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GEM: online globally consistent dense elevation
mapping for unstructured terrain

Yiyuan Pan, Xuecheng Xu, Xiaqing Ding, Shoudong Huang, Yue Wang, and Rong Xiong

Abstract—Online dense mapping gives a representation of the
unstructured terrain, which is indispensable for safe robotic
motion planning. In this paper, we propose such an elevation
mapping system, namely GEM, to generate a dense local elevation
map in constant real-time for fast responsive local planning, and
maintain a globally consistent dense map for path routing at the
same time. We model the global elevation map as a collection of
submaps. When the trajectory estimation of the robot is corrected
by SLAM, only relative poses between submaps are updated
without re-building the submap. As a result, this deformable
global dense map representation is able to keep the global
consistency online. Besides, we accelerate the local mapping by
integrating traversability analysis into the mapping system to
save the computation cost by obstacle awareness. The system is
implemented by CPU-GPU coordinated processing to guarantee
constant real-time performance for in-time handling of dynamic
obstacles. Substantial experimental results on both simulated and
real-world dataset validate the efficiency and effectiveness of
GEM.

Index Terms—elevation mapping, consistency, scalability

I. INTRODUCTION

ERCEIVING the terrain and nearby obstacles is a vital

capacity for safe and efficient on-the-ground autonomous
navigation . This task is achieved by building a map of
the environment based on sensor measurements, which is an
indispensable component in mobile robot navigation system.
Simultaneous localization and mapping (SLAM) is such a
solution to integrate the sensor data into a map representation
in real time [1]. Thanks to the full trajectory optimization in
SLAM, the yielded map is globally consistent. However, the
map in SLAM is generally encoded by a set of features [2]
or point cloud [3], which is sparse and unsuitable for motion
planning.

To address the problem, several mapping methods are pro-
posed to build a dense map based on the trajectory estimation
of SLAM using acquired sensor data. Occupancy grid map is
the most mature representation, in which each grid indicates
whether the corresponding space is free or occupied [4].
Many mature planning methods are developed on this type
of map [5]. However, occupancy grid map cannot deal with
the uneven ground surface, like slope, thus mostly used in the
indoor environment. Elevation map [6] replaces the occupancy
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(a) Dense mapping before loop correction using LiDAR.

(b) Dense mapping after loop correction using LiDAR.

Fig. 1.  Our system, GEM, can build large-scale globally consistent dense
map online. The results show the performance of mapping KITTI odometry
00 using LiDAR before and after loop closure correction. Note that the edge
of shadow is very smooth in the updated map.

information stored in each grid with the elevation, which is
able to represent the 2.5D ground surface by grid map. As
a result, elevation map is widely applied in on-the-ground
navigation, especially on unstructured terrain [7].

Generally, a global elevation map is built offline, when the
whole trajectory in the mapping stage is estimated. However,
in scenarios where no prior map is available, the whole trajec-
tory is estimated and corrected by SLAM online, which means
we have to save all sensor data and re-build the elevation map
using the current trajectory. Note that such corrections occur
frequently during SLAM, preventing the system from mapping
the environment online to capture the dynamic obstacles in
time. In [8], robocentric elevation mapping is proposed to
build a map using only visual odometry (VO) or visual-inertial
system (VINS), which does not correct the trajectory, avoiding
the map re-building to achieve real-time performance. But
such a solution loses the global consistency of the dense map,
which may confuse the global path routing. Therefore, the
main challenge for mapping is to achieve global consistency
and real-time performance at the same time.

In this paper, we introduce an online globally consistent
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elevation mapping system using either stereo vision or LiDAR,
namely GEM. The central idea is to represent the global
map by a set of submaps. For global consistency, the relative
poses between submaps are updated with each submap keeping
invariant, deforming the map online according to the corrected
trajectory without re-building the map as shown in Fig. 1,
thus making online processing possible. For real-time perfor-
mance, as only surrounding environment is important for local
planning, we propose a local mapping stage decoupled from
submap and global map building stage, which is guaranteed in
exactly constant size. Furthermore, we integrate the traversable
region detection into local mapping to reduce the computation
cost by only checking obstacles in ray tracing. The whole
system is implemented by GPU-CPU coordinated processing,
simultaneously achieving in-time response to dynamic obsta-
cles, and globally consistent mapping for long-horizon path
routing. In addition, we also present a mechanism to relate the
number of submaps to the size of the mapping area, enabling
long-term scalability. To the best of our knowledge, this is
the first elevation mapping system achieving both goals. The
contributions are summarized as:

o Formulating a global elevation map as a set of submaps,
so that we can deform the global map to keep consistency
without re-building the map upon a trajectory correction;

« Presenting a framework having decoupled local mapping,
submapping and global mapping to exactly bound the
computation complexity at each step, as well as obstacle-
aware ray tracing and map maintenance mechanism to
further improve efficiency and scalability;

e Building a GPU-CPU coordinated mapping system,
namely GEM, which has constant real-time local mapping
and globally consistent mapping capability. Both stereo
vision and LiDAR are applicable to the system. The code
of GEM is released!;

¢ Conducting experiments on both simulation and real
world involving on-the-road and campus environments
with dynamic objects are presented to validate the ef-
fectiveness of GEM. A video of the mapping process is
uploaded to [9].

