denoted arr. For example, x[i] = y
can be seen as x.arr = y. For field accesses, p= &(q→fld)
is used. In LLVM-IR, x = y → fld is decomposed into
tmp= &(y→ fld) and x= ∗tmp. Similarly, x→ fld = y is
decomposed into tmp= &(x→fld) and ∗tmp = y.

SVF accelerates its analysis by computing the points-to
information along the def-use edges pre-computed by a pre-

v = &obj t = DeclaredType(obj)
obj is a global/local object

{obj} ⊆ pt(v) POS(obj, (t, 0))
[GLOBAL/STACK]

v = &obj t = InferType(obj)
obj is a heap object

{obj} ⊆ pt(v) POS(obj, (t, 0))
[HEAP]

p = &(q → fld) obj ∈ pt(q)
POS(obj, (t, offl))

offr = Offset(obj, fld)
{obj.fld} ⊆ pt(p)

POS(obj.fld, (t, offl + offr))

[FIELD]

p = q

pt(q) ⊆ pt(p)
[COPY]

POS(obj, (t, off)) t′ = GetType(t, off)
Type(obj) = t′

[ASSIGNTYPE]

Fig. 5. Type-aware pointer analysis.

analysis rather than along the control flow. Such def-use edges
are often known as value-flow edges.

2) Rules: Figure 5 gives the rules for performing our type-
aware pointer analysis with respect to ADDROF and FIELD.
The rules for LOAD, STORE and CALL are the same as in
traditional pointer analyses such as SVF and thus omitted.
Once the analysis is completed, pt(v) gives the points-to set



of v, i.e., set of objects obj pointed by v, where v is a variable
or a field, and Type(obj) gives the type of obj discovered.

Before going through the rules, we will first explain one key
notation used in enabling the types of objects to be tracked
in a field-sensitive analysis. In C++, an object of a particular
type may contain multiple objects of different types residing
at its different offsets. POS(obj, (t, off)) indicates that object
obj resides at an offset off in an object of type t, where POS
is a shorthand for position.

Below we will examine our five rules in turn.
[GLOBAL/STACK] and [HEAP] are responsible for identifying
the source of the type information. [FIELD] simply propagates
the type information field-sensitively, by considering complex
C++ language features such as multiple inheritance. [COPY]
handles copy assignments in the standard way. Finally,
[ASSIGNTYPE] maps each object to its type discovered.

a) [GLOBAL/STACK]: For a global or stack object al-
location site, v = &obj, where obj is created in the global
area or on the stack, t = DeclaredType(obj) can be directly
read-off from the declared type of v. In this case, obj ∈ pt(v),
where POS(obj, (t, 0)) records the type t of obj. For example,
given a local declaration “T x”, x will be made to point to a
stack object of type T in LLVM-IR.

b) [HEAP]: For a heap object allocation site, v =
&obj, where obj is created by calling a heap allocator (e.g.,
malloc()) in LLVM, we have obj ∈ pt(v). In addition,
t = InferType(obj) is the type of obj inferred as follows.
For standard allocators like malloc(), the types of their
allocated objects are discovered by performing a standard def-
use analysis [17]. For the objects created by placement new
expressions, their types can be discovered from the place-
ment new stubs introduced by our type-casting-preserving
C++ compiler front-end (Figure 4). Finally, the operator
new/new[] functions used in C++ classes will be recognized
as special heap allocators for their corresponding classes.

c) [FIELD]: This rule handles p = &(q → fld). For
an object obj ∈ pt(q), suppose that fld resides at the
offset offr within obj, such that POS(obj, (t, offl)) holds,
then the location of the sub-object obj.fld in an object
of type t is identified by (t, offl + offr). So obj.fld ∈
pt(p), where POS(obj.fld, (t, offl + offr)) holds. Note that
Offset(obj, f ld) returns the offset of obj.fld in obj.

