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Abstract. 

In this paper, the vibrational power flow of a cracked beam made of functionally graded materials 

(FGMs) is investigated. The Young’s modulus and mass density change exponentially along the thickness 

direction of the beam. The cracked FGM beam is divided into two sub-beams at the crack section which 

are connected by a massless rotational spring. Based on the Timoshenko beam theory, the governing 

equations of the cracked FGM beam are derived by using the neutral plane as the reference plane. The 

dynamic response of the FGM beam subjected to a harmonic concentrated transverse force is solved by 

the wave propagation approach. The input power flow and the transmitted power flow are obtained. The 

effect of the crack location and depth and the Young’s modulus ratio on the input power flow and the 

transmitted power flow is studied in detail. A new damage index (DI) for the crack identification of FGM 

beams is proposed by applying continuous wavelet transform (CWT) to the transmitted power flow 

distribution along the beam longitudinal direction. The peak of DI indicates the crack location in FGM 

beams with small crack depth. 
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1. Introduction 

Structures in engineering applications are always subjected to dynamic forces from external load and 

internal operation of machines, which may result in structural damage and high level of structure-borne 

noises. Hence, it is important to assess and minimize vibrational energy level of structures. The vibrational 

power flow is a time-averaged quantity which combines the effects of both forces and velocities. It is 

desirable to identify the magnitude and transmission path of the vibrational energy in structures in order to 

prevent damage and reduce the noise level of structures. Early studies of power flows in structures can be 

traced back to five decades ago [1-3]. In 1980, Goyder and White [4-6] introduced the expression of the 

structural power flow when force and velocity were harmonic. They studied the power flow of infinite 

beam and plate, stiffened plate and isolation system. Bouthier and Bernhard [7] derived the power balance 

equation in plates based on the local space averaged energy flow. This energy flow model as a new 

approach was used generally for high frequency response analysis of structures [8]. Chen and Wang [9] 

performed wave attenuation and power flow analysis of sandwich beams with internal absorbers. They 

found that the power flow of the sandwich beam reduces with the greater extent of attenuation of the 

flexural wave. Liu et al. [10] studied propagation characteristics of the vibrational power flow in a 

laminated composite cylindrical shell filled with fluid. At present, the power flow analysis becomes an 

important tool for studying the structural noise [11], isolation system [12], power transmission [13], etc. 

In 1990s, a new type of composite materials that characterizes by continuous spatial change in 

constituent materials and material properties was introduced to resist high thermal stress, named the 

functionally graded materials (FGMs) [14]. With the extension of the concept of gradient and the 

development of fabrication technology [15], material scientists developed various FGM systems with 

different combinations of constituent materials, bi-directional FGMs, structures with graded geometrical 

parameter [16,17]. Because of their excellent thermo-mechanical performance, FGMs are implemented in 

a wide range of fields such as aerospace, marine engineering, mechanical engineering, biomaterials, 

energy, etc. FGM beams are used as the key parts in these applications, such as the turbine blade, 

cutting-tool, marine propeller, actuator, etc.  

For an FGM beam with inhomogeneous material properties, the neutral plane of the beam may differ 

from the geometric midplane of the beam [18]. The governing equations based on the physical neutral 

plane have similar forms as those of homogeneous beams due to the elimination of the bending-stretching 

coupling [19]. By using the neutral plane model, many researches on the dynamic behavior of FGM beams 
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were conducted [18, 20-25]. However, studies on the power flow of FGM structures are scarce. Liu and 

Niu [26] proposed an energy flow model for FGM beams to obtain structural energy density distributions, 

which had good correlation and accuracy in comparison with that by mode superposition. 

It is well known that crack and damage inevitably exist in structures. The occurrence of crack and 

damage will change the dynamic characteristics of structures. The equivalent line spring model is widely 

employed to replace the crack in structural dynamic analysis. Li et al. [27] studied the power flow of 

periodically simply supported beam with cracks using the transfer matrix approach. The beam is divided 

into two segments connected by the rotational spring at the crack section. Then, they investigated the input 

power flow and transmitted power flow of intact and damaged beams with infinite length [28]. They found 

that the occurrence of cracks has significant influence on the vibrational power flow of the beams. Zhu et 

al. [29] further proposed a crack identification method based on contours of changes of the input power 

flow. This approach was extended to the crack identification of the thin cylindrical shell with a 

circumferential surface crack [30] and the plate with a part-through surface crack [31].  

