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Abstract: 

Multi-carrier energy systems have received wide currency by improving cogeneration 

facilities. Although these systems show significant efficiency in providing and consuming 

energy, the performance of the whole system can be reduced owing to uncertainties arising 

from different sources. This paper presents a stochastic decentralized model for considering 

the uncertainties of a system including different types of thermal and electrical private loads 

using a multi-agent framework. In other words, agents have private ownership and seek for 

social welfare as well as the personal profits optimization. In the proposed model, the 

gradient projection method is used to implement a fully-decentralize energy trading model. 

Also, various stochastic scenarios of solar irradiance, prices, and loads are considered using 

fast-forward selection algorithm to take into account the uncertainties. Then, to assess the 

proposed stochastic multi-agent model, “AnyLogic” is used for simulation. The numerical 

results show that the clearing price is directly affected by the renewable agent without any 

supervisory control. Moreover, the total operating cost of the considered multi-carrier 

energy system decreases by ~7% considering these uncertainties compared with 

deterministic one. However, social welfare declines due to the intrinsically beneficial 

behavior in private cooperation. 

Keywords:  

Renewable energy– Decentralized operation – Stochastic optimization – Multi-agent 

systems, Uncertainty.  
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Nomenclature 

Indices Parameters 

𝑖         𝐹𝑖𝑟𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝜂𝑐ℎ
𝑒𝑠 /𝜂𝑑𝑖𝑐ℎ

𝑒𝑠         𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  

𝑗        𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

𝑝𝑐ℎ
𝑒𝑠𝑀𝑎𝑥/𝑝𝑑𝑖𝑠𝑐ℎ

𝑒𝑠𝑀𝑎𝑥   𝑀𝑎𝑥 𝑝𝑜𝑤𝑒𝑟  𝑜𝑓   𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

𝑘       𝐹𝑖𝑟𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑖𝑡                  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

𝑙        𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑠𝑜𝑐𝑚𝑖𝑛
𝑏𝑎𝑡       𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

𝑡         𝑇𝑖𝑚𝑒 𝑛𝑠                𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠  

(. )𝑠     𝐼𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 𝛼/𝛽          𝐵𝑒𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

Decision variables  

𝜆𝑠(𝑡)                       𝑆𝑒𝑡𝑡𝑒𝑙𝑚𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒  Abbreviations 

𝑝𝑚𝑡,𝑠
𝑒 (𝑡)                 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑚𝑖𝑐𝑟𝑖𝑡𝑢𝑟𝑏𝑖𝑛𝑒 EH                                 Energy hub 

𝑝𝑚𝑡,𝑠
ℎ (𝑡)                 𝐻𝑒𝑎𝑡 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑡𝑢𝑟𝑏𝑖𝑛𝑒 FTOG                           First type of generator 

𝑝𝑑𝑖𝑠,𝑠
𝑒𝑠 (𝑡)          𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 FTOC                           First type of consumer 

𝑝𝑐ℎ,𝑠
𝑒𝑠 (𝑡)             𝐶ℎ𝑎𝑟𝑔𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 MAS                            Multi-agent system 

𝛼𝑑𝑖𝑠|𝑐ℎ,𝑠
𝑒 (𝑡)               𝐵𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 MT                               Micro-turbine 

𝑠𝑜𝑐𝑠
𝑒𝑠(𝑡)          𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 PV                               Photovoltaic 

𝑝𝑔1(𝑡)               𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 

        (𝑀𝑇 𝑎𝑛𝑑 𝑏𝑜𝑖𝑙𝑒𝑟)  
PDF                            Probability distribution function 

𝑝𝑔2(𝑡)            𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 

(𝑃𝑉 𝑎𝑛𝑑 𝑚𝑎𝑖𝑛 𝑔𝑟𝑖𝑑) 
STOG                         Second type of generator 

𝑝𝑑1(𝑡)           𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 

(𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑠) 
STOC                         Second type of consumer 

𝑝𝑑2(𝑡)           𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑚𝑒𝑟𝑠 

(𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑) 
VSS                         Value of a stochastic solution 

𝑝𝑟𝑒𝑞
𝑒𝑠                𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 𝑏𝑎𝑡𝑡𝑒𝑟𝑦  

  𝑃𝑚𝑡ℎ
𝑚𝑖𝑛(𝑡)      𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ℎ𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑇  
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1. Introduction 

1.1. Motivation 

The development of decentralized systems has received more attention due to the 

inefficiency of centralized management systems in the presence of distributed generation 

resources as well as competitive market mechanisms [1, 2]. The development of these 

systems along with increasing the penetration of renewable resources could bring about the 

elimination of intermediaries, reducing environmental pollution, job creation, and reduction 

in the cost of network expansion in remote areas [3]. As a result, this could lead to the 

sustainable development of the energy systems through expanding of multi-carrier systems 

instead of single-carrier ones. Multi-carrier energy systems or energy hubs (EHs) include 

multiple energy conversion, storage, and/or network topologies  [4]. They integrate multiple 

types of energy resources including renewable and traditional grids to meet the consumer’s 

more efficiently. The EHs are managed for residential [5, 6] commercial [7] or energy use 

[8-11] by different management strategies, especially decentralized methods[12]. The 

flexibility of decentralized methods, Plug and Play feature and private ownership are some 

of their popular applications [13, 14]. 