In traditional field-sensitive pointer analyses such as
SVF [17], the byte offsets for accessing a field in an object
are assumed to be non-negative. However, this assumption
does not hold in the case of multiple inheritance in C++.
Figure 6 illustrates the pointer adjustment that takes place due
to downcasting. A negative offset, −8, is generated. Our type-
aware pointer analysis will keep this negative offset and adjust
internal memory model of pointer analysis to make sure that
the accumulated offset is correct.

d) [COPY]: This rule handles p = q, which simply
propagates the points-to information from q to p, such that
pt(q) ⊆ pt(p) holds.

e) [ASSIGNTYPE]: Once our analysis is completed, the
type of obj, Type(obj), is given by GetType(t, off) (defined

B* Æ C*

// (B,-8)
%22 = bitcast %struct.B * %19 to i8 *
%23 = getelementptr i8 , i8 * %22 , i64 −8
%24 = bitcast i8 * %23 to %struct.C *

int yint y
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Fig. 6. Negative offsets for accessing fields in multiple inheritance.

below), where POS(obj, (t, off)) holds.
In LLVM, inheritance in the high-level C++ source code

is translated into composition in LLVM-IR. Consider the
program in Figure 2 again. A is a base class of C. Thus,
an object of A is contained inside an object of C (with both
starting at the offset 0 as shown), implying that A is a type
nested inside C. Recursively, A can have its own element types.
Hence, at the offset 0 of a C object, its type can be treated
as C, A, and the first element type of A. Among them, C is
the largest one, as all the other types are directly or indirectly
contained by C. As we start from (t, 0) ([GLOBAL/STACK] and
[HEAP]), GetType(t, off) therefore returns the largest type at
(t, off) (nested inside (t, 0)), i.e., the type obtained after a
sequence of field accesses starting from (t, 0). In the special
case when off is negative, GetType(t, off) returns t itself, as
it is now outside the starting point (t, 0).

TABLE I
THE LARGEST TYPE AT (t, off) ILLUSTRATED FOR FIGURE 2.

(t, off) Possible Types Largest Type
(C, 0) {C, A, void ** } C
(C, 8) {B,int} B
(C, 12) {int} int
(B, 0) {B,int} B
(A, 0) {A,void **} A

In Table I, we list all the possible types at different offsets
off within A, B, and C, including the largest in each case,
for the example program given in Figure 2. For example, at
(C,8), the largest type is B. Note that the type of the virtual
table pointer in A is denoted as void **.

3) An Example: In Figure 7, we show how to apply our
rules given in Figure 5 to analyze a simple C++ program,
which includes one safe downcast in line 2 and one unsafe
downcast in line 9. In each case, we focus on how the
type information of an object is initialized, propagated, and
determined during the pointer analysis.

In this example, we give only the instructions related to
our rules. For simplicity, each copy %x = %y here is an



    // C++
 1: B * bptr = new C; // (C,0)
 2: C * cptr = static_cast<C*>(bptr);

// LLVM IR
 3: %1 = call i8* @_Znwm(i64 16)
  
 4: %5 = %1
    
 5: %6 = getelementptr i8, i8* %5, i64 8

 6: %12 = %6 
    
 7: %13 = getelementptr i8, i8* %12, i64 -8

    // C++
 8: B * bptr = new B; // (B,0)
 9: C * cptr = static_cast<C*>(bptr);

    // LLVM IR
10: %18 = call i8* @_Znwm(i64 4)
    
11: %22 = %18
    
12: %23 = getelementptr i8, i8* %22, i64 -8

 3: [HEAP]

 7: [FIELD]

4: [COPY]

B *

C *

11: [COPY]

10: [HEAP]

 12: [FIELD]

int yint y

B  Object

Out-of-BoundOut-of-Bound
0

-8

int y

B  Object

Out-of-Bound
0

-8

C * B *

A *

5: [FIELD]

 6: [COPY]
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5: [FIELD]

 6: [COPY]
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(a) Safe Cast:      (t , ∑ ݂݂݊݅݋
݅=1 )  =  (C,  0)  +  ( _ , 8)  +  ( _ , -8)  =  (C , 0) 

(b) Unsafe Cast:       (t , ∑ ݂݂݊݅݋
݅=1 )  =  (B,  0)  +  ( _ , -8) = (B , -8) 

Fig. 7. An example illustrating the rules in our pointer analysis. For example, the label “3:[HEAP]” means [HEAP] is applied in line 3.

TABLE II
RULE APPLICATION FOR THE CODE IN FIGURE 7.