II. RELATED WORK
A. SLAM and sparse mapping

There has been extensive work on SLAM, which generally
uses a sparse map to model the environment. When visual
sensors are employed, the feature points are integrated with the
trajectory into the SLAM estimation, resulting in a globally
consistent sparse feature map. A typical method following this
idea is ORB-SLAM?2 [2]. As globally consistent estimation
takes much time, only trajectory is considered in SLAM
estimation, like VINSmono [10]. To maintain the global con-
sistency, place recognition[11], [12] is used to provide loop
closure candidates and both classes of SLAM methods correct
the whole trajectory when a loop closure happens. To avoid
frequent correction of the trajectory, there are methods only
estimating the current poses [13]. As a result, the sparse map

Uhttps://github.com/ZJU-Robotics-Lab/GEM

keeps invariant all the time. But such solutions are actually
visual odometry, losing the global consistency in the map.
For LiDAR, there are also similar situations. For globally
consistent SLAM methods [14], the trajectory changes dur-
ing mapping session, while LiDAR inertial odometry, keeps
invariant with a cost of losing global consistency [15]. In
addition, it is hard using either LiDAR or vision sensors for
motion planning on the sparse maps with both kinds of SLAM
algorithms.

B. Dense mapping and representations

To build a dense map which is required by many motion
planning methods, several types of dense mapping methods
are proposed. The most mature method is the occupancy grid
map, in which each grid indicates the probability of free [4].
The estimation of the grid state is achieved by sequentially
integrating the sensor data following the Bayesian filtering.
However, the occupancy grid map is only suitable for planar
ground. To extend dense mapping for the environment with
various elevations, 2.5D and 3D dense mapping methods
are proposed. Elevation mapping is an intuitive extension of
the occupancy grid map [6]. It still uses a 2D grid map,
but estimates the ground elevation in each grid to represent
the 2.5D uneven terrain. Though, elevation mapping cannot
model the environment with multiple layers, it is sufficient for
on-the-ground navigation by only considering the obstacles
lower than the robot height. As for constructing elevation
map with uncertainty modeling, early works on the generation
of elevation map are presented by [16], [17], they apply
special filtering algorithms to eliminate measurement errors
yet ignoring the error propagation from pose estimation. In
the method presented by [18], the uncertainty of the robot’s
estimated pose is reflected in the map by linearly growing
the variance of the grid height. [8] constructs a gravity-
aligned elevation map and further takes the effect of in-plane
uncertainty of the map from the uncertainty of estimated poses
into account. For 3D navigation, like underwater or aerial
robots, building a 3D dense map is necessary. There are
methods to estimate occupancy by extending the occupancy
grid map to 3D occupancy volume [19]. To achieve sub-
voxel accuracy [20], [21], truncated signed distance function
(TSDF) is used. They use a 3D volume to represent the
environment, in which each voxel stores the signed distance to
the surface, enabling multi-frame integration on the distance.
In addition, surfel based map is also an option, in which
each surfel is a small disk to achieve higher accuracy [22].
Note that the most common type of dense map for motion
planning is grid map, like the 2D and 3D occupancy map, as
well as the elevation map [23]. The other 3D representations
generally call for additional conversion to the occupancy grid
or other intermediate representation for planning [24]. More
importantly, these dense mapping methods are applied after
the globally consistent trajectory is no longer corrected by
SLAM, hence offline, or applied when the trajectory is yielded
by odometry, thus lose global consistency.
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Fig. 2. The architecture of the proposed GEM. Any sensor with range measurements can be applied as input, e.g. LIDAR. The SLAM system provides local
and globally consistent trajectory estimations. The complete system consists of two threads, the local dense mapper and the global dense mapper. The local
dense mapper yields the real-time robocentric elevation map for motion planning, while the global dense mapper, a globally consistent dense map for global

routing.

C. Dense mapping with online SLAM corrections

Several methods have proposed to maintain the global
consistency of the map when online SLAM correction hap-
pens. The main idea is to model a deformable dense map
representation. The first line of works connects the elements
of the dense map with the trajectory, thus formulating a similar
problem like feature based SLAM. Surfel-based method [25]
is proposed to register consecutive 3D laser scans with dense
map to estimate the robot motion and construct a pose graph
for global optimization, which is similar with [6] based on
the elevation dense map. In [26], [?], the dense map is
represented as a graph with each node being a surfel. The map
graph is then combined with the trajectory for optimization
to achieve globally consistent result. These methods have the
most consistent results, but the computation cost constrains
the scalability to a larger environment [27]. The second line of
works follows the idea of trajectory only estimation. The main
idea is to partition the dense map into submaps, which are
regarded as local observations for each pose in the trajectory,
making the map deformable. Following this idea, several
works extend the one TSDF volume to multiple TSDF sub-
volumes as a collection of submaps, thus useful for the large-
scale environment [28]. The similar idea is also utilized in
occupancy volumes for globally consistent dense map [29].
These methods build a new submap by only considering the
temporal closeness, leading to the linearly growing complexity
of the map, constraining the scalability even in a small area
when a robot moves in a loop for long term. To solve this
problem, there are works that consider the spatial closeness.
For TSDEF, C-blox [27] is proposed by integrating the measure-
ment to previously built submap when a loop closure happens.
This strategy is also integrated into surfel based mapping [30].

Compared with these methods, the proposed mapping sys-
tem follows the idea of submap based mapping to build
an elevation map. Except for the redundant information and
extra conversion when utilizing 3D dense map for on-the-
ground navigation, we consider that mapping for navigation
has several other aspects. First, accurate reconstruction of the
obstacle is unnecessary for planning, but obstacle awareness is
not easily integrated into the TSDF mapping [31]. Then surfel
based mapping only considers the end points of the sensor
data, losing dynamic objects in the map, which are important

for safe navigation. Also, the dense map can be rendered as
orthomosaic image for collaborative localization [32], [33].
As a summary, we expect the proposed system to not only
bridge the gap between on-the-ground navigation requirements
and dense mapping systems but also boost the development of
multi-agent SLAM.

