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THE BIGGER PICTURE External validation is critical for establishing machine learning model quality. To
improve rigor and introduce structure into external validation processes, we propose two extensions,
convergent and divergent validation. Using a case study, we demonstrate how convergent and divergent val-
idations are set up and also discuss technical considerations for gauging performance, including establish-
ment of statistical rigor, how to acquire valid external data, determining the number of times an external vali-
dation needs to be performed, and what to do when multiple external validations disagree with each other.
Finally, we highlight that external validation remains andwill be highly relevant, even to newmachine learning
paradigms.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

We discuss the validation of machine learning models, which is standard practice in determining model ef-
ficacy and generalizability. We argue that internal validation approaches, such as cross-validation and boot-
strap, cannot guarantee the quality of a machine learning model due to potentially biased training data and
the complexity of the validation procedure itself. For better evaluating the generalization ability of a learned
model, we suggest leveraging on external data sources from elsewhere as validation datasets, namely
external validation. Due to the lack of research attractions on external validation, especially a well-structured
and comprehensive study, we discuss the necessity for external validation and propose two extensions of
the external validation approach that may help reveal the true domain-relevant model from a candidate
set. Moreover, we also suggest a procedure to check whether a set of validation datasets is valid and intro-
duce statistical reference points for detecting external data problems.
INTRODUCTION

Machine learning is among themost powerful tools for knowledge

discovery from data today. If a learned model (trained classifier)

correctly captures domain-relevant features (i.e., factors that are

explanatory and causal), the model is deemed domain relevant

and more likely explainable (i.e., the set of interpretable decision

rules is logical and lends itself toward abetter domain understand-

ing.) Such models may be more confidently used in a wide variety

of practical applications, e.g., predicting credit risk,1 recidivism,2

and the state of charge and health of batteries.3

As therearemanydifferentpurposesandapplications inmachine

learning, in thispaper,we limitourselves tobinarypredictivemodels

for about any outcome, with focus on a high-dimensional feature
This is an open access article under the CC BY-N
space (i.e., a very large amount of potential predictors). We are

also concerned with a statistical feature selection paradigm on

the discussions of different issues as well as explanation of ap-

proaches. For such settings, model validation is critical for discov-

ering domain-relevantmodelswith better generalization ability, and

further implies better interpretability. This is a very specialized

context. For general machine learning researches that may incur

more modalities (e.g., visions and robotics) where we may

encounter many black box models, it is not a trivial case to imply

interpretability only from validation performance. There is still a

gap to go from those machine learning problems with many black

box models. We do not consider these types of problems here.

Learnedmodels are evaluated through theprocess of validation,

which is defined as the process of evaluating accuracy—andmore
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Figure 1. Validation Methods Broadly Fall
into Two Types: Internal and External
Internal validation (IV) involves first splitting the input
data into a training set and a test set. The training set
is used to train themodel while the test set is used to
check the accuracy of the model after it has been
trained. External validation (EV) uses the entire input
data for model training and the validation of the
model is done using an independently derived da-
taset(s).
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robust sensitivity and specificity, although these are less

commonly used than accuracy in the machine learning litera-

ture—ondata thatarenotpartof the trainingset.Broadly, validation

is categorizable into "internal" and "external" (Figure 1). Internal

validation (IV) approaches are economical, as they involve splitting

one input dataset into parts—with some parts used for training the

classifier (training data), and the remainder used for validation (test

data). This process is repeated until each part has been used at

least once as testing data. This process is also commonly referred

to as cross-validation. While considered industry standard and

very commonly used, IV procedures are highly heterogeneous

and tuneable.4 In particular, it is left to the discretion of the analyst

which procedural subtype (e.g., k-fold, bootstrap) to use and what

theparametersare (e.g., valueof k,numberof bootstrap iterations).

Another issue is that, if the original input data are, e.g., a biased

sample, cross-validation becomes a biased evaluation of a bias-

edly trained model on a test set that is biased in the same way.

External validation (EV) involves the use of independently

derived datasets (hence, external), to validate the performance

of a model that was trained on initial input data. EV is sometimes

referred to as independent validation—we find this a misnomer,

as the independently derived (by virtue of being sourced from

elsewhere) external dataset may not be truly independent of

the training data.5 Independent validation is also sometimes

used to refer to a validation study by other researchers than

the researchers who developed the model.