On the other hand, the result of the operation can be affected by several uncertainties 

in the system [15-18]. There are two types of uncertainty for the operation of an EH. The 

first one is operational parameters which are related to operating decisions like electric, heat, 

and cooling loads or renewable generation. The second one is economic parameters like 

electric and gas prices [19]. Since these parameters are input data for agents’ operation, the 

difference between the predicted values and the actual values will affect their decision 

making and personal profits. Therefore, it is necessary to develop a decentralized framework 

that can capture the uncertainties of renewables and the prices. 
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1.2. Literature survey 

The decentralized operation of EHs has been considered in many research works.  A 

multi-agent system (MAS) has been confirmed as an efficient approach for managing 

decentralized systems [3, 20, 21] and is used in [22-27] with different layers including 

switching control, dynamic control, and energy management. Although the computational 

burden is reduced in these works, there is still a dependency on the central agent. Also, the 

uncertainties are ignored. The proposed model in [28] based on the master-slave method 

only examines the impact of energy carrier on the operational decisions and the central 

agent’s trouble is still ignored. Both thermal and electrical markets proposed in [29] aim at 

consumers’ cost minimization but ignoring the agent’s profit and operating uncertainty. The 

distribution system operator agent is also essential in [30, 31] as the central agent to control 

several EHs and micro-grids. The optimal performance of agents in [32] for a multi-carrier 

system is investigated using a reinforcement learning algorithm, but there is an energy 

manager in the upper level of the system to supervise the market and prices. Likewise, 

decentralization modeled in [33] using alternating direction method of multipliers (ADMM) 

is still dependent on the distribution system operator.  

The social welfare of EHs is considered in [34] with the game theory which is used 

to omit the central agent, but the personal profits of agents are neglected. The need for a 

central agent is omitted using the Consensus Theorem algorithm, the Gradient projection 

method, and the Lagrange method in [35-37]. In [38], the interaction among EHs is 

considered by a game to optimize the payments of EHs. Also, in [39], the MAS is used for 

optimal energy management of micro-grid and robust optimization is used to consider 

renewable uncertainty. In all of these studies, social welfare is only considered for 

optimization without attention to agent’s benefits despite considering a decentralized 
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operation. Also, the models have not seen both the cost function of renewable agents and 

interaction with the upstream network as a second-order basis. Although this gap is filled in 

[40] and the renewable agent can independently act as a price-maker agent, the uncertainty 

of renewable generation is ignored. Similarly, the fully-decentralized framework is 

implemented for a multi-carrier system in [41] without any emphasis on the uncertain data. 

However, the robust optimization is used in [42] considers the renewable uncertainties of 

multiple micro-grids with decentralized management but the system is single-carrier yet.  

There are some related works in [43-48] for the operation of EHs considering 

different uncertainty but in a centralized manner. In the same way, in [49], a hybrid robust-

stochastic approach is used to deal with different uncertainties in a multi-carrier micro-grid 

with centralized management.  Due to the increase in renewable penetration rate and 

therefore, data changes, the performance of the centralized model will be decreased [50].  

Table 1. Comparison of relevant works 

Reference 

Centralized 

operation 

Decentralized 

operation 

Multi-

carrier 

Renewable 

unit 

Private 

ownership 

Uncertainty 

[5, 29, 35] ×    × × 

[6, 7, 9]  ×   × ×

[8] ×    × ×

[10, 47] ×    × 

[13, 26, 28] ×  ×  × ×

[22, 23, 25, 

48, 51] 
 × ×  × ×

[3, 30, 31]  ×   × ×
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[32, 33] ×   × × ×

[34] ×  × × × ×

[37, 38] ×   × × 

[39, 42] ×  ×  × 

[40, 41] ×     ×

[43-46, 49]  ×   × 

 

1.3. Contributions 

Due to the previous works and Table 1, there is a need to design a decentralized 

optimization framework for a multi-caries energy system or EH in which the private profits 

for agents and the independent operation of each agent considering their uncertainties are 

involved. In this paper, the effect of uncertainties on the solutions is analyzed using 

stochastic scenarios. The renewable agent is a price-maker agent without dependency on 

any central control unit. This agent helps both power balance constraints and personal 

benefits using the storage system. Therefore, the contributions of this paper are: 

 Proposing the active presence of a renewable agent in a fully-decentralized 

optimization framework. 

 Modeling private ownership using a multi-agent framework. 

 Considering uncertainties of operating parameters such as prices, solar irradiance, 

and loads and analyzing their effect on performance indicators of the system’s 

operation. 

The remainder of this paper is organized as follows. The proposed EH model will 

be explained in Section 2. The stochastic scenarios formation and the decentralized 
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operation model will be given in Section 3 and Section 4, respectively. Also, the simulation 

and conclusion will be presented in Sections 5 and Section 6, respectively. 

2. System description 

An overview of EH with its agents is shown in Fig. 1. These agents include 

photovoltaic (PV), boiler, micro-turbine, grid, cooling, thermal, and electrical loads. These 

agents with private ownership communicate with each other to maximize social welfare. In 

this model PV agent includes battery storage and solar units. In this EH, the battery storage 

and upstream grid are used for balancing the electrical power. To clarify the exact 

framework of the proposed model, the following assumptions are considered: 

 Various agents own the elements of their subset. 

 The capacity to exchange electrical power with the upstream grid is limited. 

 The price of buying and selling electricity inside the EH is determined on an 

hourly basis based on the intended interactions. 

 The EH does not have a thermal or cooling exchange with the upstream 

network. 

 The solar factor is the only factor that can sell electricity to the upstream 

network separately. 

To cover the presence of renewable energy, the PV agent has been considered. For 

applying the demand response, both electric and thermal loads have contractions concerning 

price variation. The reason for the presence of MT is having a connection between the two 

heating and electrical networks. To have a multi-energy system, the cooling load is also 

placed as a participant in the electrical and thermal network. The battery storage is taken 

into account as a control unit against the intended uncertainties. 
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Fig. 1. EH model 
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3. Decentralized model for operation  

In this section, first, the type of agents is described, and then the social welfare 

function is constructed for the deterministic problem. Finally, the gradient projection 

algorithm is explained for decentralization. There are four types of agents in this model in 

which two of them are generators and the others are the consumers. Moreover, the 

generators and consumers are sellers and buyers respectively. It is worth to mention that, all 

formulation is valid for both electrical and thermal cooperation. So, it is a general form of 

formulation for both electrical and thermal settlement prices.  

