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Abstract—Charging of electric vehicles (EVs) significantly 

impact the reliability of the power system. A constrained power 

grid is a feasible solution to maintain the reliability of the power 

system. However, in a constrained power grid, it is challenging 

for the system operator to balance the additional load. Fast and 

high-power density of batteries makes them a conceivable 

option for this task, if properly sized. Charging profile of EVs is 

constructed by considering travel pattern, charging need and 

driver’s behaviour of EVs. Moreover, a sizing algorithm is 

proposed to compute the battery capacity for parking lots 

equipped with EV chargers in a constrained grid. The proposed 

sizing algorithm ensures 1) balance the EV load, 2) avoid 

over/under-sizing of the system. The accuracy of the proposed 

battery sizing algorithm is shown by simulation results, 

characterised by using real data of household travel survey and 

parking occupancy data.  

Keywords—Battery sizing, Electric vehicle, Constrained grid, 

Parking lots. 

Indices  

i Sampled electric vehicle  

c Case index 

h Hour 

n Total number hours  

u Iteration number 

 

Variables and parameters 

𝐵𝐶𝑖 Battery capacity of 𝑖𝑡ℎ EV. 

𝐾𝑀𝑖 Distance travel by 𝑖𝑡ℎ EV. 

𝑎𝑖  & 𝑑𝑖                Arrival & Depart. time of 𝑖𝑡ℎ EV. 

𝑋𝑚𝑖𝑛
𝑐 & 𝑋𝑚𝑎𝑥

𝑐  Min/Max boundaries of the solution 

𝑁𝑒𝑣               Total number of EVs. 

𝐸𝑖 Energy required to charge 𝑖𝑡ℎ EV. 

𝐿𝐸𝑉
𝑖,ℎ

 Hourly load of 𝑖𝑡ℎ EV. 

𝑃𝐵 Instantons SOC of the battery 

𝑃𝑒𝑟𝑟𝑜𝑟
𝑐  Error between EV load and grid power. 

𝐵𝐶𝑟𝑒𝑞
𝑐  Required battery capacity for case “c”. 

𝑅𝑖 Energy consumed per kilometre of 𝑖𝑡ℎ EV. 

𝑃𝐺
𝑐 Utility grid power limit 

𝐸𝑚𝑎𝑥
𝑐  Maximum battery required in case “c”. 

𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐  Updated battery capacity 

𝐷𝑐,𝑚𝑎𝑥 Maximum travel distance 

Abbreviation 

BESS Battery Energy Storage System 

EV Electric Vehicle 

OPL Office Parking Lot 

PLO Parking Lot Operator 

PL Parking Lot 

I. INTRODUCTION 

Greenhouse gas emissions are a great challenge for the 

environment and human life. Eco-friendly nature of electric 

vehicle makes it a viable source of commuting. Many 

countries are electrifying their transportation in order to 

reduce the level of 𝐶𝑂2 emission [1]–[3]. The rapid increase 

in market participation of EVs will change the parking lots 

(PLs) to a charging stations. PLs associated with 

workplace/shopping centre/ homes will be the most 

convenient spots for EV owners to charge their vehicles. The 

increase in load demand due to the charging of EVs 

destabilises the power system. To reduce the impact of EV 

charging on the power system, the constrained grid is a 

feasible option [3]. In a constrained grid, the system operator 

specifies the power limit, so, in any given time, the grid cannot 

supply more than specified power to the load. In a constrained 

grid, parking lot operator (PLO) must flatten their charging 

demand according to the power constraint enforced by the 

grid. However, PLO is interested in fulfilling the EV charging 

requirement of every vehicle, without reducing their energy 

consumption. In this context, battery energy storage systems 

(BESS) can be used to provide energy when needed and 

recharge itself in off-peak hours. Therefore, the correct 

power/energy size of BESS system is the most important 

aspect in designing and planning of PLs containing charging 

and discharging infrastructure for EVs.  

Several studies aim to evaluate the capacity optimisation 

of BESS has been conducted [4]–[7]. The economical and 

reliable combination of photovoltaic, wind and energy storage 

system has been presented in [8]. However, the author did not 

consider the force outage rates of renewable energy sources 

like wind and solar system. The author in [9] develops a 

stochastic method to evaluate battery sizing by taking demand 

shift capability into account. However, he overlooked the 

uncertainty in the household load profile. In [5], the author 

aims to find the optimal combination of PV, WT and BESS. 