EV is usually considered important evidence for generalizability.

Due to the validation set coming from an independent source, any

featureset thatwas falsely selecteddue to idiosyncrasiesof the input

trainingdata (e.g., technical or samplingbias)would likely fail.Hence,

apositiveperformance inEV is regardedasaproofofgeneralizability.

GOOD PREDICTION ACCURACY OFTEN DOES NOT
IMPLY DOMAIN RELEVANCE

Capturing domain-relevant features for model inclusion is impor-

tant as these lead toward reasonable explanations for the ma-

chine learning model. To avoid overfitting or non-generalizability

issues, we should strive toward models that use true causal pre-

dictors of the outcome. In a health-related example, cancer

genes affect many other gene groups, particularly, growth
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genes.6 A model built on growth genes,

while able to differentiate normal tissues

from cancer tissues, may also misdiag-

nose a tissue of rapidly growing cells as

cancer.

While domain-relevant features are use-

ful for explaining why amodel works well, it
is not straightforward to mine these frommodels. Before we can

perform causal interpretation of predictive analytics, the model

first needs to give accurate predictions of the outcome. Howev-

er, it appears that obtaining accurate prediction is fairly easy,

evenwith common validation approaches, such as the bootstrap

and cross-validation. However, an accurate model can be

naively overfitted: for example, in a medical imaging study,

Zech and colleagues7 noticed only after training their neural

network that it heavily relied on the word ‘‘portable’’ within an

X-ray image, representing the type of X-ray equipment rather

than the medical content of the image.

Meaningful and clean data, in the sense that the captured

features are informative and that the data are devoid of noise

or confounding effects, may yield accurate models. Unfortu-

nately, in practice, any collected data are effectively a sample,

and may not be a true representation of the population under

study. Before training the model, it is often good to check for

sample bias, and where possible check for errors stemming

from sample size,8,9 heterogeneity,10 noise,11 and confounding

factors.12

Because we cannot rule out that any input data are error-free

and unbiased, a good accuracy within a cross-validation is

generally insufficient to ascertain whether a model is domain

relevant and generalizable. Therefore, it is good practice to

repeatedly challenge the learned model with independently

sampled data (EV). If the good performance persistently repli-

cates, the more likely the learned model is generalizable.

WHY EV SHOULD BE PERFORMED MORE OFTEN?

Statistical techniques can be used to reason about data domain

representativeness and domain relevance, thereby providing a

proxy on model interpretability.12,13 But these techniques may

not be easy to deploy or may require correct prior knowledge

that may not exist.

Since training data may not be truly representative and may

not be properly prepared, we should regard any trained model,

despite having passed IV (e.g., via cross-validation), as poten-

tially non-generalizable. Before actual deployment into the real

world setting, we recommend evaluating a learned model via

EV. This is a simple process that involves challenging the model



ll
OPEN ACCESSPerspective
with additional data that are not involved in the original input data

or aremeaningfully different (for example, in the imaging problem

of Zech et al.7 they could have tested for overfitting by using an

EV in which the input set was produced using different X-ray

equipment).

The logic behind EV is sound: data taken fromcompletely sepa-

rate sources have less in common, but nonetheless may capture

useful domain-relevant aspects. A well-trained model that cap-

tures informative features is robust and will continue to exhibit

good results even when repeatedly challenged with new data.

EV thus provides an assurance that models passing this step

are more likely domain-interpretable. There are nonetheless

some caveats, as discussed in the remainder of this article.

THE CASE STUDY SETUP IN SUPPORT OF THE EV

As there are many different purposes and applications in ma-

chine learning, in this paper, we limit ourselves to binary predic-

tive models for any outcome, with a focus on a high-dimensional

feature space (i.e., a very large amount of potential predictors).

We are concerned with a statistical feature selection paradigm

on the discussions of different issues as well as explanation of

approaches. For such settings, model validation is critical for

discovering domain-relevant models with better generalization

ability, which further implies better interpretability. This is a

very specialized context. We illustrate our point using gene

signature selection in breast cancer.6,14 A gene signature can

be thought of as a set of features where each feature is the

expression level of a gene; and the set forms a prediction model,

which is a classifier in the context of our discussion here.