Rule Inst. (Line #) Pointer Pointed-to Object Type
[HEAP] 3 %1 objC (C,0)
[COPY] 4 %5 objC (C,0)
[FIELD] 5 %6 objC.8 (C,8)
[COPY] 6 %12 objC.8 (C,8)
[FIELD] 7 %13 objC (C,0)
[HEAP] 10 %18 objB (B,0)
[COPY] 11 %22 objB (B,0)
[FIELD] 12 %23 objB.−8 (B,-8)

abstraction of several LLVM-IR instructions. The notations
such as %x and %y represent virtual registers in LLVM-IR.
As they act as top-level pointers in program analysis, we use
them directly to represent pointers in the following discussion.
• Safe Cast. Let us consider the safe cast in the top part of

Figure 7. We start with by issuing a points-to query pt(%13)
in line 7, i.e., pt(cptr) in line 2. During the demand-
driven pointer analysis, the IR instruction for allocating
a heap object, denoted objC , in line 3 is analyzed. By
applying [HEAP], we obtain pt(%1) = {objC} such that
POS(objC , (C, 0)), highlighted by the dotted line labeled
with “3:[HEAP]”. Due to the copy %5 = %1 in line
4, we obtain pt(%5) = pt(%1) = {objC}, highlighted
by the dotted line “4:[COPY]”. The getelementptr
instruction in line 5 performs the pointer adjustment due
to upcasting. According to [FIELD], %6 points to objC
but at its offset 8, indicated by POS(objC.8, (C, 8)), as

highlighted by the dotted line labeled with “5:[FIELD]”.
Due to the copy %12 = %6 in line 6, %12 now also
points to objC at its offset 8, highlighted by the dotted line
“6:[COPY]”. In line 7, the getelementptr instruction
performs the pointer adjustment due to downcasting. By
applying [FIELD] again, %13 now points to objC at its be-
ginning, i.e., the offset 0, indicated by POS(objC , (C, 0)).
Finally, we apply [ASSIGNTYPE] to obtain Type(objC) =
C. Now, we can conclude that cptr in line 2 actually points
to a C object. The type cast is therefore safe.

• Unsafe Cast. Let us consider the unsafe cast in the bottom
part of Figure 7. This time, we start with by issuing a points-
to query pt(%23) in line 12, i.e., pt(cptr) in line 9. When
applying [HEAP] to the IR instruction in line 10, which
allocates a heap object, denoted objB , we obtain pt(%18) =
{objB} such that POS(objB , (B, 0)) holds. Unlike the safe
cast above, there is no upcasting here. By applying [COPY]
to %22 = %18 in line 11, we find that %22 now also points
to objB at its beginning. In line 12, the getelementptr
instruction performs the pointer adjustment due to down-
casting. According to [FIELD], %23 points to objB but at
the offset -8, indicated by POS(objB.−8, (B,−8)). Finally,
we apply [ASSIGNTYPE] to obtain Type(objB.−8) = B. As
cptr in line 9 points to potentially a B object, TCD will
issue a warning about this unsafe downcast in that line.

In Table II, we summarize the rules applied to the LLVM-IR
instructions given in Figure 7, as explained above.



C. Type Confusion Bug Detector

An LLVM pass is implemented to collect all the cast
expressions instrumented by our customized C++ compiler
front-end. For a cast expression static_cast<T*>(ptr),
we will retrieve its destination type T and the declared type S
of ptr from the metadata associated with its stub.

Let dst = static_cast<T*>(ptr), with the pointer
adjustment performed already (Figure 2). So ptr and dst
may not point to the same location. Note that T will be used
directly for detecting type confusion bugs (as shown below)
and S will be used for bug-reporting purposes. As C++ classes
are the main targets of type confusion attacks, we focus on
detecting type confusion errors for C++ classes.

Now, a points-to query pt(dst) is issued. We handle the
following two cases, depending on the types of the objects in
pt(dst):

• Unsafe Casts. static_cast<T*>(ptr) is unsafe if
∃ o ∈ pt(dst), the type of o is incompatible with T.

• Safe Casts. static_cast<T*>(ptr) is safe if it is
not an unsafe cast.

We can handle reinterpret_cast similarly. It should
be noted that an unsafe cast reported by TCD may be a false
positive (due to, e.g., the lack of path-sensitivity).

D. Implementation

We have implemented TCD in LLVM on top of the
open-source SVF pointer analysis framework [17]. Given a
type in the form of (t, off), Algorithm 1, which implements
GetType(t, off) used in [ASSIGNTYPE] (Figure 5), returns the
largest type at a designated byte offset off within a C++ class
type t. A C++ class is represented as a recursive structure,
where its elements can be a C++ class, a primary type or an
array. In addition, the element type of an array can also be a
C++ class, a primary type or an array.