In comparison with the method based on the input power flow [29-31], the spatial distribution of the 

transmitted power flow indicates the transmission of energy in structures and provides more local 

information. The continuous wavelet transform (CWT) as a signal processing tool is widely employed in 

the damage identification due to its very high sensitivity to the local singularity of tested signals [32]. The 

data of spatially distributed response from the damaged structures carried local singularity at damage 

location, such as static deflection [33], the mode shape [34], the operational deflection shapes [35] and the 

active thermography [36], can be treated as tested signals and transformed into a series of wavelet 

coefficients by CWT. The information of damage can be obtained from the peak of wavelet coefficients. 

The spatial distribution of the transmitted power flow captures the clear peak at the crack location, 

especially for the greater crack depth. Therefore, we can apply CWT of the transmitted power flow for the 

crack identification.  

This paper investigates the vibrational power flow of cracked FGM beams under a concentrated 

transverse harmonic force by using the rotational spring model. The beam is divided into two sub-beams at 

the crack section connected by a massless rotational spring which is equivalent to the crack. Based on the 

Timoshenko beam theory, the governing equations of the cracked FGM beam are derived, and then solved 

to obtain the input power flow and transmitted power flow by using the wave propagation approach. The 

effect of the crack location, the crack depth and the Young’s modulus ratio on the power flow is discussed. 
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By applying continuous wavelet transform (CWT) to the transmitted power flow distribution, a new crack 

identification method is developed for cracked FGM beams. 

 

2. Linear rotational spring model 

Fig. 1a shows an infinite FGM beam with an open edge crack of depth a located at  to the right 

side of the driving source. The thickness of the beam is h. The coordinate z is with respect to the geometric 

middle plane of the beam ( ). The Young’s modulus  and mass density  of the beam are 

assumed to change with exponential function along the z-axes direction, i.e. 

                           (1) 

where  is the gradient index;  and  represent the elastic modulus of the top 

and bottom surfaces of the beam, respectively;  and  are the Young’s modulus and the mass 

density at the middle plane, respectively. The Poisson’s ratio  is taken to be a constant.  

As the material properties of an FGM beam may be non-symmetric about the coordinate axes z, the 

neutral plane of the beam can be different from the geometric midplane of the beam. The position of the 

neutral plane  of the beam is determined by [18] 

                                  (2) 

In Fig. 1b, a massless rotational spring is employed to simulate the open edge crack. The FGM beam is 

split into two separated sub-beams connected by a rotational spring at the crack location. In the rotational 

spring model, only the discontinuity of the bending slop at the crack section is considered. This model will 

be used in the vibrational power flow analysis of FGM beam. The bending stiffness  of the spring can 

be given as 

                              ,                                    (3) 

where G is the flexibility. At the cracked location, it can be expressed as [37] 
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,                              (4) 

where M is the bending moment at the crack location;  is the stress intensity factor (SIF) under the 

mode I bending load;  is the Young’s modulus at the crack tip. 

   Based on the values of the mode I SIF of the FGM strip given by Erdogan and Wu [38], the 

relationship between  and the crack depth ratio  can be given by the Lagrange interpolation 

method [39]: 

, , ,                      (5) 

where the range of crack depth ratio is from 0 to 0.7.  is given as  

             (6a) 

              (6b) 

              (6c) 

Substitution of Eq. (5) into Eq. (4) leads to 

  .                         (7) 

Then, the bending stiffness of the rotational spring at the crack section can be determined from Eqs. (3) 

and (7).  

Note that it is inevitable to occur the stress concentration at the crack tip when the harmonic force is 

applied to the cracked beam. This stress concentration will yield the materials and leads to the plastic area 

around the crack tip. In the present analysis, we assume that the plastic area at the crack tip is small and its 

effect is negligible. 
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displacement  are respectively written as 

                             (8) 

                                 (9) 

where  is the position of the neutral plane; t is time;  is the transverse displacement at the 

middle plane; and  is the rotation of the cross section. 

