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ABSTRACT In this paper, a wideband diplexer with narrow channel spacing is designed by using hybrid
bandpass-bandstop structures. Two wideband bandpass structures are designed with the transmission zeros
at the upper or lower passband edges to achieve high skirt selectivity. Two bandstop structures based on half-
wavelength coupled lines are integrated to the two bandpass structures to introduce additional transmission
zeros and thus the skirt selectivity is further improved. Accordingly, two channel filters with high skirt
selectivity and high stopband rejection are designed to realize a wideband microstrip diplexer with very
narrow channel spacing. For verification, a wideband diplexer operating at 1.71-2.17 GHz and 2.30-2.70 GHz
is implemented, which covers multiple frequency bands for different mobile systems. The measured results
show excellent performance of passband flatness, high in-band isolation of better than 35 dB and low
minimum insertion losses of 0.46 and 0.50 dB for the two channels.

INDEX TERMS Diplexer, wide bandwidth, narrow channel spacing, hybrid bandpass-bandstop structure,

transmission zero.

I. INTRODUCTION

Diplexers are essential components in wireless systems,
which have been widely developed using the waveguide/
cavity, substrate integrated waveguide and printed circuit
board (PCB) technologies [1]-[15]. With the development
of wireless communication, the wireless spectrum is getting
more crowded and the space between different frequency
bands become narrower. This put forwards stringent require-
ments for the diplexers with a very narrow channel separation.
The high-Q waveguide/cavity [7]-[8], coaxial resonator [9]
and organic liquid crystal polymer [10] are employed to
realize diplexers with very narrow channel spacing. However,
these diplexers are implemented with 3-D metallic structures,
which suffer from heavy weight and large size, and thus are
limited in some certain applications.

To solve this problem, microstrip diplexers on PCBs are
also proposed for close channels [11]-[14]. For example,
by adding an open-stub at the common input port, the diplexer
is constructed using two ring filter with contiguous
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passbands [11]. In [12], by using capacitance loaded square
meander loop resonators, a close-channel diplexer is designed
with compact size and wide stopband.

Apart from the narrow channel separation, wide channel
bandwidths are also desired in order to cover multiple bands
for different mobile systems, such as the DCS (1710-1880
MHz), PCS (1850-1990 MHz), UMTS (1920-2170 MHz),
WiFi (2400-2480 MHz) and LTE (2300-2400 and 2570-
2700 MHz). Howeyver, as the channel bandwidths increase,
the frequency selectivity become worse. It is more diffi-
cult for wideband microstrip diplexers to realize high iso-
lation between two contiguous channels. Thus, most of
reported close-channel diplexers are designed with narrow
bandwidths [11]-[14]. A good way for frequency selectivity
improvement is to increase the filter orders whereas the inser-
tion losses would be too high due to the Q-factor limitations of
microstrip resonators. Until now, there are very few reported
microstrip diplexers with both the narrow channel spacing
and wide channel bandwidths.

In this paper, a wideband microstrip diplexer with nar-
row channel spacing is proposed. The two channel filters
cover multiple frequency bands, including the DCS, PCS,
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UMTS, WiFi and LTE. Bandstop structures are integrated
to the bandpass filter to generate transmission zeros at the
passband edges to realize very high skirt selectivity and high
rejection, which enable the realization of wideband diplexer
with high isolation under narrow channel spacing applica-
tions. To demonstrate the proposed method, the diplexer is
implemented. Simulated and measured results are presented.
Comparison with other reported diplexers are given to show
the advantages of the proposed circuit.

Il. ANALYSIS OF THE DIPLEXER

Fig. 1 shows the structure of the proposed diplexer. The lower
and upper channel filters are combined using a T- junction.
The filter of each channel is designed into a hybrid bandpass-
bandstop structure to realize high skirt selectivity and wide
bandwidth. To construct the proposed diplexer, the lower and
upper channel filters are analyzed as follows.

Port 2

Lower
channel filter

(Ry)
(R7-Ry)

Upper
channel filter

<L25

FIGURE 1. Schematic of the proposed diplexer.