In lines 8 – 15, the while loop finds an element in the
class t that is closest to the specified byte offset off. As
the class t has at least one element, the statements in lines
12 – 14 in the while body is expected to be executed at
least once. If the element happens to locate at the given byte
offset, then its type is returned in line 20. Otherwise, we
recursively find the type being searched for in line 24. The
function getEleOffset() in line 12 returns the offset of
the specified element i within a class t and getEleType()
in line 13 is used to retrieve its type. The functionalities of
the other functions are reflected in their names.

There is another important implementation detail that is
worth emphasizing, as it is critical to flow-sensitive analysis in
the presence of global object initialization in C++ programs.
In a C++ program (unlike in a C program), global objects
must be initialized with their corresponding C++ constructors
before main() is called. To obtain a flow-sensitive analysis
that respects the original semantics in C++ programs, we
need to analyze the whole program and synthesize a pseudo
entry function before.main() to call all the initializer
functions first and then invoke main(). The synthesized

Algorithm 1: GetType(t, off) in Figure 5.
Input : A C++ class t and a byte offset off
Output: The largest type at the offset off

1 Procedure GETTYPE(t, off)
2 structSize ← getSizeInBytes(t);
3 if (off < 0) || (off % structSize == 0) then
4 return t;
5 end
6 off ← (off % structSize);
7 i← 0;
8 do
9 if getEleOffset(t, i) > off then

10 break;
11 end
12 eleOffset ← getEleOffset(t, i);
13 eleType ← getEleType(t, i);
14 i← i+ 1;
15 while i < numOfElements(t);
16 while eleType is an array do
17 eleType ← getArrayElementType(eleType);
18 end
19 if eleOffset == off then
20 return eleType;
21 end
22 else
23 off ← (off − eleOffset);
24 return GETTYPE(eleType, off);
25 end

before.main() will guide our static analyzer to create a
call graph correctly for flow-sensitive pointer analysis.

IV. EVALUATION

Our evaluation demonstrates the effectiveness of TCD in de-
tecting type confusion bugs in C++ applications by addressing
the following two research questions (RQs).

• RQ1. Can TCD find new type confusion bugs in real-
world C++ applications at a low false positive rate?

• RQ2. Can TCD overcome some limitations of dynamic
detectors in detecting type confusion bugs?

We have evaluated TCD using Qt [32], a widely used open-
source toolkit for creating GUIs and cross-platform software.
We consider all its seven Qt tools (totaling 526,385 lines of
C++ code), which share the same Qt base library. TCD has
found five type confusion bugs, including one reported in prior
work and four new ones.

To strike a balance between precision and scalability, our
pointer analysis is demand-driven. The budgets for flow-
sensitivity and context-sensitivity are both configured as a
maximum of 10000 value-flow edges traversed per points-to
query (Section III-B1). The maximum context length used for
realizing context-sensitivity is set to be 3, implying that the
calling context for a function is bounded by three call sites.



Our platform consists of a 3.20 GHz Intel Xeon(R) E5-1660
v4 CPU with 256 GB memory, running the Ubuntu OS. The
analysis time of a program is the average of 3 runs.

A. RQ1: Bug-Finding Ability

1) Effectiveness: As shown in Table III, TCD reports a total
of 39 warnings in the seven Qt tools identified as A1 – A7.
After manual inspection, we found 28 true positives (TPs)
and 11 false positives (FPs), achieving a low false positive
rate of 28.2%. These 28 true positives represent a total of
five distinct bugs identified as B1 – B5, which all reside
in the Qt base library used, including one known bug, B1,
reported by the dynamic detector HexType [6] (Table IV),
and four new bugs, B2 – B5, that are found in this paper
(Table V). Table VI provides a mapping from {B1, · · · ,B5}
to {A1, · · · ,A7}, showing all the Qt tools where a bug is
exposed. These are all the type confusion errors caused by
static_cast<T*>(ptr), where the destination type T
and the declared type of ptr are given in each case.

TABLE III
EXPERIMENTAL RESULTS FOR THE SEVEN Qt TOOLS

(TP: TRUE POSITIVES; FP: FALSE POSITIVES).