3.1. First type of generators (FTOGs) 

The operational cost function of the FTOGs like Boiler and MT agents is as Eq. (1). 

𝑎𝑔1, 𝑏𝑔1 and 𝑐𝑔1 are positive cost coefficients and 𝑝𝑔1(𝑡) is the output power of the FTOGs 

at time t. Also, the generators’ income at time t is modeled in (2) where 𝑝𝑔1(𝑡) is their 

generated power at time t and 𝜆(𝑡) is the settlement price [52]. 

𝐶𝑔1(𝑡) =
1

2
𝑎𝑔1 ∗ 𝑝𝑔1(𝑡)2 + 𝑏𝑔1 ∗ 𝑝𝑔1(𝑡) + 𝑐𝑔1                                                                  (1) 

𝑅𝑔1(𝑡) = 𝜆(𝑡) ∗ 𝑝𝑔1(𝑡)                                                                                                               (2)                                                                                                     

3.2. Second type of generators (STOGs) 

The cost function for this kind of generators (PV and grid agent) is defined by Eq. 

(3) where 𝑐𝑔2 is their constant cost. Also, the generators’ income at time t is modeled in (4) 

where 𝑝𝑔2(𝑡) is their generated power at time t and 𝜆(𝑡) is the settlement price [52]. 

𝐶𝑔2(𝑡) = 𝑐𝑔2                                                                                                                                  (3)                                                                                                              

𝑅𝑔2(𝑡) = 𝜆(𝑡) ∗ 𝑝𝑔2(𝑡)                                                                                                               (4)                                                                                                     
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3.3. Types of consumer  

The benefit function for the loads of first type of consumers (FTOCs) such as thermal 

and electrical loads is modeled as (5). 𝑎𝑑1 and 𝑏𝑑1 are cost function for the FTOCs where 

the former is negative and the latter is positive. Also, 𝑝𝑑1(t) is the demand power at time t 

and its cost function is modeled as (6) [52]. 

𝑅𝑑1(𝑡) =
1

2
𝑎𝑑1 ∗ 𝑝𝑑1(𝑡)2 + 𝑏𝑑1 ∗ 𝑝𝑑1(𝑡)                                                                            (5) 

𝐶𝑑1(𝑡) = 𝜆(𝑡) ∗ 𝑝𝑑1(𝑡)                                                                                                       (6) 

Regarding the second type of consumers (STOCs) which is the cooling agent as is depicted 

in Fig. 1, the strategy is the selection of lower price between thermal and electrical 

interactions to minimize its own cost in Eq. (6). 𝑝𝑑2(t) is the cooling demand at time t [52]. 

This agent has not benefit functions because it always purchases demand.  

𝐶𝑑2(𝑡) = 𝜆(𝑡) ∗ 𝑝𝑑2(𝑡)                                                                                                       (7) 

3.4. Social welfare function 

The social welfare function of this EH is defined as (8) and consists of incomes of 

agents minus their costs. 𝑛𝑑1 and 𝑛𝑑2 are the numbers of FTOCs and STOCs. Also, 𝑛𝑔1 and 

𝑛𝑔2 are the numbers of FTOGs and STOGs.  

𝑆𝑊𝐹 = ∑ (∑ (𝑅𝑔1
𝑖 (𝑡) − 𝐶𝑔1

𝑖 (𝑡)
𝑛𝑔1

𝑖=1
) + ∑ (𝑅𝑔2

𝑗 (𝑡) − 𝐶𝑔2
𝑗 (𝑡))

𝑛𝑔2

𝑗=1
+ ∑ (𝑅𝑑1

𝑘 (𝑡) −
𝑛𝑑1
𝑘=1

24
𝑡=1

𝐶𝑑1
𝑘 (𝑡)) − ∑ 𝐶𝑑

𝑙 (𝑡)𝑛𝑑2
𝑙=1 )                                                                                                                 (8) 

Plugging Eqs. (1) – (7) into (8) results in (9) as presented below: 
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𝑆𝑊𝐹 = ∑ (∑ (
1

2
𝑎𝑑1

𝑘 ∗ 𝑝𝑑1
𝑘 (𝑡)2 + 𝑏𝑑1

𝑘 ∗ 𝑝𝑑1
𝑘 (𝑡))

𝑛𝑑1
𝑘=1 − ∑ (

1

2
𝑎𝑔1

𝑖 ∗ 𝑝𝑔1
𝑖 (𝑡)2 + 𝑏𝑔1

𝑖 ∗
𝑛𝑔1

𝑖=1
24
𝑡=1

𝑝𝑔1
𝑖 (𝑡) + 𝑐𝑔1

𝑖 ) − 𝐶𝑔2𝑛𝑔2 + 𝜆(𝑡) ∗ (∑ 𝑝𝑔1
𝑖 (𝑡) + ∑ 𝑝𝑔2

𝑗 (𝑡) − ∑ 𝑝𝑑1
𝑘 (𝑡)𝑛𝑑1

𝑘=1  
𝑛𝑔2

𝑗=1
−

𝑛𝑔1

𝑖=1

∑ 𝑝𝑑2
𝑙 (𝑡)𝑛𝑑2

𝑙=1 ) )                                                                                                                         (9) 

Existing parameters can be updated using the gradient projection algorithm to maximize 

objective function (9) [53]. Explaining the basis of this algorithm is beyond the scope of this 

paper. The distributed variables are written in Eqs. (10) -(14). In these equations, 𝜀𝑖𝑡 is the 

step size of this algorithm and the higher value for this parameter, the higher speed we will 

have for reaching the answers.  