III. SYSTEM OVERVIEW

The architecture of the proposed GEM is shown in Fig. 2.
The input consists of the SLAM local and global trajectory
estimation, as well as the synchronized sensor data. Here
local trajectory is estimated by sensor-based odometry, like
visual inertial odometry, while global trajectory, by the global
optimization in the SLAM system. In addition, GEM is aware
of the trigger signal from the SLAM system when a global
optimization is executed, so that the global consistency is
maintained in time. An arbitrary SLAM system with such
output is compatible with GEM. We show results from GEM
with a LiDAR and a stereo visual SLAM as the input in
the experimental results. Provided by this information, GEM
yields a robocentric elevation map for local motion planning
and a global elevation map for routing. The system has two
threads, the local dense mapper builds the dense robocentric
elevation map, while the global dense mapper deforms the
graph to maintain the global consistency of the map.

Local dense mapper. In the local dense mapper, there are
three steps to generate robocentric elevation map, including
dense mapping construction, traversable region detection, and
dynamic objects processing. The robocentric elevation map
builds a geometric elevation map with the frame moving
with the robot. The label of the geometric is annotated by
the traversable region detection. If there are dynamic objects,
dynamic objects process updates them in the map to track the
current situation. In order to ensure real-time performance, we
propose a selectively updating mechanism and design a GPU
implementation.

Global dense mapper. In the global dense mapper, there
are three components: submap building, map deformation and
submap maintenance. The global dense mapper integrates the
local map to existing submap or creates a new submap on
the fly. Map deformation is triggered by the SLAM system.
It correspondingly transforms the frames of submaps using
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the corrected trajectory from SLAM to eliminate drift. Then
if a completed submap has a large overlap with the existing
submaps, say a loop closure happens, the submap maintenance
integrates the new submap to the existing submaps to avoid
ever-growing complexity with respect to the trajectory length.
Instead, the computation complexity of this thread depends on
the environment size, increasing the scalability.

IV. LOCAL DENSE MAPPER

Algorithm 1 Local dense mapping
Input:
{r+}: sensor data, T}: the pose, M;: the map frame
Output:
L;: the local elevation map
1: // Uncertainty propagation
2: in parallel do
3 i = threadldx.z + o x blockIdx.x!
4: ;< Transform(ry;, T;)
5. 02« Calculate_variance(rt ;, Ty)
6
7
8
9

: end

. // Fuse multiple observations

: in parallel do

. i =threadldzr.x + o X blockldx.x
10: for all ¢; do

11: if ¢; lies in E; then

12: L; + Fuse_observations(Mj, L;, e;,02)
13: end if

14:  end for

15: end

16: // Annotate traversability

17: in parallel do

18: ¢ = threadldx.x + o X blockldx.x
190 ; siope < Calculate_slope(E;)

20: Vi rough < Calculate_roughness(E;)
21:  Lj free < Calculate_trav(v; siope, Vi rough)
22: end

23: // Process dynamic objects

24: in parallel do

25: 1 =threadldz.x + a X blockldx.x
26:  if Travg, < Threshold then

27: Flag = Ray_tracing(E;,{r:})
28: if Flag = Dynamic then

29: Initialize(E;)

30: end if

31:  end if

32: end

We first introduce the structure of the elevation map. The
elevation map is defined on a grid map with each grid indexing
the elevation and other information. The grid index is discrete.
The frame system is shown in Fig. 3. The pose of the sensor
is denoted as 7; with respect to the global frame G. The
transformation of the map frame with respect to G is defined as
M, which has the same rotation and height as GG, and the same
horizontal translation as 7;. Therefore, M; is always lying
in the zy—plane of G. T} is updated by the local trajectory

Fig. 3. Frame system for the local dense mapper. The global map is in global
frame G, the sensor frame is in 7%. The local map frame M; has the same
rotation and height as G with fixed relative zy translation to 7%.
estimation from SLAM. Since local trajectory estimation is
very smooth, not corrected by SLAM, we can safely use it to
aggregate the elevation map L,. In this framework, all sensors
with range measurements denoted as points {r; }, can be fused
in T; to build the dense map. The algorithm of local dense
mapping is shown in Alg.1.

A. Local geometric map building

Define the local map L; on grid map E spanned at M,
where F; is a grid in F. In each grid, we store color
Li color € R3, elevation L;. € R, variance L; yqr € R and
L; tree € R. To build the elevation map, we first transform
each point measurement r; to G by Tyr;. As the local map
frame is moving with the robot but aligned with G, we can
simply select the first two entries of points as the index of
FE, on which we can render the elevation map and check the
points out of the region of L, at each timestep. Though T}
has drift in the global frame, points in robocentric region are
locally consistent. We parallelize the steps in local mapping
to respond to real-time environment dynamics.

Measurement model of elevation map. We first introduce
the uncertainty modeling of the elevation. Given a measure-
ment 7 in the sensor frame, we transform it into the global
frame point.

e=P Tt’l" + (1)

where P = [0,0, 1] extracts the 3rd entry of the global point

as the elevation e, while the first two entries are regarded as

the continuous index. To obtain the variance of the elevation

for multiple measurements fusion, the Jacobian matrices of the

measurement J, the sensor rotation Jg and translation J; are

calculated as follows.
7. =9 _pg, )
ory
Oe

Jy = 96

where -* represents the generated skew-symmetric matrix of -,

R; denotes the rotation part of T3, ¢ is the small perturbation

on the rotation Ry = Ry(I + ¢*) with R; the current

estimated rotation matrix. With linear propagation, we have
the uncertainty of the elevation as

02 = J. Sl + JsSed ] 4)

—PRt(Tt)X 3)

Yo thread number per block x-dimension, threadIdz: CUDA thread
index, blockIdxz: CUDA block index
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where Y.,., obtained from range sensor noise models, represents
the covariance matrix of the measured point, >4 denotes the
covariance matrix of the sensor rotation acquired from the
uncertainties of the pose estimator, like visual SLAM. In this
way, each single measurement gets its continuous grid index,
elevation and uncertainty. Since only planar translation exists
between G and M, the elevation uncertainty keeps the same.
The parallelization of this step is shown in line 2-6 of Alg.1.