APP ID Qt tool #TP #FP Analysis Time (secs)
A1 moc 2 0 171
A2 qdbuscpp2xml 4 2 4108
A3 qdbusxml2cpp 4 2 7247
A4 qlalr 7 4 4889
A5 qmake 6 1 3415
A6 rcc 1 0 109
A7 uic 4 2 6168

Total 28 11 26107

TABLE IV
ONE KNOWN TYPE CONFUSION BUG IN THE Qt BASE LIBRARY, REPORTED

IN PRIOR WORK (HEXTYPE [6]) BUT REDISCOVERED BY TCD.

Bug ID File Name Function Template Line
B1 qmap.h Node *end() 216

TABLE V
FOUR NEW TYPE CONFUSION BUGS DETECTED IN THE Qt BASE LIBRARY.

Bug ID File Function Line
B2 qjson.cpp Data::compact() 91
B3 qjson.cpp Data::compact() 110
B4 qjsonobject.cpp QJsonObject::compact() 1236
B5 qjsonvalue.cpp QJsonValue::detach() 688

As shown in Table IV, B1 represents a bug in a function
template. It should be pointed out that function templates are
widely used in C++ applications. In this particular case, the
function template has been instantiated with different type
parameters, resulting in different functions in LLVM-IR. As
a result, this type confusion bug in the Qt base library has
appeared 16 times in all the seven Qt tools.

As shown in Table V, B2 – B5 are all type confusion bugs
appearing in ordinary functions. We have analyzed these four

TABLE VI
MAPPING FIVE BUGS IN {B1, · · · ,B5} TO SEVEN QT TOOLS

{A1, · · · ,A7} WHERE A BUG IS DETECTED. FOR EACH BUG CAUSED AT
STATIC_CAST<T*>(PTR), THE DESTINATION TYPE T AND THE

DECLARED TYPE OF PTR ARE GIVEN. FOR B1, QMAPNODE.N , WHERE
n ∈ Z, REPRESENTS AN INSTANTIATION OF CLASS TEMPLATE QMAPNODE .

Bug ID APP ID Declared Type Destination Type
B1 A1 QMapNodeBase QMapNode.148
B1 A1 QMapNodeBase QMapNode.530
B1 A2 QMapNodeBase QMapNode.3766
B1 A2 QMapNodeBase QMapNode.86
B1 A3 QMapNodeBase QMapNode.86
B1 A3 QMapNodeBase QMapNode.3601
B1 A4 QMapNodeBase QMapNode.36
B1 A4 QMapNodeBase QMapNode.50
B1 A4 QMapNodeBase QMapNode.36
B1 A4 QMapNodeBase QMapNode.86
B1 A4 QMapNodeBase QMapNode.3365
B1 A5 QMapNodeBase QMapNode
B1 A5 QMapNodeBase QMapNode.25
B1 A6 QMapNodeBase QMapNode
B1 A7 QMapNodeBase QMapNode.86
B1 A7 QMapNodeBase QMapNode.4224
B2 A2/A3/A4/A5/A7 QJsonPrivate::Base QJsonPrivate::Object
B3 A2/A3/A4/A5/A7 QJsonPrivate::Base QJsonPrivate::Array
B4 A5 QJsonPrivate::Base QJsonPrivate::Object
B5 A5 QJsonPrivate::Base QJsonPrivate::Object

1  struct Base{
2   ...
3  };
4  struct Derived: public Base{
5   ...
6  };
7  struct Header{
8 int tab;
9 int version;
10 Base *root() { return (Base *)(this + 1); }
11 };
12 int main(){
13 Header *h = (Header *) malloc(sizeof(Header) 
 + sizeof(Base) + const_sz + variable_sz);

...
14 Base *b = h->root();
15 static_cast<Derived*>(b); 
16 }

Fig. 8. The bug pattern for the new type confusion errors detected in Qt.

new bugs and found that they are caused by ad hoc imple-
mentations of C++ inheritance. Their common bug pattern is
illustrated in Figure 8. In line 13, a memory block that is larger
than the size of class Base is allocated, where the sum of
const_sz and variable_sz represents the size of extra
memory needed by its derived classes.