𝜆𝑛𝑒𝑤(𝑡) = 𝜆𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 𝜕(𝑆𝑊𝐹)

𝜕(𝜆(𝑡))
= 𝜆𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡(∑ 𝑝𝑔1

𝑖 (𝑡) + ∑ 𝑝𝑔2
𝑗 (𝑡) −

𝑛𝑔2

𝑗=1

𝑛𝑔1

𝑖=1

∑ 𝑝𝑑1
𝑘 (𝑡)𝑛𝑑1

𝑘=1  − ∑ 𝑝𝑑2
𝑙 (𝑡)𝑛𝑑2

𝑙=1 ) = 𝜆𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 ∗ ∆𝑝(𝑡)                                                         (10) 

𝑝𝑑1
𝑘 𝑛𝑒𝑤(𝑡) = 𝑝𝑑1

𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝑆𝑊𝐹)

𝜕(𝑝𝑑1
𝑘 (𝑡))

= 𝑝𝑑1
𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 (𝑎𝑑1

𝑘 ∗ 𝑝𝑑1
𝑘 (𝑡) + 𝑏𝑑1

𝑘 − 𝜆(𝑡))                   

                                                                                                                               (11) 

𝑝𝑑2
𝑘 𝑛𝑒𝑤(𝑡) = 𝑝𝑑2

𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝑆𝑊𝐹)

𝜕(𝑝𝑑2
𝑘 (𝑡))

= 𝑝𝑑2
𝑘 𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 ∗ 𝜆(𝑡)                                        (12) 

𝑝𝑔1
𝑖 𝑛𝑒𝑤(𝑡) = 𝑝𝑔1

𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝑆𝑊𝐹)

𝜕(𝑝𝑔1
𝑖 (𝑡))

= 𝑝𝑔1
𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 ∗ (𝜆(𝑡) − (𝑎𝑔1

𝑖 ∗ 𝑝𝑔1
𝑖 (𝑡) + 𝑏𝑔1

𝑖 )) 

                                       (13) 

𝑝𝑔2
𝑗 𝑛𝑒𝑤(𝑡) = 𝑝𝑔2

𝑗 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝑆𝑊𝐹)

𝜕(𝑝𝑔2
𝑗

(𝑡))
= 𝑝𝑔2

𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 ∗ 𝜆(𝑡)                                         (14) 

Equation (10) leads to the power balancing constraint. Also, optimal production and 

consumption of agents considering price stem from Eqs. (11) - (14). As can be seen, if the 

initial price is known for agents, they will compute the power difference and with updating 
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that, the maximum welfare can be achieved in a decentralized manner. The decentralized 

power difference calculation is completely expressed in [52]. 𝜀𝑖𝑡 in above equations 

guarantees the algorithm convergence which is computed as follows. The convergence 

condition for this methodology which is based on the power difference calculation can be 

found in [13]. 

𝜀𝑖𝑡 = 1000 ∗ 𝑒−(
𝑖𝑡

50
) −

1

10
                                                                                                                   (15) 

3.5. Interaction of agents in the proposed EH 

Having interactions, the agents can directly affect the settlement price and minimize 

their costs which leads to an increase in social welfare. The specifications of agents are as 

follows. The power updating for the electrical load agent for each scenario is according to 

(13) and  

this agent is an FTOC. Also, it interrupts some loads by price changing and determines the 

interaction price based on cost function (5). Grid agent is the STOG and its power is 

calculated based on (14) to maximize social welfare. This agent buys the electricity offered 

by the PV agent and sells it to the absorption chiller. Also, the purchase price from EH is 

assumed to be 80% of its sale price. After the electricity price drops below the selling price 

to the grid, the grid agent reduces the sales capacity and proclaims another command, and 

the process continues when the interaction price exceeds the selling price. 

The PV agent is an STOG and its power calculation is based on (14). The Eq. (16) 

converts solar irradiation  to solar power where  𝑛𝑝𝑎𝑛𝑒𝑙  and 𝑖𝑟𝑟(𝑡) are the number of panels 

and radiation intensity at time t, respectively. Also, 𝜂𝑝𝑣 and 𝜂𝑖𝑛𝑣 are the solar panel and the 
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inverter efficiencies, respectively [34]. Therefore, first, the PV agent calculates its output 

based on Eq. (16). 

𝑝𝑎𝑣(𝑡) = 𝑛𝑝𝑎𝑛𝑒𝑙 ∗ 𝐴𝑝𝑎𝑛𝑒𝑙 ∗ 𝜂𝑝𝑣 ∗ 𝜂𝑖𝑛𝑣 ∗ 𝑖𝑟𝑟(𝑡) (
𝑘𝑤

𝑚2)                                                              (16) 

PV agent decreases its output power when the grid sale price is higher than the interaction 

price after computing the power difference and this recursive action will continue until the 

interaction price exceeds the grid sale price. Besides, the discharging of the PV agent during 

peak hours occurs through interaction with the grid agent. However, charging/discharging 

rates are restricted by battery capacity (𝑥𝑏𝑎𝑡) and their maximum rates. The charging and 

discharging rates of battery are based on (17) - (18). 𝑝𝑐ℎ
𝑒𝑠𝑀𝑎𝑥  and  𝑝𝑑𝑖𝑠

𝑒𝑠𝑀𝑎𝑥 are the maximum 

charging/discharging rates at time t. Also, 𝜂𝑐ℎ
𝑒𝑠and 𝜂𝑑𝑖𝑠

𝑒𝑠  are charging and discharging 

efficiencies, respectively. 𝑝𝑟𝑒𝑞
𝑒𝑠  is the required power from the battery storage [40]. If this 

power is positive, the battery goes to a discharging state according to Eq. (17), otherwise, it 

goes to discharging state based on Eq. (18).  Equation (19) represents the updating of state 

of the charge where 𝑠𝑜𝑐𝑒𝑠(𝑡) is the state of charge at time t and 𝛼𝑑𝑖𝑠|𝑐ℎ(𝑡) is the binary 

variable that prevents the charging/discharging states at the same time. The electrical 

interaction process which includes PV agent, grid agent, electrical load agent, and MT agent 

is depicted in Fig. 2 [34]. 