Multiple elevation measurements fusion. When rendering
the robocentric elevation map L;, we fuse multiple e lying
in the same grid E;. Specifically, we first apply the x? test
to evaluate the difference A between the highest elevation e
measured at the most recent timestep and the corresponding
grid elevation e, with variance og4:

®)

If A is not passed and higher elevation is measured, the grid
elevation is re-initialized. Then we fuse the points passing
the test weighted by the inverse of variance, namely variance
weighted fusion in the sequel, to obtain an updated estimation
(eg,07) as follows:

2 2 22
Ogeg +0g€ 9 040
€97 T2 52 %9 = 521 52 (6)
os+o¢ o+ 0o

The reason to apply x? test is to consider dynamic objects
and vertical obstacles. Finally, points lying in the region of L,
are used to generate L.y, Le and Lyg,. As shown in line
8-15 of Alg.1, we parallelize this fusion step with respect to
each grid. Note that the derivation of uncertainty is similar to
[8] in local dense mapping, but we do not assume IMU aided
SLAM system, which may cause the drift of pitch and roll
angle of estimated poses in long term. To eliminate the drift,
we apply global optimization and introduce submap frame,
which is presented in Section V.

B. Traversability annotation

After generating the geometry of the dense map, the free
region Ly... on the elevation map is annotated. We use
normal vector and height deviation as the features of each
grid E;. Normal vector reflects the slope of the terrain, which
is computed by fitting a local planar patch [34]. Height
deviation is calculated by differentiating the elevation in the
neighborhood to reflect the roughness of the terrain. Following
[7], we estimate the free traversability for each grid by

v =maz(0,1 — ws Uslope _ Wy Umugh) @)
Scrit U’f’crit

where vgj0pe and v,.oy g5 denotes the normal and height devia-
tion based slope and roughness, w, and w, denotes the weight
factor of slope and roughness, vs_, and v, represents
the threshold of the corresponding feature when the grid is
traversable. If the score is higher than a threshold, we annotate
the grid as traversable to form Lj.... We parallelize the
annotation step with respect to each grid in line 17-22 of Alg.1.
Note that the parameters eXcept Wsiope, Wrough are determined
by the types of robots, which are given in Section VI.

Fig. 4. Frame system for the global dense mapper. S and S2 are compeleted
submaps, S3 is an active submap. Points leaving L; are stored into the submap
S3 defined in frame T3 at that moment.

C. Dynamic objects process

The dense mapping method above utilizes only end point
model, which can capture the obstacles, but cannot clear the
obstacles, thus dynamic objects may clutter the local elevation
map. To address the problem, we apply ray tracing, whose
principle is that no obstacles lying in front of the end point
of a ray. Following this idea, we generate a ray for each r;
to clear the potential dynamic objects in L; built above. For
a grid crossed by a ray, if the elevation is higher than the
ray, the obstacle in that grid can be regarded as a passed
dynamic object and all data of that grid is initialized. As we
have annotations L,.. for each grid, we only evaluate the
obstacle regions crossed by rays, which greatly reduces the
computation cost but still performs compelling results. In line
24-32, as the ray casting for each grid is independent, we
parallelize the process with respect to each grid.

V. GLOBAL DENSE MAPPER

As shown in Fig. 4, the local robocentric elevation map L; is
sent to the global dense mapper. If the length of the trajectory
building the current submap exceeds the threshold, 20m in our
experiment, a new submap Si is made and initialized by L,
with submap frame T = T}, otherwise, we integrate L; to an
existing submap, say Si. Note that the frames of all submaps
{S)} are determined by {7} }, and the main idea of the global
dense mapper is to deform the global map by transforming the
frames of all submaps according to the trajectory corrected by
the SLAM system online.

A. Submap building

We define a submap as S = [Scoior, Spoints Svar] Where
Seotor € R>*N denotes the color of the points, Spoint €
R3*N denotes the points in the submap, S, € R3*3*N
denotes the covariance matrix of the points, and N is the
number of points stored in the submap. The submap points are
aggregated from points that leave the region of L;, denoted as
p¢. Specifically, given a p;, we transform it to submap frame
Tk bY Spoint,k = Tk_lMtpt and denote s = M;p, for clear
derivation. The Jacobian matrices of the measurement J,, the
sensor rotation J¢ and translation J; are

aS;noint,k:

s = Os

=R} (8)
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0 oin
Jo = HIE = (R (s = )" ©)
_ aspoint,k’ _ T
R (10)

where Ry, and t;, are rotation and translation part of T, ¢ is the
small perturbation on the rotation as before. The uncertainty
propagation is given as

Svar = JsSsJ] 4+ JpSg g + S J) (11)
Since these points are updated in several timesteps, we only
keep points indicating traversable terrain in the submap with
confidence. This selection is motivated by the fact that on-
the-ground motion planning algorithms do not consider the
accurate shape of untraversable obstacles, thus saving the
storage and computation cost.