A. LOWER CHANNEL FILTER
The structure of the lower channel filter is shown in Fig. 1 in
red color, which contains the bandpass and bandstop sections.
To construct this lower channel filter, the bandpass section is
firstly designed with the structure shown in Fig. 2(a), which
consists of two half-wavelength resonators (R1 and R4) and
a dual-mode stub-loaded resonator (SLR) (R2-R3). Fig. 2(b)
shows the topology of lower channel filter. To obtain the
desired lower channel filter responses, the dual-mode SLR
should be analyzed firstly, which is comprised of a main
transmission line (TL) and an open stub loaded at the center.
Resonant frequencies of the SLR can be analyzed using even-
and odd-mode analysis methods in [16] as

c

- - 1
Jodd o o )
C

f even — (2)

(L + 2Lm2)«/£e}j‘.

where ¢ is the speed of light in free space and eefr is the
effective dielectric constant. In Fig. 2(a), when the open stub
of the SLR has quarter-wavelength electric length at a specific
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frequency, the impedance at node A is equal to zero, namely,
node A is short-circuited. The signal cannot be transmitted
from P1 to P2, resulting in a transmission zero (TZ) whose
location can be expressed as

c

frz 3)

o ALy fEeff

The feven and foqq are utilized to form the passband of lower
channel filter. To realize better rejection at the upper channel
frequency, the TZ should locate at the frequency higher than
the passband of the lower channel filter. Thus, frz should be
larger than feyen and fodd, namely, frz > fodd and frz > feven-
From (1)-(3), it can be derived that L,;» < Ly, /2. In this case,
a BPF with a TZ located at the higher frequency of the pass-
band can be realized. Fig. 2(c) shows the simulated results
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FIGURE 2. Bandpass section of the lower channel filter (a) Structure;
(b) Coupling scheme; (b) Simulated results.
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FIGURE 3. Simulated results of the bandstop structure.
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FIGURE 4. Simulated results of the BPF and hybrid bandpass-bandstop
structure.

where a TZ is generated at the higher passband, resulting in
high skirt selectivity.

Apart from the bandpass section, a bandstop structure com-
prised of a coupled half-wavelength transmission line (TL)
is also introduced [17]. Fig. 3 shows its structure and the
simulated results. As can be seen, a transmission zero can
be generated and influenced by the length of the coupled TL
(Lm3).

In order to construct the lower channel filter with high out-
of-band rejection and sharp roll-off-rate, the aforementioned
bandpass and bandstop structures are combined together.
Here, the half-wavelength TL can be coupled to any resonator
or feeding line in the bandpass structure. For realizing an easy
layout and a relatively compact size, the bandstop structure is
coupled to R4 with the structure shown Fig. 1 (in red color).
Fig. 4 shows the simulated results. It is seen that using the
hybrid bandpass-bandstop structure not only enhances the
skirt selectivity but also improves the out-of-band rejection.

B. UPPER CHANNEL FILTER

Similar to the lower channel filter, an upper channel filter
is also designed using the hybrid bandpass-bandstop struc-
ture, as shown in Fig. 1 (in blue color). Two dual-mode
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FIGURE 5. (a) Coupling scheme of the upper channel filter; (b) Simulated
results of the upper channel filter.

stub-loaded resonators (R5-R6 and R7-R8) are utilized to
form the passband, and the corresponding circuit topology
is shown in Fig. 5(a). From the analysis in Part-A, It is
known that two TZs can be generated by the two stub-loaded
resonators and their locations are determined by the lengths
of the stubs. Since the filter is used for the upper channel,
the locations of the TZs should be lower than the passband.
Thus, the length of each stub in the resonator should be
larger than a half of the length of the main TL. A half-
wavelength TL worked as the bandstop section is coupled to
the R7-R8 for generating an additional TZ, which enhance the
skirt selectivity. Fig. 5(b) shows the simulated results, where
good filtering responses for the upper channel filter exhibits
rejection underneath 40.5 dB. The skirt selectivity and out-
of-band rejection are improved as compared to the structure
without the bandstop section.