𝑝𝑑𝑖𝑠
𝑒𝑠 (𝑡) = min (𝑝𝑑𝑖𝑠

𝑒𝑠𝑀𝑎𝑥(𝑡). (𝑠𝑜𝑐𝑒𝑠(𝑡) − 𝑠𝑜𝑐𝑚𝑖𝑛
𝑒𝑠 ) ∗ 𝑥𝑏𝑎𝑡 ∗ 𝜂𝑑𝑖𝑠

𝑒𝑠 . 𝑝𝑟𝑒𝑞
𝑒𝑠 )                                (17) 

𝑝𝑐ℎ
𝑒𝑠(𝑡) = min (𝑝𝑐ℎ

𝑒𝑠𝑀𝑎𝑥(𝑡). (𝑠𝑜𝑐𝑚𝑖𝑛
𝑏𝑎𝑡 − 𝑠𝑜𝑐𝑒𝑠(𝑡)) ∗

𝑥𝑏𝑎𝑡

𝜂𝑑𝑖𝑠
𝑒𝑠 . 𝑝𝑟𝑒𝑞

𝑒𝑠 )                                        (18) 

𝑠𝑜𝑐𝑒𝑠(𝑡 + 1) = 𝑠𝑜𝑐𝑒𝑠(𝑡) +
𝛼𝑑𝑖𝑠|𝑐ℎ(𝑡)∗𝜂𝑐ℎ

𝑒𝑠 ∗𝑝𝑐ℎ
𝑒𝑠 (𝑡)+(1−𝛼𝑑𝑖𝑠|𝑐ℎ(𝑡))(

𝑝𝑑𝑖𝑠
𝑒𝑠 (𝑡)

𝜂𝑑𝑖𝑠
𝑒𝑠 )

𝑥𝑏𝑎𝑡
                                (19) 
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The MT agent takes part in both electrical and thermal interactions. First, it has an electrical 

interaction according to its production constraint (20). Then, the minimum heat production 

of this unit is calculated based on the electric generation in (21). 𝑘ℎ
𝑚𝑖𝑛 is a parameter that 

describes the percentage of electrical generation which leads to the thermal generation [34]. 

𝑃𝑚𝑡𝑒

𝑚𝑖𝑛 ≤ 𝑃𝑚𝑡
𝑒 (𝑡) ≤ 𝑃𝑚𝑡𝑒

𝑚𝑎𝑥                                                                                                              (20) 

𝑃𝑚𝑡ℎ

𝑚𝑖𝑛(𝑡) = 𝑘ℎ
𝑚𝑖𝑛 ∗ 𝑃𝑚𝑡

𝑒 (𝑡)                                                                                  (21) 

𝑃𝑚𝑡ℎ

𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑚𝑡
ℎ (𝑡) ≤ 𝑃𝑚𝑡ℎ

𝑚𝑎𝑥                                                                                            (22) 

 Fig. 2. Flowchart for electrical interaction 
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The boiler agent is also an FTOG and its power updates like the MT agent based on 

(13). The thermal load agent is an FTOC and updates its power due to (11). The cooling 

agent is a STOC that updates its power due to (12). The thermal interaction process which 

includes the cooling agent, thermal load agent, boiler agent, and MT agent is depicted in 

Fig. 3. 

Fig. 3. Flowchart for thermal interaction 

 

4. Stochastic scenarios 

The agents face various uncertainty in all types of loads, PV generation, and upper 

grid prices. To deal with these uncertainties, the stochastic scenarios are employed. We use 
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Monte Carlo simulation and Kantorovich distance methods [51, 54] to generate a large 

number of scenarios and reduce them to more probable scenarios based on their distribution 

function. Each scenario includes information about hourly electrical load, thermal load, 

cooling load, electric, and gas prices. According to [55] Beta Probability Distribution 

Function (PDF) is the best distribution function to model the solar irradiance: 

 

1 1( )
(1 )      for 0 1, 0, 0

( ) ( )( )

0                                             Otherwise

b

irr irr irr
f irr

  
 

 

  
     

  



  

(23) 

Where irr is the solar irradiance (kW/m2),   and   are Beta PDF parameters and ( )bf irr  

is the Beta PDF of irr. The following equations are used to compute  and   using mean 

value   and standard deviation   of random variable x [55]. 

2

(1 )
( 1)
 

 



                              (24) 

2

(1 )
(1 )( 1)

 
 




                  (25) 

We assume that the hourly forecasted data for types of load and prices are available for the 

agents. Also, we assume that the agents can fit the forecasting data into distributions using 

historical data [56-59]. For simplicity, the forecasting errors of electric and gas prices and 

also, electrical, thermal, and cooling loads are assumed to follow normal distributions with 

zero-mean and the standard deviations are 15% of their corresponding hourly values [60-

63]. Moreover, we assume the uncertainties of the systems are independent. Based on the 
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proposed PDFs, 500 scenarios for each parameter are generated by using the Monte Carlo 

simulation method. Then 50 more probable scenarios are selected by using fast-forward 

algorithm which minimize the Kantorovich distance as follows [64]: 

1

( , ) ( )min ( ( ) ( ) )
Tn

K s

s t

D Q Q s y s y s 



                                                                       (26) 

WhereQ  and Q are finite distribution of initial scenario s and reduced scenario s  

respectively. ( )s  is also probability of scenario s  and y is the uncertain parameter. The 

fast-forward algorithm is repetitive and in each iteration the scenario which minimize the 

Eq. (26) is selected. After reaching desired number of scenarios, the probabilities of selected 

scenarios are added [65]. Therefore, the output of the scenario reduction algorithm is a set 

of stochastic scenarios with their probabilities which are used in the proposed decentralized 

operating model. In other word, the proposed decentralized optimization is solved for each 

stochastic scenario and finally the expected values of optimal solutions are reported. 