Hash grids for unorganized points. When we save unor-
ganized points, say Spoint,k, the dense 2D grid structure loses.
If we still use a 2D array to save these points, as the size of
the submap cannot be known before the completion of submap
building, we cannot determine the memory to be allocated for
the 2D array. Instead, we use a hash table for unorganized
submap points storage, achieving O(1) access complexity and
keeping the grid index. For each point sp4in¢ 1, We create
a new grid in the hash table if no stored points share the
same grid index, otherwise, we update the stored point using
variance weighted average. Finally, when the submap building
is completed, we vectorize the points in hash grids into .S with
their colors and variances to keep the storage compact.

B. Global map deformation

When a SLAM correction happens after the detection of
a loop closure, the thread of global map optimization is
triggered by a new globally consistent trajectory estimation.
As the frames of submaps {Sj;} are determined by {T%},
which is a subset of the updated trajectory, we can deform the
global map using the most recent global trajectory estimation.
Specifically, for each submap Si, we simply transform the
points by T3 Spoint k> but keep Scoror,i and Syqr, invariant. As
a whole, the collection of transformed submaps {T%Spoint i |
are represented in the unified global frame G, building a global
map.

Render a global dense map. For running global motion
planning algorithms, we have to generate a global dense
elevation map, which is achieved by projecting {T%Spoint, i}
to the grid map defined by the global frame G. Different
from [8], we do not assume a global observable pitch and roll
estimation, failing to decouple the uncertainty, but applying
6DoF correction for global consistent mapping instead of
4DoF. Therefore, we have to deal with changed roll and
pitch of submap frames 7}, which may cause a changed
mapping between points and grid index. When multiple points
are projected into one grid, we apply the variance weighted
average to fuse the elevation at that grid. Finally, a global
dense elevation map is rendered.

C. Map Maintenance

With the method above, the complexity of the global map is
unbounded, since the number of submaps grows with respect
to the trajectory length. Even the trajectory is looping in a
limited region, this problem still exists. We propose a strategy
to maintain the complexity of the map by relating the number
of submaps to the region size. Given a newly completed
submap, say Sk, we find its nearest submap, say S;. If the
two submaps have larger overlap than a threshold, we fuse S
to S; to reduce the complexity.

Given T; and T}, the frames of .S; and Sj, we have

Spoint,i,k = T;lTkSpoint,k (12)

Considering that inactive submap is stored as vectors, we re-
activate the submap by creating hash grids again to assign
the points with grid indices. For fusion, we follow the same
mechanism as that in submap building, by regarding Spoint i,k
as a set of measurement points for S;. If there is a large
time gap between S; and Sji, we can simply assign the
Spoint,i,k to corresponding grids without weighted average
as the environment may change. For non-overlapping part,
new hash grids in S; are created to hold Sp,oint,i k- As non-
overlapping part is constrained by the threshold, S; does not
expand unboundedly.

D. Threads management

A possible scenario is that a robot revisits the past area
many times in a small time interval, causing frequent loop
closures to request map deformation multiple times in a short
duration. As a result, the global mapper thread may congest
the local mapper, causing an unacceptable delay of local
mapping for safety issues. To solve this problem, we follow the
local-global threads management mechanism in state-of-the-art
SLAM systems, like ORB-SLAM?2 [2]. When a new request
to global mapper occurs, it first stops the current running map
deformation if the last request is being processed, then restarts
the map deformation using the new global trajectory yielded
by SLAM. Therefore, the new global dense map is generally
built after the last loop closure in this time interval where
frequent loop closures occur. Such a mechanism can keep the
local mapping thread running in real-time, which is similar to
the local trajectory estimator in the real-time SLAM system.
At the perspective of application, since global consistent map
is crucial for global path planning, which cannot be re-planned
frequently, we consider that such stop-and-restart mechanism
does not impact the robot operating in the real world.

VI. IMPLEMENTATION DETAILS

The local dense mapper is implemented on GPU, and the
global dense mapper is implemented on CPU to parallelize
the computation for real-time performance. The traversability
annotations depend on the physical properties of the robot.
In this paper, the traversability is judged according to the
vehicles, and we set ws = 0.5, w, = 0.5, ws,,, = 0.6,
Wy, = 0.2 in Eq. 7 and the threshold as 0.7 of Lj,e.
empirically. Of course, the traversability can also be tuned
for other types of robots e.g. legged robots in [7]. We set a
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Fig. 5. The simulation environment (left) and the corresponding mapping
result using GEM (right).

distance-based criterion for submap creation by comparing the
length of the trajectory segment in the submap with 20m. The
whole system is implemented on a platform with Intel 17-8700
(CPU) and NVIDIA 1060 (GPU). We also implement the local
dense mapper on NVIDIA TX2 for on-board processing. It is
an embedded system which is very useful for mobile robots
with limited power supply. Our system is written in C++ and
integrated into the Robot Operating System (ROS).

VII. EXPERIMENTS

In the experiments, we evaluate GEM from four aspects:
feasibility for the on-the-ground navigation, time analysis of
the local and global mapping, global consistency and scalabili-
ty. For comparative study, four methods with publicly released
codes are utilized: (i) Octomap, an octree based 3D dense
mapping system with local consistency [35], (ii) C-blox, a
TSDF volume based 3D dense mapping system which releases
local consistency implementation [27], (iii) Surfel-Mapping,
an unorganized surfel based 3D mapping system with global
consistency [30] and (iv) ElasticFusion, a surfel based 3D
dense mapping system with CPU-GPU coordination. Note that
the original pose tracker of ElasticFusion cannot work in a
large-scale environment, so we adjust its code to be compatible
with the interface of ORB-SLAM?2. Thus all vision mapping
systems are kept with the same input trajectory estimator.
Three datasets are utilized for evaluation. A simulation dataset
with known structure is used for accuracy testing.