We first encountered issues with EV in the Venet et al.15 study

of breast cancer prognostic signatures, and explored the impli-

cations for machine learning.6,12,14,16 In the Venet et al. study,

they evaluated multiple reported gene signatures against a sin-

gle large dataset, and found that none of these gene signatures

could beat randomly generated gene signatures or domain-irrel-

evant signatures. In other words, each reported breast cancer

signature, as a consequence of intensive study, gives rise to a

highly accurate model. But an accurate model may not be

domain relevant, as the selected features may in themselves

be non-causal correlates. This leads to many pretender models

(high performance on a dataset, but no relevance).

We propose that a simple way of rooting out pretender models

is to evaluate the substitutability of the feature set; i.e., gener-

ating randomized feature sets to create null models against

which you evaluate your actual model. This may take the

following form. Suppose you are developing a model for predict-

ing two classes, A versus B, on a moderately large feature space

of 20,000 measured features. Since there are many features,

dimensionality reduction is often necessary, and so, from the

initial 20,000 feature space, you pick 10 based on class correla-

tion (or any other feature selection approach17), and use these 10

features to train a model X using input training data D1. Model X,

when validated on validation data D2, produces an accuracy of

90%, which appears reasonable. This suggests that model X is

generalizable, and therefore is domain relevant. However, a

randomly selected feature set, also of size 10, is also used to

train a model XR on D1, producing an accuracy of 90% on D2.

Repeating this experiment many times over shows that the
average prediction accuracy of random feature sets is about

92%. The accuracy based on X is scarcely better than the accu-

racy of XR. In a typical setting, people would not perform this

randomization test, and merely report X as good based on the

EV prediction accuracy of 90%. While certainly a good result,

X has, in fact, little to no information value since random features

sets do as well, if not better.

While this technique does not leverage on domain knowledge

or carefully constructed explainable models, it can be used

straightforwardly for eliminating falsely high-performing

models.4 This example also tells us that we cannot trust the ac-

curacy of a single EV as objective evidence of domain relevance.

In a robust model validation strategy, IV and EV should be

used together in a tandem configuration where IV is first de-

ployed to provide a quick sense of performance before relying

on EV to determine domain-correctness. In particular, IV is un-

likely to be able to detect if the training dataset is not domain

representative; and non-domain representativeness of training

data is not an uncommon situation (cf. https://channels.

theinnovationenterprise.com/articles/bad-data-is-ruining-machine-

learning-here-s-how-to-fix-it). EV is an essential procedure in

counteracting this. Moreover, EV provides robustness to class-

prediction accuracy, which in turn acts as a proxy for interpret-

ability. Unfortunately, while it is common to encounter literature

covering tutorials and explanations on how to design and

execute IV,18–20 with accompanying studies of its theoretical

and statistical properties,21 information on how to conduct EV

properly or evaluating the outcome of an EV (when you should

or should not believe the results of an EV) is less common. In

an advanced search on Nature Publishing Group’s website

where we searched for publications containing the terms =

‘‘cross-validation classifier’’ and publication date = ‘‘2019 to

2020,’’ we then looked at the first 40 results, after discarding a

tutorial and a review article. Of these 40 results, 20 seemed

questionable (i.e., there was no evaluation based on clear inde-

pendent dataset) and 20 seemed appropriate (i.e., had indepen-

dent datasets or it was not clear that they had an independent

dataset). So, one might say that there is some evidence that pa-

pers that use cross-validation as part of their study methodology

have a tendency (�50%) to not use an independent validation

dataset. The search above returned 1,296 results. After dropping

‘‘cross-validation’’ from the search terms, 2,566 results were re-

turned. So, about half (1,296/2,566) of the papers published by

the Nature Group in 2019–2020 that pertain to constructing clas-

sifiers (mostly for biomedical applications), rely on cross-valida-

tion as part of their methodology. Of these, about half can be

considered questionable, as their constructed classifiers were

not evaluated on independent datasets. In other words, about

25% (50% * 50%) of the articles published from 2019 to 2020

by Nature Group pertaining to developing classifiers lack suffi-

cient validation.