5. Stochastic decentralized operation model 

In this section, the proposed formulations for decentralized operation in Eqs. (1) – 

(22) are re-written and will be solved for each stochastic scenario s with probability ( )s  

as follows. Fig. 4 illustrate the whole stochastic decentralized operation.  

𝐶𝑔1,𝑠(𝑡) =
1

2
𝑎𝑔1 ∗ 𝑝𝑔1,𝑠(𝑡)2 + 𝑏𝑔1 ∗ 𝑝𝑔1,𝑠(𝑡) + 𝑐𝑔1                                                          (27) 

𝑅𝑔1,𝑠(𝑡) = 𝜆𝑠(𝑡) ∗ 𝑝𝑔1,𝑠(𝑡)                                                                                                        (28)                                                                                                     

 𝐶𝑔2,𝑠(𝑡) = 𝑐𝑔2                                                                                                                             (29)                                                                                                              

𝑅𝑔2,𝑠(𝑡) = 𝜆𝑠(𝑡) ∗ 𝑝𝑔2,𝑠(𝑡)                                                                                                        (30)                                                                                                     
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𝑅𝑑1,𝑠(𝑡) =
1

2
𝑎𝑑1 ∗ 𝑝𝑑1,𝑠(𝑡)2 + 𝑏𝑑1 ∗ 𝑝𝑑1,𝑠(𝑡)                                                                           (31) 

𝐶𝑑1,𝑠(𝑡) = 𝜆𝑠(𝑡) ∗ 𝑝𝑑1,𝑠(𝑡)                                                                                               (32) 

  

 

   𝐶𝑑2,𝑠(𝑡) = 𝜆𝑠(𝑡) ∗ 𝑝𝑑2,𝑠(𝑡)                                                                                             (33) 

𝐸𝑆𝑊𝐹 = ∑ (∑ (∑ (𝑅𝑔1,𝑠
𝑖 (𝑡) − 𝐶𝑔1,𝑠

𝑖 (𝑡)
𝑛𝑔1

𝑖=1
) + ∑ (𝑅𝑔2,𝑠

𝑗 (𝑡) − 𝐶𝑔2,𝑠
𝑗 (𝑡))

𝑛𝑔2

𝑗=1
+24

𝑡=1
𝑛𝑠
𝑠=1

∑ (𝑅𝑑1,𝑠
𝑘 (𝑡) − 𝐶𝑑1,𝑠

𝑘 (𝑡))
𝑛𝑑1
𝑘=1 −

∑ 𝐶𝑑,𝑠
𝑙 (𝑡)𝑛𝑑2

𝑙=1 ))                                                                                                                              (34) 

𝜆𝑠
𝑛𝑒𝑤(𝑡) = 𝜆𝑠

𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 𝜕(𝐸𝑆𝑊𝐹)

𝜕(𝜆𝑠(𝑡))
= 𝜆𝑠

𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡(∑ 𝑝𝑔1,𝑠
𝑖 (𝑡) + ∑ 𝑝𝑔2,𝑠

𝑗 (𝑡) −
𝑛𝑔2

𝑗=1

𝑛𝑔1

𝑖=1

∑ 𝑝𝑑1,𝑠
𝑘 (𝑡)𝑛𝑑1

𝑘=1  − ∑ 𝑝𝑑2,𝑠
𝑙 (𝑡)𝑛𝑑2

𝑙=1 ) = 𝜆𝑠
𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 ∗ ∆𝑝𝑠(𝑡)                                                 (35) 

𝑝𝑑1,𝑠
𝑘 𝑛𝑒𝑤(𝑡) = 𝑝𝑑1,𝑠

𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝐸𝑆𝑊𝐹)

𝜕(𝑝𝑑1,𝑠
𝑘 (𝑡))

= 𝑝𝑑1,𝑠
𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 (𝑎𝑑1

𝑘 ∗ 𝑝𝑑1,𝑠
𝑘 (𝑡) + 𝑏𝑑1

𝑘 − 𝜆𝑠(𝑡))                   

                                                                                                                               (36) 

𝑝𝑑2,𝑠
𝑘 𝑛𝑒𝑤(𝑡) = 𝑝𝑑2,𝑠

𝑘 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝐸𝑆𝑊𝐹)

𝜕(𝑝𝑑2,𝑠
𝑘 (𝑡))

= 𝑝𝑑2,𝑠
𝑘 𝑜𝑙𝑑(𝑡) − 𝜀𝑖𝑡 ∗ 𝜆𝑠(𝑡)                                        (37) 

𝑝𝑔1,𝑠
𝑖 𝑛𝑒𝑤(𝑡) = 𝑝𝑔1,𝑠

𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝐸𝑆𝑊𝐹)

𝜕(𝑝𝑔1,𝑠
𝑖 (𝑡))

= 𝑝𝑔1,𝑠
𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 ∗ (𝜆𝑠(𝑡) − (𝑎𝑔1

𝑖 ∗ 𝑝𝑔1,𝑠
𝑖 (𝑡) + 𝑏𝑔1

𝑖 ))

                                       (38) 

𝑝𝑔2,𝑠
𝑗 𝑛𝑒𝑤(𝑡) = 𝑝𝑔2,𝑠

𝑗 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 𝜕(𝐸𝑆𝑊𝐹)

𝜕(𝑝𝑔2,𝑠
𝑗

(𝑡))
= 𝑝𝑔2,𝑠

𝑖 𝑜𝑙𝑑(𝑡) + 𝜀𝑖𝑡 ∗ 𝜆𝑠(𝑡)                                         (39) 