Public real-world dataset KITTI [36], which is collected in
an on-the-road environment, is employed for testing the global
consistency, real-time performance and scalability. Both stereo
vision and Velodyne-64 LiDAR are available in this dataset.
The second real-world dataset collected by ourselves in the
campus environment, namely YQ, is also utilized for testing
the global consistency and real-time performance. On the YQ
dataset, the data is acquired by two VLP-16 LiDARs installed
on a mobile robot. One LiDAR is utilized for pose estimation,
while the other for mapping. In addition, a small simulation
is built in V-rep [37], which aims at evaluating the accuracy
as the ground truth of this environment is available. For the
SLAM system, ORB-SLAM?2 is used for vision sensors, and
LiDAR SLAM as that in [38] is used for LiDAR sensors.
We modify the ORB-SLAM?2 output to satisfy our interface
requirement.

A. Local map quality

The primary indicator for mapping is accuracy since ground
surface is important for traversability, which is highly related

TABLE I

LOCAL DENSE MAP ACCURACY
Resolution(cm) 10 20 30 40 Avg  #Det.*
GEM ele-error 046 040 0.51 056 048 6
GEM obs-error 10.38 13.57 14.19 1421 13.09
Octomap ele-error ~ 0.00 10.00 11.67 13.33 8.75 6
Octomap obs-error  11.34 12.61 14.75 15.51 13.55
C-blox ele-error 273 872 1534 18.68 11.37 6
C-blox obs-error 9.51 1198 18.67 25.38 16.39
EFP ele-error 0.79 4
EF obs-error 8.05

@ #Det.: The number of detected cubes.  EF: ElasticFusion.

TABLE I
LOCAL DENSE MAPPER STEP-BY-STEP TIME ANALY SIS

Steps EM][8] GEM GEM
Hardware PC PC TX2
Geometric map building (ms) 256 20 66
Traversability annotation (ms) - 15 49
Dynamic objects process (ms) 893 1 4
Total time (ms) 548 48 171

to the safety of navigation. To evaluate the accuracy, we put
six cubes with the size of 0.5 x 0.5 x 0.5m3 in the simulation
environment, so that we can determine the marker points for
distance measurement easily. LiDAR is employed for data ac-
quirement. The simulation environment and the mapping result
are shown in Fig. 5. Four resolutions of 0.1m, 0.2m, 0.3m
and 0.4m are set to evaluate the accuracy with respect to the
resolution. All methods are fed with the ground truth trajectory
and 64-ring 3D LiDAR scans, keeping the same input for
all experiments. Octomap, C-blox and ElasticFusion (a surfel
based method with no resolution setting) are employed as a
comparison.

Height accuracy. We manually pick the cubes from the
built map, and calculate the height of the cubes above the
ground surface. By comparing the height with the ground
truth i.e. 0.5m, we have the elevation accuracy. The results are
shown in Tab. I, the error of object height is around 5mm and
not affected by the resolution using GEM. This error has al-
most no impact on traversability analysis. As a comparison, the
elevation accuracy is affected by the resolution using Octomap
and C-blox due to the 3D discretization and ElasticFusion
achieves competitive elevation accuracy with GEM owning to
the continuous representation.

Obstacle accuracy. The obstacle to robot distance is also
important for obstacle avoidance. We manually pick a cube
as a reference and measure the distances from other cubes to
this reference cube in both simulation and built maps. The
results are shown in Tab. I. Using the continuous 3D surfel
based representation, ElasticFusion achieves the best obstacle
accuracy. However, as ElasticFusion highly depends on the
sensory data density, it fails to map all 6 obstacles (only 4
detected) for lack of sufficient competitive observation with
the sparse range sensor, like LIDAR. Note that other methods
give similar sub-resolution accuracies. As a planning algorithm
runs in resolution level, this error level is sufficient. As GEM
has only 2-dimensional grid but with higher height accuracy
which is useful for complex terrain analysis, we verify that
GEM is more suitable for on-the-ground navigation.
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Fig. 6. Time evolution trend of GEM for the local dense mapper (left) and
the submap building (right) on KITTI odometry sequences 00.
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Fig. 7. Time evolution trend of GEM for the global dense map generation
on KITTI odometry sequences 00.

B. Real-time performance

The real-time performance is another important indicator
of the mapping system supporting online navigation. As the
global planner usually works by an external trigger, the local
planner has a more critical requirement of real time. So we
first evaluate the computation time of the local dense mapper
on both desktop and embedded GPU. Then we compare the
time with other comparative methods to show the evolution in
a large-scale environment. In addition, we also qualitatively
investigate the map density and dynamic objects response.
When the system cannot achieve real-time performance, map
density can be sparse, and cluttered by dynamic objects,
incorrectly blocking the navigation.

Step-by-step time analysis. To evaluate the time com-
plexity and the acceleration brought by GPU implementation,
we evaluate the computation time of the local dense mapper
into steps. The CPU based robocentric Elevation-mapping is
utilized as a baseline [8], which has no annotation step. We
run both methods on KITTI dataset for computation time
collection. The local map size is 8 x 8m? with resolution 0.2m.
As shown in Tab. II, our approach achieves almost 20Hz on
desktop and 6Hz on embedded TX2. By integrating the anno-
tation into dynamic objects processing, our implementation is
much faster than the original one that processing all grids. As
a result, the most time consumable step in Elevation-mapping
becomes the least time consumable step in GEM. The step
taking most time in GEM is geometric map building due to
the sequential processing when multiple points lying in the
same grid.