The normal stress and shear stress are respectively given by 

                             (10) 

                             (11) 

The bending moment and transverse shear force are 

                          (12) 

                           (13) 

where  is the shear correction factor which is related to the Poisson’s ratio and shape of the cross 

section. For a beam with a rectangular cross section, it is reasonable for  to take the value of 5/6. The 

stiffness components are defined as 

                           (14) 

                                 (15) 

By using the Hamilton principle, the governing equation of cracked FGM beams can be obtained by 

                            (16) 
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where the subscript j = 1, 2 denotes the left sub-beam and right sub-beam;  and  are the inertia 

terms  

( , , )w x z t

0( , , ) ( ) ( , ),u x z t z z x ty= -

( , , ) ( , ),w x z t w x t=

0z ( , )w x t

( , )x ty

02

( ) ( ) ,
1xx
E z z z

x
ys

µ
¶

= -
- ¶

( ) ( ).
2(1 )xz
E z w

x
t y

µ
¶

= +
+ ¶

0 11( )dA ,xxA
M z z D

x
ys ¶

= - =
¶ò ò

55dA ( ),xzA

wQ A
x

k t k y¶
= = +

¶òò
k

k

/2 2
11 02/2

( ) ( ) dz,
1

h

h

E zD z z
µ-

= -
-ò

/2

55 /2

( ) dz.
2(1 )

h

h

E zA
µ-

=
+ò

2 2

55 12 2 ,
j j jw w

A I
x x t

y
k

æ ö¶ ¶ ¶
+ =ç ÷ç ÷¶ ¶ ¶è ø

2 2

11 55 32 2 ,
j j j

j

w
D A I

x x t
y y

k y
¶ ¶ ¶æ ö

- + =ç ÷¶ ¶ ¶è ø

1I 3I



7 
 

                        (18) 

Meanwhile, the compatibility conditions at the crack location  require 

       (19) 

For a beam in harmonic vibration, the solutions of transverse displacement and rotation of the beam 

can be written as 

                              (20) 

                              (21) 

where ;  is the angular frequency. 

Substituting Eqs. (20)-(21) into Eqs. (16)-(17), the governing equations can be rewritten as  

                   (22) 

                    (23) 

where m, n and p are denoted as 

  .                      (24) 

The solutions of Eqs. (22) and (23) are expressed as 

                    (25) 

               (26) 

where 
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                            (27b) 
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waves with wavenumber  are propagating or evanescent. For FGM beams, the critical frequency can 

be expressed as 

.                                 (28) 

When , two kinds of waves propagate with wavenumbers  and , respectively; when 

, only the waves with wavenumber  propagates. In the present analysis, the driving frequency 

is far below the critical frequency. 

 

4. Solutions of intact FGM beams 

For an infinite intact FGM beam under a concentrated harmonic force at , there are four 

forced waves away from the driving source, as shown in Fig. 2a. Then, the intact FGM beam is divided 

into two sub-beams at the driving source, and the transverse displacement and rotation can be written as, 

                      (29) 

for , 

                      (30) 

for , where the subscripts “1” and “2” denote the components related to the negative and the 

positive directions from the driving source, respectively. For the intact FGM beam, the continuity 

conditions at the driving point x = 0 can be expressed as 
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Fig. 2b exhibits schematically the forced and free waves in the cracked FGM beam. Since a part of 

travelling waves are reflected at the crack location, the cracked FGM beam should be divided into three 

sub-beams at the driving source and crack location. For each sub-beam, the solutions of the transverse 

displacement and rotation can be expressed as 

,                 (33) 

where ; .  

The transverse displacement, rotation, bending moment and transverse shear force at driving source x 

= 0 and crack location  satisfy 

   ,         (34) 

    (35) 
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         (40) 

and  . The unknowns can be 

obtained by solving Eq. (38).  

 

6. Vibrational power flow analysis 

The vibrational power flow combines both forces and velocities with the consideration of their phase 

angle. It is an important physical quantity in the analysis of the structural noise, vibration control, power 

transmission and source tracing. In the vibrational structure, it is necessary for vibrational energy analysis 

to study the time averaged value of energy injected into structures. For the harmonic force  and 

velocity response , the time-averaged power flow is defined by  

                  (41) 
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                             (42) 

For the FGM beam, the energy can be transmitted by the internal shear force and bending moment. 
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                 (44) 

Substituting the solutions of transverse displacement and rotation of intact and cracked FGM beams into 

Eq. (42) and Eq. (44), the input power flow and transmitted power flow can be determined.  

 

7. Crack identification using continuous wavelet transform  

The continuous wavelet transform (CWT) is widely applied in the damage identification of structures. 

CWT as a signal progressing method has the ability to identify the singularity in the input signal such as 

the static deflection, mode shape and dynamic response under a moving load. In our previous work [40], 

we proposed a new method for the crack identification of FGM beams by applying CWT to mode shapes. 

A new damage index is defined based on the position of the wavelet coefficient modulus maxima in the 

scale space. In this paper, this method is extended by applying CWT to the transmitted power flow 

distribution along the beam longitudinal direction. A brief introduction to this method is given as below. 