IIl. EXPERIMENT

Based on the analysis in Section II, a diplexer is designed fol-
lowing the processes below. Firstly, based on the desired oper-
ation frequencies, two bandpass structures for the lower and
higher channels using stub-loaded resonators are designed.
Secondly, the bandstop structures are integrated to the two
bandpass structures to realize the two channel filters. Thirdly,
the two channel filters are combined using a T-junction with
the structure shown in Fig. 1. Finally, fine tuning is required
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to obtain good diplexer performance. The substrate is used
with a dielectric constant of 2.55, a loss tangent of 0.0018 and
a thickness of 1.524 mm. The dimensions are determined as
follows (all in mm): L; = 11.25, L, shatp= 8.3, L3 = 4.3,
Ly =17,Ls =264,Lg =17.6,L7 =14.3,Lg = 15.5, Lg =
24, Lig = 16.8, L1y =5, L1p =245, L1z =158, L1y =
227, Lis = 3.7, Lig = 31.6, L17 = 16, Lig = 26.6, Lj9g =
17.7, Lyg = 17.9, Lp1 = 26.6, Lry = 20.6, Loz = 8.5, Lrg =
20.6, Ly)s =124, W1 =43, W, =05, W3 =04, Wy =04,
W5 =04,G1 =0.53,G, =0.55,G3=03,G4 =1,G5 =1,
Gg = 0.3. The circuit size is 78 x 68 mm? (or 0.64 x 0.56 A2,
where A, is the guide wavelength at the frequency of lower
passband edge 1.71 GHz). The photograph of the fabricated
diplexer is shown in Fig. 6.

linth

FIGURE 6. Photography of the fabricated diplexer.

The simulation is carried out using the Zeland IE3D and
the measurement is accomplished using Keysight E5071C
network analyzer under a indoor temperature of 25 °C.
Fig. 7 shows the simulated and measured results. The mea-
sured passbands are at 1.71-2.17 and 2.30-2.70 GHz with a
narrow channel spacing of 130 MHz. The minimum insertion
losses (ILs) of the two channels are 0.46 and 0.50 dB. The
ILs within the whole passbands 1.71-2.17 and 2.30-2.70 GHz
are smaller than 1.1 dB. The in-band return losses (RLs) of
the two channels are both better than 20 dB, realizing good
passband flatness. High out-of-band rejetion of better than
37 dB and in-band isolation of better than 35 dB are achieved.
The data as the temperature changes is not measured here
due to our lab condition limitation. However, the proposed
diplexer is fabricated using traditional PCB process. Thus,
it is believed that the temperature behaviors of the presented
diplexer are similar to those of other reported PCB circuits.

For evaluation of the radiation effect, the diplexer
is enclosed in a conductive enclosure for measurement.
Fig. 8 shows the photograph of the diplexer with the con-
ductive enclosure. Fig. 9 shows the simulated and measured
results. Within the passbands 1.71-2.17 GHz and 2.30-2.70
GHz, the measured insertion losses are less than 1.2dB. The
measured return losses are better than 18 dB. For the upper-
band rejection, it is around 10 dB. Accordingly, the proposed
diplexer can realize good performance with or without the
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FIGURE 8. Photograph of the fabricated diplexer with a conductive
enclosure.

conductive enclosesure, which indicates that the rediation
effect is negligible.

Table 1 shows the comparison with some reported diplex-
ers. In [10], a contiguous diplexer is designed with wide
operating frequency from DC to 100 GHz, whereas its com-
plete assembly is a 3-D metallic waveguide structure which
suffer from heavy weight. The proposed diplexer feature the
fourth-order filtering responses while those in [11]-[14] have
the second- or third-order responses. Thus, more resonators
are used in our proposed design, which lead to a larger size.
Here, the size of the proposed design can be optimized by
folding the circuit. As compared to [11]-[15], the proposed
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TABLE 1. Comparison with some report diplexers.

Ref Passband FBW Min. IL Isolation Return Filter Circuit Size
’ (GHz) (%) (dB) (dB) Loss (dB) orders )
[10] DC-67/ 67-100 N.A. N.A N.A 10 N.A N.A.
[11] 1.72-1.78 / 1.82-1.88 5/5 N.A 20 20 2 0.071
[12] 1.91-1.99/2.10-2.18 4.6/4.2 1.64/1.59 40 20 2 0.056
[13] 1.92-1.98 /2.11-2.17 3.1/2.8 1.46/1.44 37 ~16 2 0.213
[14] 1.91-1.99/2.11-2.18 4.1/3.74 12/1.5 35 ~10 3 0.137
1.5-1.9/2.12-2.39
[15] (3-dB passband) 23.2/11.8 N.A. ~38 ~10 4 N.A.
This work (without 1.71-2.17/2.30 -2.70 30/27  0.46/0.50 35 20 4 0.414
conductive enclosure)
N.A. means not available. IL. denotes insertion loss.
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IV. CONCLUSION
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