Time evolution trend. To validate the scalability, we run all
methods on the large-scale environment on the KITTI dataset.
Refer to the architecture of GEM in Fig.2, we first compare
the running time of local dense mapper and submap building
(including local dense mapper time) of four reconstruction
models with the local map size of 8 x 8m?2, 16 x 16m?, and
the resolution of 0.1m and 0.2m using lidar. As shown in
Fig. 6, when the size of the local mapper becomes larger,
more sensor data lies in the local map region, and more grids

— GEM T T
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Fig. 8. Mapping time evolution trend of GEM, Octomap, C-blox, Elastic-
Fusion and Surfel-Mapping on KITTI odometry sequences 00.

Fig. 9. The mapping results of the same region using Octomap, C-blox,
Surfel-Mapping, ElasticFusion, GEM with LiDAR and stereo vision on KITTI
dataset (left to right).

are allocated for fusion, resulting in more computation time.
Considering that the grids in the map with 16 x 16m? and
0.2m resolution, and 8 x 8m?2 and 0.1m actually has 4 times
more grids than that with 8 x 8m? and 0.2m resolution, the
computation time only grows less than 2 times, which mainly
owes to the GPU parallelization. In addition, fewer range
measurements lying in the local region is also another reason.
Besides, even the mapping environment becomes larger and
larger, the time for local mapping keeps almost constant, which
is important for real-time local planning. Accordingly, the
submap building also demonstrates a similar time trend. In
Fig. 7, time evolution trend for global dense map generation
including global deformation and submap fusion is shown.
The time increases with the growing mapping area since more
submaps are created and processed to keep global consistency,
leading to an area related with time complexity.

For fairness, we convert all points in the local map to the
global map without considering their annotation, as compar-
ative methods do not have this functionality. Due to compact
and efficient mapping architecture with two threads, we can
regard the submap building time as the running time of GEM.
In contrast, we also evaluate the running time for Octomap,
C-blox, ElasticFusion and SurfelMapping, of which the results
are shown in Fig. 8. For Octomap, as all information is stored
in the global volume, the evolution of the computation time
becomes slower due to the growing mapping area. For C-
blox, as there is the submap mechanism, the time for each
submap keeps almost constant. But in each submap, there is a
growing computation time with respect to the growing covered
mapping area. When more submaps are built, processing time
can be constrained. But data in each submap becomes less,
leading to a small and sparse local map, which limits the
horizon of planning. These two results show the advantage of
decoupling the local map building and submap building in our
method, thus achieving constant time for each step. For Surfel-
Mapping, we see that similar time performance with ours is
achieved, but there is also a growing trend with respect to the
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Fig. 10. The top row shows the scenes with cyclists highlighted in yellow
boxes in frame 0645, 0650, 0654 of KITTI odometry sequences 00. The
bottom row gives a series of local dense maps updated accordingly by GEM
when two cyclists moving toward the vehicle.

Fig. 11.  The mapping results when dynamic cyclists moving toward the
vehicle using Surfel-Mapping, Octomap, C-blox and ElasticFusion.

growing environment area. The main reason is the coupling
of global mapping in local mapping. For ElasticFusion, it also
has an ever-growing computational time. The main reason is
that it keeps an ever-growing map and deformation graph in
the memory. Also, the continuous surfel representation takes
lots of memory.

Density of the map. Aiming at the on-the-ground navi-
gation, we focus on the quality of terrain in the built map.
We qualitatively compare the terrain in the local map by
Octomap, C-blox, ElasticFusion, Surfel-Mapping and ours.
The maps of the same area built by these methods are shown
in Fig. 9. Dense maps built by Octomap and C-blox contains
many holes. The main cause is the frames skipping due to
the growing computation time for each step, which reflects
the importance of keeping constant real-time performance. As
GPU based implementation highly accelerates local mapping,
the density of ElasticFusion outperforms CPU based methods.
But it still has many small holes on the ground surface. These
holes are regarded as obstacles in the planning stage, thus
severely breaking the traversability of the terrain. For the
Surfel-Mapping method, the map is represented by points,
which calls for an additional step to render a dense map for
navigation. The map built by our methods provides very dense
terrain, satisfying the interface of the planner.

Dynamic objects response. Dynamic obstacles cannot be
ignored for safe motion planning. Therefore, mapping the
dynamic objects and remove them in time is an important
indicator to evaluate a mapping system. We select a segment
on KITTI where dynamic objects are presented to qualitatively
compare the Octomap, C-blox, ElasticFusion, Surfel-Mapping
and ours. Namely, two cyclists moving toward the vehicle from
frame 0645 to frame 0655 in KITTI odometry sequences 00.
In Fig. 10, our method annotates the cyclists as obstacles.
We then update and clear them in the local dense map in
time. The final states of the maps using other methods are
shown in Fig. 11. Octomap and C-blox leave artifacts caused
by the cyclists due to frame skipping. Surfel-Mapping directly

-l i
=l IS

Fig. 13.  The dynamic obstacles process of global map on the YQ dataset.
Left image shows that a pedestrain highlighted by the red box is reserved in
the global map. Right image shows that the pedestrain in the global map is
cleared by the latest local map.