EV is not as trivial as simply finding some new data to chal-

lenge the model. That would assume that any data, as long as

sourced elsewhere, would do. Clearly, such looseness lacks

rigor. There is also the need for correct interpretive logic to be

used alongside evaluation of an EV. For example, when the EV

is conducted improperly such that low accuracy is observed,

we may mistakenly think the input data were uninformative or

that the model was overfitted to the training data. When an EV
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Table 1. Summary of EV Approaches

Type

of EV Description

What It

Is For

Known

Instances

of Deployment

Standard Test 1

classifier on

new data

It allows

us to

study the

generalizability

of an inferred

feature set

on one

test data

Many. But

most prominent

are the recent

reproducibility

initiatives, e.g.,

Reproducibility

Project: Cancer

Biology 26

Con

vergent

Test

various

independent

classifiers

on one

new data

Evaluating

the information

value of the

various feature

sets inferred

across various

studies on one

particular set

of class labels

Breast

cancer

biomarkers 15

Divergent Test 1

classifier

on many

new data

It allows us

to study the

generalizability

of an inferred

feature set

on multiple

test data It

can also be

used to check

for issues with

validation data

Breast

cancer

biomarkers14
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mistakenly informs that a correctly trained model failed to gener-

alize, it is a waste (or a form of false negative, if you like).

Conversely, we should be just as wary when a persistently

good EV result is observed, as it may be due to data biases

(e.g., the presence of a batch effect),22 false statistical assump-

tions (the used case requirements of the statistical model are not

met),13 or theremay be an incompatibility between the input data

and the real world (e.g., random sampling biases causing the

sample to be non-representative of the population of study).23,24

The phenomenon where irrelevant factors lead to misleading

good results is known as the Anna Karenina effect.12 Using

such mis-trained models in real world settings can produce un-

desirable consequences.24

TWO EXTENSIONS OF THE EV

IVevaluatesperformanceondata fromexactly thesameunderlying

population, whereas EV evaluates performance on data from

similar but not identical underlying populations. Different EVs

may each contribute data from different underlying populations

(e.g., different hospitals, different countries). EV on multiple data-

sets is important for revealing theheterogeneity inamodel’sperfor-

mance, and for fully appreciating the generalizability of a model.25

We propose two procedures that extend the EV. We call these

convergent and divergent validations. They have useful proper-

ties but require more work to execute26 (see Table 1 and Figure 2

for an overview). For in-depth details on implementations and
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outcomes of convergent and divergent validations, please refer

to, e.g., recent publications of Goh and Wong.6,14

There are three key benefits associated with convergent and

divergent validations: (1) convergent validation helps us identify

better features, leading to better domain-relevant models; (2)

divergent validation helps us eliminate domain-irrelevant models

because they cannot pass all datasets; and (3) divergent valida-

tion helps us identify good EV datasets. These key points are

elaborated below.

In convergent validation, you evaluate the information value of

multiple feature sets inferred from n datasets, use these to train n

models, and then challenge these n models against one valida-

tion data. Convergent validation is not a universally adopted

procedure (i.e., it is not a mature or regular practice, and not

introduced formally to the machine learning field; but it has

good potential application.) We propose the idea for convergent

validation based on the gene signature profiling work of Venet

et al.,15 where they compared the ability of different breast can-

cer gene signatures (here, these correspond to feature sets) in-

ferred from different studies against one single large high-quality

breast cancer dataset, the NKI.27 Venet et al.’s main purpose

was to demonstrate that each of the published gene signatures

performed poorly in prediction relative to randomly generated

signatures. However, the results can also be taken to mean

that each of the signatures has a chance to capture an aspect

of what is domain relevant. Thus, some signatures have higher

information value than others, whereas some had little informa-

tion value and could not predict the sample classes in the NKI

at all. Formally, each time a model is trained on one signature

and validated against the NKI counts as one independent valida-

tion of that signature. By considering the varied outcomes of

each of these independent validations, we may isolate strongly

performing signatures from weakly performing ones. In addition,

we can identify various levels of commonalities among the most

highly performing signatures. This allowed us to isolate a

strongly predictive 80-gene breast cancer signature that is

essentially inferred from the best performing signatures.6,14 We

call this signature the super proliferation set (SPS). Members of

this feature set are strongly correlated with breast cancer sur-

vival: inclusion of a small number of SPS genes is enough to

turn a non-useful signature into a strong predictor and, also,

the stronger a published signature the higher its overlap with

SPS genes.6,14 These observations suggest that the expression

changes of SPS genes are key events in breast cancer survival.