𝑝𝑎𝑣,𝑠(𝑡) = 𝑛𝑝𝑎𝑛𝑒𝑙 ∗ 𝐴𝑝𝑎𝑛𝑒𝑙 ∗ 𝜂𝑝𝑣 ∗ 𝜂𝑖𝑛𝑣 ∗ 𝑖𝑟𝑟𝑠(𝑡)                                                                  (40) 
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𝑝𝑑𝑖𝑠,𝑠
𝑒𝑠 (𝑡) = min (𝑝𝑑𝑖𝑠

𝑒𝑠𝑀𝑎𝑥(𝑡). (𝑠𝑜𝑐𝑠
𝑒𝑠(𝑡) − 𝑠𝑜𝑐𝑚𝑖𝑛

𝑒𝑠 ) ∗ 𝑥𝑏𝑎𝑡 ∗ 𝜂𝑑𝑖𝑠
𝑒𝑠 . 𝑝𝑟𝑒𝑞

𝑒𝑠 )                               (41) 

𝑝𝑐ℎ,𝑠
𝑒𝑠 (𝑡) = min (𝑝𝑐ℎ

𝑒𝑠𝑀𝑎𝑥(𝑡). (𝑠𝑜𝑐𝑚𝑖𝑛
𝑏𝑎𝑡 − 𝑠𝑜𝑐𝑠

𝑒𝑠(𝑡)) ∗
𝑥𝑏𝑎𝑡

𝜂𝑑𝑖𝑠
𝑒𝑠 . 𝑝𝑟𝑒𝑞

𝑒𝑠 )                                        (42) 

𝑠𝑜𝑐𝑠
𝑒𝑠(𝑡 + 1) = 𝑠𝑜𝑐𝑠

𝑒𝑠(𝑡) +
𝛼𝑑𝑖𝑠|𝑐ℎ(𝑡)∗𝜂𝑐ℎ

𝑒𝑠 ∗𝑝𝑐ℎ,𝑠
𝑒𝑠 (𝑡)+(1−𝛼𝑑𝑖𝑠|𝑐ℎ(𝑡))(

𝑝𝑑𝑖𝑠,𝑠
𝑒𝑠 (𝑡)

𝜂𝑑𝑖𝑠
𝑒𝑠 )

𝑥𝑏𝑎𝑡
                              (43) 

𝑃𝑚𝑡𝑒

𝑚𝑖𝑛 ≤ 𝑃𝑚𝑡,𝑠
𝑒 (𝑡) ≤ 𝑃𝑚𝑡𝑒

𝑚𝑎𝑥                                                                                                              (44) 

𝑃𝑚𝑡ℎ,𝑠

𝑚𝑖𝑛 (𝑡) = 𝑘ℎ
𝑚𝑖𝑛 ∗ 𝑃𝑚𝑡,𝑠

𝑒 (𝑡)                                                                                  (45) 

𝑃𝑚𝑡ℎ

𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑚𝑡,𝑠
ℎ (𝑡) ≤ 𝑃𝑚𝑡ℎ

𝑚𝑎𝑥                                                                                           (46) 

 

Fig. 4. Agents’ interactions 
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6. Results and discussion 

6.1. System data 

To simulate the proposed stochastic process, the scenarios of solar irradiance, prices, 

loads of thermal, electrical, and cooling agents are generated based on their forecasted 

values from the University of Guilan [40]. These scenarios are plotted in Figs. 5-10. The 

capacity of existing equipment in this EH is provided in Table 2 [40]. The constant 

coefficients of entities that exist in both thermal and electrical interactions are taken from 

[66]. Also, the battery has a minimum and maximum charging/discharging rates of 25% and 

10% of its total capacity with an efficiency of 90%, respectively. Moreover, the thermal 

storage has a minimum and maximum charging/discharging rates of 30% and 10% of its 

total capacity with an efficiency of 80%, respectively [67] . As the AnyLogic software has 

the required infrastructure for agent-based programming, in this regard, the simulation of 

this paper has been in java language due to providing a simple and user-friendly 

infrastructure for implementing the complex agent based communication. 

Table 2. Size of EH’s component 

PV Micro turbine Boiler Grid Cooling 

 

PV  

[kW] 

 

Battery 

[kWh] 

 

Micro 

turbine 

[kW] 

 

Thermal 

storage 

[kW] 

Boiler 

[kW] 

 

Trans 

[kW] 

 

Thermal 

Chiller 

[kW] 

 

Electrical 

Chiller 

[kW] 

40 10 60 10 15 80 15 15 
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Fig. 5. Solar irradiance scenarios 

 

Fig. 6. Cooling power scenarios 
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Fig. 7. Hourly upper bounds of electrical loads scenarios 

 

 

 

 

Fig. 8. Hourly upper bounds of thermal loads scenarios 
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Fig. 9. Electric price scenarios 

 

 

Fig. 10. Gas price scenarios 

6.2. Simulation results of the proposed model 

In this section, the behavior of the agents in the EH is explained for all scenarios so 

that the performance of the presented model becomes more transparent. As can be seen in 

Fig. 11, gas prices and grid sell prices have a direct impact on the price charged in the 

thermal (Heat Price) and electrical (Electric Price) interactions of the multi-energy system, 
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respectively. Since gas price is higher than the grid sell price at all hours, the result of the 

price in thermal interaction is also higher than the price in electrical interaction. The direct 

effect of the gas price on the Heat Price is due to the direct dependence of the coefficients 

on the boiler agent and the thermal part of the MT agent. The reason why the price of 

electrical interaction is close to the grid sell price is explained below. 

 

 

Fig.11. Expected thermal & electric clearing prices and expected electric and gas prices of upper 

grid 

 

Fig. 12. shows that the cost of using solar energy is negligible, so it uses the 

maximum available energy during the day. But since this amount of solar energy is less than 

the electric charge at all hours of the day, so the upstream grid is most likely to determine 

the cost of thermal interaction for most hours, so the graph of the electrical interaction is 

similar to the upstream grid price graph. It should be noted that at peak hours of consumption 

since the amount of power consumed by the upstream grid doesn’t cover the electrical 
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demand, so the EH compensates for its energy shortage through MT power generation. 