According to the compatibility condition at the crack section, there is the discontinuity in transmitted 

power flow along the beam longitudinal direction. So, the spatial transmitted power flow  can be 

treated as an input signal to be transformed by using CWT 

                 (45) 
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                                   (47) 

For the discontinuity in the spatial transmitted power flow, the Haar wavelet can be used as the 

mother wavelet function for the crack identification analysis. After applying CWT to the spatial 

transmitted power flow of the cracked FGM beam, the wavelet coefficients may exhibit the peak at the 

crack location and boundary. There are always peaks of the wavelet coefficient at the crack location when 

the scale parameter varies. In certain scale  and spatial position ,  is associated with 

the maximal value of the wavelet coefficient if it satisfies 

 .                             (48) 

According to the character of the wavelet coefficient maxima, a damage index (DI) is defined by [40] 

                     (49) 
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homogeneous rectangular beam with the reported literature. So, we only compare the input power flow of 

an isotropic homogeneous intact beam to verify the present model. Fig. 3 shows the input power flow of 

an isotropic homogeneous beam with the circular cross section. The results given by Zhu et al. [29] are 

also plotted for comparison. The parameters of the homogeneous beam are taken as: radius  

mass density  Young’s modulus  and Poisson ratio  It is 

observed that the present results are in good agreement with the results given by Zhu et al. [29]. 

 

8.1 Input power flow 

Fig. 4 gives the effect of the Young’s modulus ratio  on the input power flow of an intact 

FGM beam. The driving frequency varies from 1 Hz to 3000 Hz. It is found that the input power flow 

reduces with the increase of the driving frequency. The similar trend is also observed in the input power 

flow of homogeneous beams. For a given frequency, a greater Young’s modulus ratio can lead to a smaller 

input power flow. Indeed, the Poisson’s ratio must be varied along the thickness direction of the FGM 

beam in reality. Fig. 4 also adds the comparison of the input power flow for the FGM beams with the 

constant and varying Poisson’s ratio. For the varying Poisson’s ratio, it is assumed to change with the 

exponential function along the thickness direction. Clearly, we can observe that the effect of the Poisson’s 

ratio is slight on the input power flow.  

Fig. 5 illustrates the effect of the Young’s modulus ratio  on the input power flow of cracked 

FGM beams with  and . Unlike intact FGM beams, it is observed that the input 

power flows of cracked FGM beams produce the fluctuation with the variation of the frequency. The 

reason is that there is the reflection wave between the crack location and driving force position, which 

leads to the change of the transverse displacement at the driving force position x = 0, and in turn alters the 

characteristics of the input power flow at x = 0. Similar to the intact FGM beams, the input power flow of 

cracked FGM beams reduces as the frequency increases. Furthermore, for a given frequency, the input 

power flow of cracked FGM beams increases as the Young’s modulus ratio increases. 

Fig. 6 highlights the effect of the crack depth  on the input power flow of cracked FGM beams 

with  and . The input power flow of cracked FGM beams fluctuates around the 

solid line that describes the input power flow of intact FGM beams. The fluctuation amplitude of the input 
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power flow curve is enlarged with the increase of the crack depth . The fluctuation amplitude at low 

frequency is smaller than that at high frequency. Interestingly, we can see the intersections between the 

curves of cracked and intact FGM beams. It is indicated that the presence of cracks doesn’t affect the input 

power flow at the intersections with special frequencies, such as = 90 Hz, 170 Hz, 280 Hz, 415 Hz, 575 

Hz, 755 Hz, 995 Hz……. Furthermore, the variation of the crack depth has no effect on the wavelength of 

input power flow curves of cracked FGM beams. 

The effect of the crack location  on the input power flow of cracked FGM beams with 

 and  is shown in Fig. 7. The wavelength of the input power flow curve decreases 

as the location of the crack moves away from the driving force. For different crack locations, the input 

power flows have the same value at some special frequencies, such as 225Hz, 855 Hz, 1795 Hz and 2960 

Hz. 

Figs. 8-10 present the relationship between the input power flow and the crack location with various 

crack depths, Young’s modulus ratios and driving frequencies, respectively. We can see that the input 

power flow of cracked FGM beams is a periodic function with respect to the crack location . In 

Fig. 8 the amplitude of the input power flow increases as the crack depth increases. Clearly, the 

wavelength of the curves relating to the input power flow vs the crack location is not affected by the 

crack depth. In Fig. 9, the amplitude of the curves increases with the decrease of the Young’s modulus 

ratio from 5 to 0.2. In Fig. 10, as the driving frequency increases, the amplitude of the curves increases 

and the wavelength of curves decreases.  