The function root() (defined in line 10) is called in line
14 to skip the Header object at the beginning of the memory
block allocated by malloc(). If the sum operation in line
13 does not synchronize with the modification of the derived
classes of Base, a dangerous software security vulnerability
may arise. For example, software developers may add some
new fields in a derived class and forget to update the sum



============================  Report  ==========================================
Bad static_cast: 

%"class.QJsonPrivate::Base"*   ====>   %"class.QJsonPrivate::Object"*
Where: 

line: 688 file: qtbase/src/corelib/json/qjsonvalue.cpp
Points-to: 

(1) line: 79 file: qtbase/src/corelib/json/qjson.cpp
(2) line: 840 file: qtbase/src/corelib/json/qjson_p.h
(3) line: 880 file: qtbase/src/corelib/json/qjson_p.h

================================================================================
//  qtbase/src/corelib/json/qjsonvalue.cpp
678 void QJsonValue::detach(){ 
683     QJsonPrivate::Data *x = d->clone(base);
687     d = x;
688     base = static_cast<QJsonPrivate::Object *>(d->header->root());
780 }
//  qtbase/src/corelib/json/qjson.cpp
58  void Data::compact(){  
77      int size = sizeof(Base) + reserve + base->length*sizeof(offset);
78      int alloc = sizeof(Header) + size;
79      Header *h = (Header *) malloc(alloc); 
82      Base *b = h->root();  
130  }
//  qtbase/src/corelib/json/qjson_p.h
612 class Object : public Base{
622 };
761 class Header {
765     Base *root() { return (Base *)(this + 1); }
766 };
834 inline Data(int reserved, QJsonValue::Type valueType){ 
839     alloc = sizeof(Header) + sizeof(Base) + reserved + sizeof(offset);
840     header = (Header *)malloc(alloc); 
849 }
865 Data *clone(Base *b, int reserve = 0){
867     int size = sizeof(Header) + b->size;
868     if (b == header->root() && ref.load() == 1 && alloc >= size + reserve)
869         return this;
871     if (reserve) {
872         if (reserve < 128)
873             reserve = 128;
874         size = qMax(size + reserve, qMin(size *2, (int)Value::MaxSize));
879     }
880     char *raw = (char *)malloc(size);   
883     Header *h = (Header *)raw;
889 }

Fig. 9. A new type confusion bug, B5 (Table V), detected in Qt.

operation in line 13, so that the size of this derived class is
larger than the memory block allocated by malloc(). In this
situation, a downcast in line 15 from Base to the derived class
will lead to out-of-bound memory access.

In Figure 9, we examine B5 given in Table V. In the
top part, our bug report shows that B5 occurs in line 688,
static_cast < QJsonPrivate::Object *> (d->
header->root()), together with the lines where the
three objects pointed to by d->header->root() re-
side. In the bottom part, the related C++ source files are
listed briefly, showing that TCD is able to detect type
confusion bugs across different files precisely and inter-
procedurally. By performing our type-aware pointer analysis,
we find that d->header in line 688 (qjsonvalue.cpp)
points to the three Header objects allocated in line 79
(qjson.cpp), 840 (qjson_s.h) and 880 (q_jsons.h)

respectively. In line 688, d->header->root() skips these
three Header objects and points to their Base objects
following them in memory layout. Then a dangerous downcast
happens in line 688, where a Base object is downcast to a
QJsonPrivate::Object object. The ad hoc implemen-
tations of C++ inheritance can be seen in lines 77 – 79
(qjson.cpp), 839 – 840 (qjson_s.h) and 867 – 880
(q_jsons.h), where memory blocks larger than the size of a
Base object are allocated. As highlighted in Figure 8, this bug
pattern can lead to out-of-bound memory access. As shown in
Figure 9, a TCD warning can clearly pinpoint where such
potential security vulnerabilities are in large C++ projects.

2) Efficiency: TCD spends a total of 26,107 seconds, i.e.,
7.3 hours on analyzing the seven Qt tools totaling 526,385
lines of C++ code. This is not unreasonable.



B. RQ2: TCD vs. Dynamic Detectors
Of the five type confusion bugs listed in Tables IV and

V, HexType [6], a dynamic detector, can only detect B1 in
Table IV but not B2 – B5 in Table V. This demonstrates TCD’s
ability to find new bugs in large C++ projects that can be
difficult to reach by dynamic tools (as motivated in Figure 2).

Given a C++ program, dynamic detectors such as HexType
perform instrumentation at compile time. In order to detect
type confusion bugs at testing stage, an instrumented C++
program will be run repeatedly with different inputs so that
more bugs can be triggered. While much work has been done
in various sorts of testing techniques [23], [33]–[38], dynamic
detectors still suffer from low code coverage. As motivated
in Figure 2, hard_to_satisfy(), which represents a
complex condition that is very hard to satisfy, represents still
an obstacle to dynamic analysis. However, TCD can often find
potentially bugs despite its being path-insensitive.