Hence, at the mentioned hour the electrical interaction clear price increases. 

 

Fig. 12. Expected electrical power distributions result in electrical interaction 

 

Fig. 13. Expected thermal power distribution results in thermal interaction 

As can be seen from Fig. 13, most of the energy is supplied by the boiler during the 

day and compensates for the shortage of MT if needed. This is due to the higher coefficients 

in the thermal part of the MT agent than the boiler agent. 
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6.3. Comparison with deterministic and centralized models 

In this section, the numerical results stemmed from the previous section are 

compared with deterministic and also with centralized models. It is worth mentioning that, 

the centralized optimization model is completely solved by CPLEX solver under GAMS 

[68] and is based on the written model in the appendix of [40]. In Table 3, it can be seen 

that in the decentralized state, considering the uncertainties in the input data, although the 

cost of MT, cooling and thermal load agent is higher than the deterministic model, the gain 

for the other agents makes the total benefit of the EH greater than the deterministic one. For 

example, the expected cost for MT agent is grown from 1503 $ in the deterministic model 

to 1636 $ in the stochastic one. However, the expected profit of the electrical load agent is 

increased from 6704 $ to 7223 $, and also the profit of the PV agent is slightly increased 

from 166 $ to 182 $ in the stochastic model. Therefore, considering the uncertainties of 

input data can change the optimal values. This is so important for the agent like PV which 

is a price maker and its interactions exert an influence on the clearing price.  

On the other hand, as Table 3 illustrates, only the trend of PV agent is growing 

compared with its centralized model. This is because the PV agent fails to determine the 

selling/buying time slots on its own decisions in the centralized model, by the same token, 

the decentralized method makes the presence of PV agent more realistic and efficient. It 

should be noted that in the centralized state, due to the optimizer's access to all information, 

the net gain will be better than the decentralized state. As can be seen, the whole benefit in 

the centralized model is 7287 $ compared with 6252 $ in the stochastic decentralized one. 
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Table 3. Expected operating costs in different operation models 

Operation 

Model 

PV 

agent 

[$] 

MT 

agent 

[$] 

Grid 

agent 

[$] 

Boiler 

agent 

[$] 

Cooling 

agent 

[$] 

Electrical 

load 

agent 

[$] 

Thermal 

load 

agent 

[$] 

Total 

[$] 

Stochastic 

decentralized 

-182 1636 -1726 -1583 1196 -7223 1630 -6252 

deterministic 

decentralized 

-162 1503 -1511 -1444 1008 -6704 1488 -5826 

centralized -63 1965 -1878 -1583 2120 -7856 7.5 -7287 

 

6.4. Sensitivity analysis on the PV agent presence 

The main influence of the size of the PV agent as an active participant is provided in Table 

4 and compare with the base state 40 kW. As can be seen, by increasing the capacity of the 

PV agent, the participation of the upstream grid agent in the electrical interaction of the 

multi-energy system decreases, and as a result, the profit of this agent decreases as well. 

Since the cost of produced electricity with the PV agent is much cheaper than the grid agent 

production so the electric load agent can provide needed energy with much less cost which 

leads to the total cost reduction for this agent. The effect on the other elements is negligible.  
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Table 4. The effect of PV agent capacity on the cost of components 

              Size (kW) 

 

Cost ($) 

0 20 40 60 80 

 

 

 

PV agent 0 -92 -182 -258 -340 

Electrical load 

agent 

-6284 -6572 -7223 -8161 -8378 

Grid agent -2295 -2002 -1726 -1467 -1294 

 

 

6.5. The value of stochastic solution 

A useful indicator that represents the effectiveness of stochastic optimization is the 

value of a stochastic solution (VSS). This indicator shows how much savings can be made 

by using stochastic scenarios instead of deterministic quantities. In other words, VSS 

represents the cost of ignoring the uncertainty in decision making. The smallness of the VSS 

shows that the solution of the deterministic method is an appropriate approximation of the 

actual solution of the problem. 

EV SVSS z z                                    (47) 

 In (47), EVz  represents the value of objective function obtained from the deterministic 

method and Sz  represents the value of objective function obtained from the stochastic 

method. Table 5 shows the results of this process. According to this table, by taking into 

account the stochastic scenarios of loads, solar irradiance, and prices, the expected cost is 

decreased by 7.3% (expected profit is increased by 7.3%). 

Table 5 – VSS of system scenarios 

VSS Sz EVz 

426 (7.3%) -6252 -5826 
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7. Conclusion 

In this paper, a stochastic decentralized operation model for an EH is proposed using 

MAS. Considering the uncertainty in input data, the cost of the agents is changed compared 

to their deterministic one. Therefore, the variation in the forecasting data can affect making 

decisions of agents and their profits. This model does not rely on a specific agent and if any 

interruption occurs, the system can be still operational. Therefore, the main results of this 

paper are: 

 The stochastic decentralized operation of the system led to a higher total 

benefit due to considering its input data uncertainties. The VSS index 

showed an increase of 7.3% for the total gain. 

 The whole social benefit in the decentralized model has decreased compared 

to its centralized one due to two main reasons. Firstly, the private ownership 

of some agents like the PV agent made its profit higher and this led to a drop 

in social benefit. Secondly, in a decentralized model, the agents fail to gather 

all information of the system and they just use the information arising from 

their interactions with other agents. 

 The growth in the PV size can lead to higher profit for the whole system. 

This is because not only its own profit increase but also the electrical load 

agent can procure more affordable electricity from this agent. 

In the future work, develop the model into a large scale system is suggested with different 

energy components like hydrogen storage system or etc. 
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