Fig. 14. The map built by Octomap (top left), C-blox (top right), ElasticFu-
sion (bottom left) and GEM (bottom right) on Kitti dataset with stereo vision.
The inconsist regions of Octomap and C-blox are highlighted.

filters the dynamic objects by dynamics checking. Note that
even the objects are built in Surfel-Mapping, they cannot be
cleared as no ray casting is conducted. This is the main reason
that Surfel-Mapping is generally utilized as an offline mapping
tool. For ElasticFusion, one can see that the cyclists cause
the artifacts since it is difficult to remove all small surfels
in continuous space using discrete rays, which reduces the
traversable region for planning. These results demonstrate that
fast GPU processing is not the only reason for dynamic objects
updating. Another reason is that GEM has a specialized step
of ray tracing to process the dynamic objects. Additionally, the
ray casting only works in the local map to clear the dynamic
objects. As for the global map which is aggregated from points
in the local map, we have no observations to update even there
are dynamic objects. However, one exception is that when loop
closure happens, map maintenance is running to re-active the
past submaps, thus the current local map can also update the
past global map. As shown in Fig. 13, a pedestrian reserved
in the global map can be cleared by the latest local map.

C. Global map quality

Global planning is triggered when the local path planning is
blocked. Therefore the real-time requirement for global map-
ping is lower. Instead, the important indicator for global map is
the consistency. We evaluate the global map consistency when
correction from the SLAM system happens because of loop
closure. In addition, the scalability is also a problem, as the
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Fig. 12. The top image in the middle column shows the global dense map using LiDAR and the bottom one using stereo vision. The left column gives the
details of the corresponding regions in the LiDAR built map, and the right column shows the details in stereo cameras built map.

Fig. 15. The map built using Octomap (top left), C-blox (top right), GEM
without (bottom left) and with (bottom right) global deformation on the YQ
dataset. The inconsistency is highlighted in red circles.
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Fig. 16. The elevation smoothness of the local terrain with different methods
on the YQ dataset. Region index indicates the region highlighted in Fig. 15.

robot operating in a bounded environment cannot have ever-
growing computation. We demonstrate the evolution of storage
to validate the scalability for globally consistent mapping
methods. For fairness, ORB-SLAM?2 is applied to all methods
using vision sensors, and [38] is used as the LiDAR SLAM
system for LiDAR-based methods.

Global consistency When mapping a large-scale envi-
ronment, we cannot expect a globally consistent trajectory
estimation without loop closure optimization. The global con-
sistency of the mapping system focuses on the deformation
mechanism. In Fig. 12, we show the global maps built by
GEM for qualitative evaluation. To satisfy the dense repetitive
observations for ElasticFusion and have a fair comparison, we
use stereo vision to construct global maps by various methods
in Fig. 14 and slow down package playback to maintain the
performance of Octomap and C-blox. When looking into the
regions where loop closure happens, we can clearly see the
inconsistency in the map built by Octomap and C-blox since
no deformation mechanism is equipped. While in the map built
by GEM or ElasticFusion, there is no artifact in loop closure
regions.

To test the mapping system in an off-the-road environment,
we also run the methods using LiDAR on the YQ dataset,
which has sloppy terrain. The map is configured with 12 x
12m? with resolution 0.2 in GEM. Note that ElasticFusion
can’t finish the complete map due to using sparse observations,
so as a comparison, we build the maps by Octomap and C-
blox on the YQ dataset in Fig. 15. The robot running off-the-
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Fig. 18. The memory usage evolution trend of GEM with 12 x 12m? size

and 0.2m resolution on the YQ dataset.

road on YQ is slower than the vehicle running on-the-road on
KITTIL but the artifacts in loop closure regions still reflect the
weakness of methods without deformation mechanism. The
map built by GEM with and without global deformation is
shown in Fig. 15. One can see that artifacts present when no
global deformation is utilized, resulting in a similar map as
Octomap and C-blox. To measure the accuracy of the global
dense map, since it is almost impossible to acquire ground
truth terrain model, we compare the elevation deviation in
three regions where loop closures happen as highlighted in
Fig. 15. We believe that the elevation smoothness of the local
terrain can validate the value of map deformation given that
the terrain is smooth in the real world. The results are shown
in Fig. 16 that GEM with global deformation demonstrates the
minimal deviation results as the corrected trajectory is used,
which is more globally consistent than the others. A video of
mapping on KITTI and YQ dataset is uploaded to [9].

Scalability In terms of memory storage, we record the
number of stored points, which is highly related to total
memory usage. Higher resolution and larger local map size
increase the memory usage as shown in Fig. 17 on the KITTI
dataset. Note that the mapping system detects multiple closed
loops from frame 3300 to 4000. Correspondingly, the memory
storage keeps invariant as the new observations are fused into
previous submaps, which is the advantage brought by the map
maintenance. Surfel-Mapping has memory storage related to
the mapping area instead of trajectory length. It generates
a similar trend to ours, validating the area-related memory
complexity in our method. ElasticFusion has a total number
of points up to 26 million, taking exponentially more memory
than GEM and Surfel-Mapping, which is serious for robots’
on-board processing. On the YQ dataset, there two loops with
a segment of trajectory having loop closure. Accordingly, the
memory usage from frame 1300 to 1600, and in the last
segment on the YQ dataset reflects this fact as shown in Fig.
18, confirming the advantage of the map maintenance in GEM.

VIII. CONCLUSION

In this paper, we have presented a dense elevation system,
GEM, which can build the local dense map in constant real-
time performance, and the globally consistent dense map at the
same time. The local map is built in a moving frame assigned
to the robot, decoupling the process from the submap building
and global map building. A CPU-GPU implementation is
proposed to achieve geometric map building, traversability an-
notation and dynamic objects clearing, improving the mapping
efficiency significantly. For global mapping, a collection of
submaps is utilized as the representation, deforming the global
map when the correction happens in the SLAM system to
achieve global consistency. Finally, the accuracy, efficiency,
consistency and scalability of GEM are validated on both
simulation and real-world datasets for both on-the-road and
off-the-road, demonstrating its feasibility for on-the-ground
navigation.
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