In this case study, the feature set garnered from convergent vali-

dation has high information value. The procedure is therefore

useful for isolating more meaningful explanations in the feature

sets, and therefore achieving better interpretability.

In divergent validation, the goal is to understand if a feature set

is truly generalizable. The approach involves using a feature set

to train a model and then challenging the model repeatedly

acrossmultiple validation datasets. Divergent validation is useful

for demonstrating that a feature set is universally applicable, and

that an initially observed good performance is not due to chance.

For example, when SPSwas benchmarked across seven new in-

dependent datasets, SPS was able to correctly predict the class

labels in all seven of these datasets, suggesting that the feature

set is domain relevant.6,14 This also suggests that (at least in the

context of breast cancer survival), there appears to be



Figure 2. Two Extensions of the EV:
Convergent and Divergent
Convergent validation uses multiple features sets to
train multiple models. Each model is, in turn,
benchmarked on a gold standard validation data-
set. Divergent validation uses a single feature set to
train one model followed by repeated challenging
with multiple datasets.
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"universal" signatures that seem immune to the heterogeneity of

test sets. This makes the point that, if one were satisfied that one

got a good signature because it worked in one hospital despite

failing in others, one would not have identified better and more

universal signatures (in the best case) or one would have ended

up with a random misleading signature that would likely fail next

week (in the worst case).

TECHNICAL CONSIDERATIONS FOR DEPLOYING EV

In this section, we cover four additional technical considerations

in deploying EV: (1) generating statistical rigor, (2) considerations

for acquiring ‘‘valid’’ external data, (3) how much data are

enough, and finally (4) what to do or how to think should the mul-

tiple external data exhibit controversial or contradictory results.

Generating Statistical Rigor
Complementing the above setup, we can make convergent and

divergent validations even more meaningful by combining the

observed accuracies with empirical and theoretical null distribu-

tions as reference points, using the example of Venet et al., in

which they compared the predictive performance of each re-

ported signature against randomly generated signatures of the

same size.15 The accuracies of these randomly generated signa-

tures constitute an empirical null distribution. This empirical null

distribution allows us to understand the information value of a

signature, as follows: suppose a validation accuracy of 90%

was observed for a model, which is a signature in this example,

it is useful to know whether this 90% is meaningful (Figure 3).

One way to proxy meaning is to assign a measure of significance

to the observed accuracy by checking the number of times a

randomly generated signature performs on par or better.28 Sup-

pose only 1 case out of 1,000 random cases equals or exceeds

90%, then the significance value—i.e., the p value—can be rep-

resented as a proportion, 1/1,000 or 0.001. This means that the

observed accuracy of 90% produced by this feature set is not

substitutable by noise. Alternatively, suppose in 900 out of

1,000 cases randomized feature sets perform better. Then, the

significance value is 900/1,000, or 0.90. This can mean two
things: the feature set on hand is substitut-

able by noise (and thus has no meaning) or

all measured features are essentially class-

correlated. Including the significance value

allows better evaluation of convergent vali-

dation by identifying which feature sets are

more likely to be meaningful.

In divergent validation, a similar tactic

can be used as well. Say, a given feature

set of size 80 is benchmarked across n vali-
dation datasets, then 1,000 random feature sets of the same size

are generated and tested across each of these n validation data-

sets. For each of these 1,000 random feature sets, we count the

number of datasets for which it is able to correctly assign the class

labels. This forms an empirical null distribution of the number of

datasets that a random feature set can perform well on. Then

the number of datasets the given feature set performs well on is

compared against this empirical null distribution. If a significant

fraction, say 5%, of the 1,000 random feature sets perform well

on an equal or greater number of datasets than the given feature

set, the given feature set is likely substitutable by noise; otherwise,

the given feature set is likely not substitutable by noise.

Considerations for Acquiring Valid External Data
It is difficult to establish a priori, based on just the data descrip-

tions, to ascertain if external data are valid. One post-hoc pro-

cedure, as discussed later, is to perform divergent validation

and check if any of the external data exhibit unusual behaviors.