 

8.2 Transmitted power flow 

Fig. 11 shows the effect of the crack depth  on the transmitted power flow of cracked FGM 

beams with  and . For an intact FGM beam, the transmitted power flow is kept as 

a constant value of 0.5. It means that the input power flow is transformed to the transmitted power flow 

that is divided into two equal parts propagating along the positive and the negative directions in the intact 

FGM beam. For a cracked FGM beam, the transmitted power flow curves fluctuate around the straight line 

of the intact FGM beam. The amplitude of the curves is enlarged with increasing crack depth. The crack 

depth does not influence the wavelength of the curves.  
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    Fig. 12 exhibits the effect of the crack location  on the transmitted power flow of cracked 

FGM beams with  and . It is found that the amplitude of the fluctuation increases 

as the driving frequency increases from 1 Hz to 3000 Hz. Meanwhile, the wavelength of the curves 

reduces as the crack is further away from the driving force.  

Fig. 13 shows the effect of the Young’s modulus ratio  on the transmitted power flow of 

cracked FGM beams with  and . It can be observed that the amplitude of the 

transmitted power flow curves become lager when decreasing the Young’s modulus ratio from 5 to 0.2.  

Figs. 14-16 show the relationship between the transmitted power flow and crack location for various 

Young’s modulus ratios, crack depths and driving frequencies, respectively. Similar to the input power 

flow, the transmitted power flow is also a periodic function about the crack location. It is observed in Fig. 

14 that the amplitude of the transmitted power flow curves increases with the decrease of the Young’s 

modulus ratio. Fig. 15 reveals that the amplitude of the transmitted power flow curves increases as the 

crack depth increases. Fig. 16 shows that, as the driving frequency increases, the amplitude of the curves 

increases, while the wavelength of the curves decreases.  

 

8.3 Crack identification 

Fig. 17 gives the spatial distribution of the transmitted power flow of cracked FGM beams for 

various crack depth. It is seen that the transmitted power flow changes suddenly at the location of the 

crack. The sudden change is obvious for the large crack depth ( ), while it is less significant for 

the small crack depth ( ). This result indicates that the crack identification using the spatial 

distribution of the transmitted power flow is only effective for large crack depth. 

Therefore, we need to explore a new method for the crack identification of FGM beams. This method 

should be effective for the FGM beam with both small and large crack depths. By applying the continuous 

wavelet transform (CWT) to the spatial distribution of the transmitted power flow, the new method 

developed in Section 7 is used for the crack identification of FGM beams. The damage index of the FGM 

beam is plotted in Fig. 18 for various crack depths with ,  and . It can 

be clearly seen that the damage index has a peak value at  for both small and large crack depths. 

The peak indicates the location of crack where the wavelet coefficient modulus converges. Therefore, the 
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present wavelet-based crack identification method is effective for FGM beams even with a small crack 

depth. 

 

9. Conclusions 

This paper proposed the vibrational power flow analysis of cracked FGM beams with infinite length. 

The effect of the crack location, the crack depth and the Young’s modulus ratio on the input power flow 

and transmitted power flow is discussed. A new crack identification method is developed by applying 

CWT to the transmitted power flow distribution along the beam longitudinal direction. It is found that:  

1. Unlike intact FGM beams, the input power flow and transmitted power flow of cracked FGM beams 

produce the fluctuation with the variation of the frequency. The reason is that there is the reflection 

wave between the crack location and driving force position, which alters the characteristics of the 

power flow curves. 

2. The amplitude of the power flow-frequency curves is increased with increasing crack depth. The crack 

depth does not influence the wavelength of the curves. 

3. The input power flow and transmitted power flow of cracked FGM beams are a periodic function with 

respect to the crack location. 

4. A new damage index is proposed for the crack identification of FGM beams by applying CWT to the 

spatial distribution of the transmitted power flow. This crack identification method is effective for 

FGM beams with both small and large crack depths.  
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Figure captions 

 

Fig. 1. A cracked FGM beam (a) and the massless rotational spring model connecting two sub-beams (b). 

Fig. 2. The forced and free waves under the action of a harmonic force in an intact FGM beam (a) and a 

cracked FGM beam (b). 