Another rarely-discussed obstacle is container coverage,
which may require every element of a container (e.g., an
array) to be tested in order to find a particular bug. Consider
a simple program in Figure 10. In line 7, a fuzzer [23], [38]
can easily generate a random value x to satisfy x >= 0 &&
x < N. However, the type confusion bug in line 8 can only
be triggered when x = 2019 exactly. In our evaluation, even
for such a simple program, this bug cannot be exposed in 72
hours with AFL [23], one of the state-of-the-art fuzzers.

1  #define  N  (1024*64)
2  Base *ptr[N];
3  for(int i = 0; i < N; i++){
4    ptr[i] = new Derived;
5  }
6  ptr[2019] = new Base;
7  if(x >= 0 && x < N){
8   static_cast<Derived*>(ptr[x]);
9  }

Fig. 10. Container-coverage-related obstacle to dynamic analysis.

In contrast, TCD is a static detector, which is cur-
rently path-insensitive. In Figure 2, TCD will ignore the
hard_to_satisfy() condition in line 15 while still being
able to detect the type confusion error in line 18. In Figure 10,
TCD will ignore the condition in line 7 by analyzing ptr
conservatively as a pointer rather than an array of pointers, so
that ptr points to all the objects pointed to individually by
its elements. Under this abstraction, ptr may point to either
a Derived object (line 4) or a Base object (line 6). Thus,
TCD can also expose the type confusion bug in line 8.

By being path-insensitive, TCD can improve code coverage
but may suffer from unavoidable false positives. In a real
program containing lines 7 – 8 in Figure 10, if x can never be
2019 under any program input, then the type confusion error in
line 8 reported by TCD will be a false positive. In addition, as a
static detector, TCD is expected to consume tens of gigabyte
memory space in analyzing large C++ programs. Compared
with dynamic detectors, precise static solutions may not scale
to tens of millions lines of code [39].

V. RELATED WORK

We review the work relevant to TCD, by focusing on
dynamic techniques for detecting type confusion bugs and
control flow integrity (CFI) techniques for enforcing CFI.

Dynamic Type Confusion Detectors. Undefined Behavior
Sanitizer (UBSan) [9] relies on the type information stored
in virtual tables to detect whether a type cast is safe or
not and is thus limited to protecting polymorphic classes
only. CAVER [10] instruments C++ programs and maintains
metadata for both polymorphic and non-polymorphic classes.
Since red-black trees are used to store metadata for stack and
global objects at O(log n), it can incur high instrumen-
tation overhead if most of the allocated objects are on the
stack. TypeSan [12] relies on a compact memory shadow-
ing mechanism to trace all objects in a uniform way, such
that the overhead of tracing objects is reduced. But it may
conflict with address space layout randomization [40]. The
limitation on high instrumentation overhead has subsequently
been addressed by HexType [6], Bitype [14], and CastSan [15].
Finally, EffeciveSan [13] can detect not only type confusion
bugs but also memory-related bugs.

These dynamic detectors can find type confusion bugs
precisely, but suffer from low code coverage and high instru-
mentation overhead. In contrast, TCD can reveal potential type
confusion bugs across the entire program statically, but at the
expense of introducing false positives.

Control Flow Integrity. Type confusion bugs may lead to
control flow attacks, which can be mitigated by control flow
integrity [41]–[44]. CFI states that program execution must
follow the control flow graph (CFG) generated at compile
time. Two main challenges remain: how to make control-
flow targets in the CFG precise and how to make dynamic
checks at these control-flow targets efficient. In general, CFI
defense mechanisms only protect code pointers. However, type
confusion bugs can be exploited to corrupt not only code
pointers but also other sensitive data.

VI. CONCLUSIONS

We have introduced a new static detector, TCD, in LLVM
for finding type confusion bugs in C++ programs, based
on a type-casting-preserving C++ compiler front-end and a
type-aware pointer analysis. TCD has found four new type
confusion bugs in Qt [32], which have evaded detection of
previous (dynamic) approaches with a low false positive rate.

In one future work, we plan to extend TCD by consider-
ing path-sensitivity to reduce the false positives reported. In
another future work, we plan to combine static and dynamic
analyses to obtain the best of both worlds.
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