When training a model, training and EV data should be inde-

pendently derived. However, just because the training and test

data are independently derived does not mean that they make

a good training-validation pair. Suppose for some reason the

training and validation data are extremely similar, this would

guarantee a good validation outcome, yet it informs little on

whether a model has been learned intelligently. Such data dop-

pelg€angers directly affect a model’s performance. For example,

Cao and Fullwood5 did a detailed evaluation of existing chro-

matin interaction prediction systems. The work reveals that the

performance of these systems has been overstated because of

problems in assessment methodologies when these systems

were reported. In particular, these systems were evaluated on

validation data that shared a high degree of similarity to training

data. While it is good that the problem was discovered, it is sur-

prising that eliminating or minimizing similarity between test and

training data is still not a universal practice for model evaluation.

This explanation—that the data involved in the training-valida-

tion pair were never checked properly to ensure they were truly

dissimilar—also brings in the question of how different do the

data need to be and how to check for this.
PATTER 1, November 13, 2020 5



Figure 3. A Schematic on How to Interpret Observed Validation
Accuracies against a Backdrop of Null Accuracies Using p Values
We use four mock external validation (EV1–EV4) scenarios to showcase that
high accuracy does not necessarily mean low p values (highly significant
outcomes). The violin plots represent null accuracies generated by randomi-
zation while the diamond represents the observed accuracy. The p value (p) is
the proportion where random accuracies outperforms observed accuracy.
Here, EV1 has an observed accuracy of 90%, and this performance is only
matched by 1 out of 1,000 random cases. The p value (p) is thus 0.001 (1/1,000)
and therefore this feature set is likely meaningful (or high information value). In
a second scenario, EV2 has the same observed accuracy as EV1 but this
performance is matched by 900 cases out of 1,000 cases. EV2’s p is thus 0.90,
suggesting that this feature set does not have clear information value. High
observed accuracies are not always meaningful: EV3 and EV4 are similar to
EV1 and EV2 but with appreciably lower accuracies. The same analysis can
also be performed. Low accuracy therefore does not mean low informa-
tion value.
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It is possible to use ordination methods, e.g., principal-

component analysis, coupled with scatterplots, to see how the

instances are scattered in multi-dimensional space. If the

training and validation data points are extremely clustered

together, you may expect that the validation results will turn

out well. But this does not give us an intuitive or robust way to

avoid the doppelg€anger effect.

One practicewe have observed is to abandon the training-vali-

dation distinction altogether and mix the data to derive a larger

sample that is hopefully more domain representative, and to

test for performance stability instead.29 Alternatively, leveraging

on domain-relevant contexts may also work. For example, Cao

and Fullwood5 called for more comprehensive and rigorous

assessment strategies, based on the particular context of the

data being analyzed. In their case, to split training and test

data based on individual chromosomes (instead of considering

all chromosomes together), and to use different cell types to

generate gold standard training-validation pairs, thus establish-

ing better practices/standards in the domain.

It is non-trivial to propose universal measures to guarantee

valid EV data. We have to be careful to guard against data dop-

pelg€angers. It is also useful to perform multiple rounds of EVs
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(divergent validation) and to check for consistency. Should any

external data behave unusually, it is possible that these data

may have issues, and their validity should be called into

question.
Determining Sufficient EVs
In our previous simulations with randomly generated feature sets

that are then tested against multiple external data, we find that

these meaningless feature sets can be used to construct models

that somehow work with some but not all external data (an illus-

tration of this is shown in Figure 4). This is expected because we

do not expect models constructed from meaningless feature

sets to generalize during a divergent validation. However, this

assumes that there are sufficient numbers of independent data-

sets for the divergent validation. In particular, if there are too few

independent datasets in the divergent validation, many models

constructed from meaningless feature sets may still perform

well on all of the independent datasets.