Fig. 3. The input power flow of intact circular FGM beam 

Fig. 4. The effect of the Young’s modulus ratio  on the input power flow versus frequency curves 

of intact FGM beams.  

Fig. 5. The effect of the Young’s modulus ratio  on the input power flow versus frequency curves 

of cracked FGM beams with  and . 

Fig. 6. The effect of the crack depth  on the input power flow versus frequency curves with 

 and . 

Fig. 7. The effect of the crack location  on the input power flow versus frequency curves with 

 and . 

Fig. 8. The effect of the crack depth  on the input power flow versus crack location curves with 

 and . 

Fig. 9. The effect of the Young’s modulus ratio  on the input power flow versus crack location 

curves with  and . 

Fig. 10. The effect of the driving frequency  on the input power flow versus crack location curves with 

 and . 

Fig. 11. The effect of the crack depth  on the transmitted power flow versus frequency curves with 

 and . 

Fig. 12. The effect of the crack location  on the transmitted power flow versus frequency curves 

with  and . 

Fig. 13. The effect of the Young’s modulus ratio   on the transmitted power flow versus 
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frequency curves with  and .  

Fig. 14. The effect of the Young’s modulus ratio  on the transmitted power flow versus crack 

location curves with  and . 

Fig. 15. The effect of the crack depth  on the transmitted power flow versus crack location curves 

with  and . 

Fig. 16. The effect of the driving frequency  on the transmitted power flow versus crack location 

curves with  and . 

Fig. 17. The spatial distribution of the transmitted power flow of cracked FGM beams for various crack 

depth with ,  and . 

Fig. 18. The Damage index of cracked FGM beams for various crack depth with 

,  and . 
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Fig. 1. A cracked FGM beam (a) and the massless rotational spring model connecting two sub-beams (b). 
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Fig. 2. The forced and free waves under the action of a harmonic force in an intact FGM beam (a) and a 

cracked FGM beam (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

 

 

 

 

  
Fig. 3. The input power flow of an intact circular isotropic homogeneous beam 
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Fig. 4. The effect of the Young’s modulus ratio  on the input power flow versus frequency curves 

of intact FGM beams.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 500 1000 1500 2000 2500 3000
-70

-65

-60

-55

-50

-45

-40

10
 lo

g1
0(

P in
 / 

F 02 )(
dB

)

Frequency (Hz)

 E2/E1 = 5, µ2/µ1 = 1
 E2/E1 = 1, µ2/µ1 = 1
 E2/E1 = 0.2, µ2/µ1 = 1
 E2/E1 = 0.2, µ2/µ1 = 1.3
 E2/E1 = 0.2, µ2/µ1 = 0.7

2 1/E E



26 
 

 
 
 
 
 

 

 

Fig. 5. The effect of the Young’s modulus ratio  on the input power flow versus frequency curves 

of cracked FGM beams with  and . 
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Fig. 6. The effect of the crack depth  on the input power flow versus frequency curves with 

 and . 
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Fig. 7. The effect of the crack location  on the input power flow versus frequency curves with 

 and . 
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Fig. 8. The effect of the crack depth  on the input power flow versus crack location curves with 

 and . 
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Fig. 9. The effect of the Young’s modulus ratio  on the input power flow versus crack location 

curves with  and . 
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Fig. 10. The effect of the driving frequency  on the input power flow versus crack location curves with 

 and . 
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Fig. 11. The effect of the crack depth  on the transmitted power flow versus frequency curves with 

 and . 
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Fig. 12. The effect of the crack location  on the transmitted power flow versus frequency curves 

with  and . 
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Fig. 13. The effect of the Young’s modulus ratio   on the transmitted power flow versus 

frequency curves with  and .  
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Fig. 14. The effect of the Young’s modulus ratio  on the transmitted power flow versus crack 

location curves with  and . 
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Fig. 15. The effect of the crack depth  on the transmitted power flow versus crack location curves 

with  and . 
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Fig. 16. The effect of the driving frequency  on the transmitted power flow versus crack location 

curves with  and . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 10 20 30 40
0.48

0.49

0.50

0.51

0.52

P tr
 / 

P in

L1 / h

 w = 150 Hz
 w = 750 Hz
 w = 1500 Hz

w

/ 0.1a h = 2 1/ 5E E =



38 
 

 
 
 
 
 

 

 
Fig. 17. The spatial distribution of the transmitted power flow of cracked FGM beams for various crack 

depth with ,  and . 
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Fig. 18. The Damage index of cracked FGM beams for various crack depth with 

,  and . 
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