Thus, it is important to determine the number of independent

datasets needed in a divergent validation to keep models from

meaningless feature sets under control. Earlier, we mentioned

generating an empirical null distribution using random feature

sets on a given test data. This empirical null distribution can be

used to infer a bound on the number of independent datasets

needed. In particular, the fraction of random feature sets that

performs on a par or better than a given feature set on this test

data, i.e., the p value, is also the probability of a random feature

set performing well on a test data. Therefore, the probability of a

random feature set performing well on n independent test data is

pn. In other words, if we want no more than say 1% of random

feature sets to pass a divergent validation, i.e., pn < 0.01, there

should be n > 0.01/log(p) independent datasets. For example,

when half the random feature sets can perform well on a test

data, i.e., p = 0.5, n = 7 independent test data are needed to

keep random feature sets at bay. More generally, binomial distri-

bution is appropriate for constructing the expected behavior for

how models trained with random signatures perform in the

external divergent validation. Specifically, the probability that a

random feature set is able to do well on k independent external

datasets follows a binomial distribution prob(k; n, p) =�
n
k

�
pkð1� pÞn�k , where n is the total number of external data-

sets and p is the probability that a random feature set is able to

do well in a dataset. Thus the number of random feature sets ex-

pected to performwell on k external dataset is given by prob(k; n,

p) *x, where x is the total number of random feature sets being

considered. In our breast cancer example, x = 1,000 random

feature sets were generated; about half of the random feature

sets was able to perform well on the NKI dataset, thus p = 0.5;

this means a random signature has a probability of pn to perform

well on n datasets; so n was set to 7 to keep pn < 1%.

As shown in both Figure 4 scenarios, using the binomial distri-

bution as a theoretical model (red bars), it is extremely difficult

models trained on random feature sets will work on all seven

external data. In the scenario below (Figure 4), we observe that

such random models seldom work on more than four EV data.

So, four external datasets may be sufficient where external

data are in short supply.



Figure 4. Divergent Validation Comparing
Published Signatures (Yellow), Expected
Theoretical Distribution Based on the
Binomial Distribution (Red), and Randomized
Signatures (Blue) across Seven Datasets
The y axis is a frequency count based on the x axis,
which represents the number of validation datasets
for which a signature is predictive on. Left illustrates
the situation where random signatures do not work
well in more than three datasets (although it was
later found that it was always the same three data-
sets that has this issue with random signatures).
Right is a repeat experiment using seven new
curated datasets with better outcome. The ran-
domized signatures are more evenly distributed
although their performance is appreciably lower
than purely random (based on the binomial distri-
bution). The fact that it is not always the same da-
tasets that are confounded with random signatures
means these curated datasets are more well suited
to serve as independent validation data.
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What to Do if the EVs Disagree
We may use the information encapsulated in divergent validation

(Figure 4) to determine issues in the validation datasets. In the first

example (Figure 4, left), across seven validationdata, an extremely

high blue peakwas observed at n = 3,meaning thatmost random-

ized feature sets work well on three external data. This deviates

from the expected binomial distribution and is suggestive that

the seven validation datasets may not be independent of each

other and may not be independent of the training data.

Indeed, a closer inspection revealed that it was often the same

three datasets contributing to the blue peak in Figure 4 (left).

These observations suggest that these validation datasets

consistently work with randommodels. Obviously, such external

data should be avoided.

We repeated the divergent validation experiment on a new set

of closely curated data (Figure 4, right). This time, the observed

performance (blue) is more even, although it still does not match

well with the theoretical binomial distribution (red)—suggesting

that our estimated value of the probability p is too high. At the

same time, it is noteworthy that themodels trained onmeaningful

feature sets worked on all external data (yellow).

These observations lead toward two critical insights: firstly, a

meaningful feature set should always work well with any valid

external dataset and must exceed the performance of random-

ized feature sets. Secondly, the application of random feature

sets (with zero information value) on divergent validation allows

identification of valid external data.

RELEVANCE OF EV TO NEW MACHINE LEARNING
DEVELOPMENTS

While convergent and divergent validations have useful proper-

ties, they are not panaceas—that is, they will not guarantee

that your classifiers aremeaningfully generalizable. For example,

when most features are correlated with the class labels, EVs will

do no better than traditional validation approaches. However,

you can detect this issue by adding statistical reference points

when conducting the EV (Figure 4).

There are also growing trends in the machine learning area

where data frommultiple sources are leveraged to learn a model

that has the potential to generalize well. For example, federated

learning (FL) is a machine learning setup where many devices,
acting as nodes in a network, collaboratively train a model under

the coordination of a central server.30 This has parallels to

convergent validation where each classifier basically has access

to only part of the data. However, unlike convergent validation,

each node in FL forms part of a large single network-based clas-

sifier whose activities are coordinated centrally. Another key dif-

ference is control—in convergent validation, unwanted bias is

minimized by using a global curated training data, whereas in

FL this does not happen (FL is a technological solution focusing

on secure data collection). FL and convergent validation also

may experience similar issues to local data heterogeneity,

such that each node or classifier may have some bias with

respect to the true underlying population.

In FL, local models can also be generated instead of a sin-

gle global model. Here, we speculate an evolution from FL to

federated testing, so that data residing in other nodes are

used as validation data for divergent validation. This is a

tantalizingly applicable scenario for personalized modeling.

In this context, there is no global model. Instead, a separate

new model is created for all new data (with unknown outcome)

using the extended local repository of data until that moment

in time. The new model can be dispatched—as a black box

with a ‘‘good behavior promise’’—to federated nodes for

divergent validation. In this way, only a summary of the

black box’s performance on a node is passed back to origi-

nating node, and no data from one node is passed to another

node.

OTHER PERFORMANCE MEASURES

Althoughwemade our point for EV using the class-prediction ac-

curacy as the primary performancemeasure, this does not mean

that the class-prediction accuracy is a truly useful or objective

measure. In fact, it is often argued that accuracy is an uninterest-

ing or limited measure in most applications as it is influenced by

class imbalances and other instability issues.4We do not dispute

that. But simply state that it is convenient for use with valid stra-

tegies. Moreover, for test sets, class imbalance in itself is not the

issue); the issue is class proportion being too different from real

life, affecting interpretation of accuracy. If we know what the real

life proportion is, we can report a calibrated accuracy that can be

more correctly interpreted.4,31
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As for whether other measures, such as precision and

recall-measure, can objectively prove generalizability where

the accuracy cannot, we remain skeptical. There have also

been some misleading discussions about Cohen’s kappa be-

ing resilient against class imbalance issues (https://

thedatascientist.com/performance-measures-cohens-kappa-

statistic/). Cohen’s kappa is a proportion indicating whether a

learned model’s performance is better than that of a randomly

guessing model (which guesses according to the frequency of

each class). Cohen’s kappa is also sensitive to class imbal-

ance; if class proportion changes, Cohen’s kappa can also

change dramatically. Say test set 1 has a 20:80 split of posi-

tives versus negatives, and sensitivity = specificity = 80%;

then kappa = 0.49. Say test set 2 has a 50:50 split and sensi-

tivity = specificity = 80%; then kappa = 0.60. The kappa value

does indicate that the performance on test set 2 may be due

less to chance than that on test set 1; but it is misleading to

think—purely on the basis of kappa—that the performance

on test set 2 is higher than on test set 1, as the sensitivity

and specificity are actually identical on both test sets.

Sensitivity and specificity together (and thus ROC), since

they are not affected by class imbalance, are more robust

than kappa. It is in fact possible to compute a confidence inter-

val (CI) for both sensitivity and specificity, to interpret against

chance, although these are seldom computed in the machine

learning community. For example, the CI of sensitivity and

specificity can be computed as a simple asymptotic CI, at least

for datasets that are not too small.32 These perspectives can

help provide some assurance quality. Although we have not

used these ourselves, we think that they may be useful for eval-

uating EV performance.

CONCLUSIONS AND FUTURE DIRECTIONS

Achieving domain-relevant models in machine learning is chal-

lenging but necessary for achieving good explainability and

generalizability. Wemay admit better quality models by perform-

ing EV better. It is not an error-free process: a good performance

in a single independent validation does not guarantee that the

model generalizes. EV procedure can be influenced by factors,

such as the coverage of the feature set and its correlation with

data classes, the presence of technical bias such as batch ef-

fects, and whether there is unknown data leakage between the

training and validation data.

Designing robust EV technique is highly useful. Because the

procedures constitute a core part of machine learning model

evaluation, our proposed extensions of the EV are also valid

beyond the health and bioscience domains. Given that many da-

tasets and feature sets exist for many modeling problems, it is

feasible to perform both convergent and divergent validation

methods, as extensions of the traditional independent validation.

These two procedural extensions are synergistic, allowing us to

take advantage of existing data to develop more robust models:

Convergent validation can help to identify domain-relevant

feature sets, which provide high explainability, and therefore bet-

ter interpretable models. But to know which of these models are

indeed more likely correct, a single independent validation is

insufficient. Divergent validation allows to rigorously test for

generalizability. It also allows to detect confounding issues be-
8 PATTER 1, November 13, 2020
tween the training and validation data, as well as between

different validation data.
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