However, their convergence criteria for battery sizing resulted 

the selected battery to discharge below 90% depth of 

discharge (DOD). A comprehensive battery sizing model 

considering battery degradation is proposed in [6]. In [10], the 

author developed a techno-economical sizing method for DC-

micro grid by considering EV mobility on different charging 

station but neglecting EV’s driving pattern. To conclude, 

many authors overlooked critical factors (like the volatility of 

renewable sources and load, depth of discharge, forced outage 

rate of renewables, consider grid as an infinite bus etc.) 

Secondly, no one had considered the sporadic nature of EV 

charging in a constrained grid conditions. 
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A. Contribution 

This work develops a model to construct charging profile 

for EVs in parking lots. Moreover, proposes an algorithm to 

precisely compute the size of battery energy storage capacity 

for parking lots in a constrained grid. The proposed method 

considers all possible combinations to avoid over/under-sizing 

of the system. It also ensures the maximum utilisation of the 

BESS. The proposed method is developed using real data of 

household travel survey of Sydney region and parking lot 

occupancy data of OPL.  

II. SYSTEM MODELLING 

A. EV Load Modelling  

It is essential to develop a realistic model to estimate the 

availability of EVs in PLs. In the proposed model, EV usage 

is characterized by five parameters (i.e. 𝑎𝑖 , 𝑑𝑖 , 𝐵𝐶𝑖 , 𝑅𝑖 , 𝐾𝑀𝑖). 

All are random variables with their probability distribution 

functions derived from real data. In this work, an OPL with 

space for 1000 vehicles is considered.  

The aggregated occupancy of a OPL and daily distance 

travelled was derived from vehicle travel survey data 

obtained from 25,443 people in 9,715 households across the 

State of NSW (Australia) over a period of three years [11]. 

The data contains 9,822 office/workplace trips and showed 

that about 70% of commuting vehicles arrived at their 

workplace (office) between 0600 and 0800, and almost the 

same percentage departed between 1500 and 1800. The 

arrival time 𝑎𝑖 departure time 𝑑𝑖 of OPL was best fitted with 

a log-normal distribution having means µ𝑝 and standard 

deviation 𝜎𝑝. The values of µ𝑝 and 𝜎𝑝 for 𝑎𝑖 are 2.17 and 0.32 

respectively. For 𝑑𝑖 the values of µ𝑝 and 𝜎𝑝 are 16.99 and 

3.47 respectively. 

 

𝑎𝑖  = 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(µ𝑝, 𝜎𝑝)        ∀ 𝑖, p   (1) 

𝑑𝑖  = 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(µ𝑝, 𝜎𝑝)        ∀ 𝑖, p   (2) 

 

In Fig. 1, the arrival and departure pattern of EVs in OPL 

is synthetically generated by using (1)-(2). About 65% of 

commuting vehicles arrived at their workplace (office) 

between 0600 and 0900, and almost the same percentage 

departed between 1500 and 1800. The average dwell time of 

individual EV in the OPL is around 5 hours. 

Nissan leaf is considered in this work. Battery capacity 𝐵𝐶𝑖 

and energy consumption 𝑅𝑖 of Nissan leaf 2018 is 40 KWh 

and 0.164 KW/km respectively. Travel pattern of Sydney 

region is also analysed from the HTS survey data [11]. On 

average, vehicles in NSW travel approximately 11650 

kilometres per annum. It was reported in [12] that about 88% 

of those vehicles drive less than 30 km per day, and 

approximately 95% of vehicles travel less than 45 km per day. 

The distance travelled 𝐾𝑀𝑖 by vehicles was best fitted by a 

Weibull distribution with shape parameter 𝜍𝑀𝐷 = 36 and scale 

parameter 𝜈𝑀𝐷= 4.9.  

 

𝐾𝑀𝑖 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜍𝑀𝐷 , 𝜈𝑀𝐷);    ∀𝑖   (3) 

 

 To calculate the load, we assume that all vehicles are 

electric, and their travel patterns are the same as in the 

Household Travel Survey [11].  

The energy required to charge the 𝑖𝑡ℎ EV while parked in 

the PL is given by  

 

𝐸𝑐
𝑖 = {

𝐵𝐶𝑐
𝑖              𝑖𝑓 𝐾𝑀𝑐

𝑖 = 𝐷𝑐,𝑚𝑎𝑥

𝑅𝑖 ∗ (𝐾𝑀𝑐
𝑖 𝐷𝑐,𝑚𝑎𝑥⁄ ),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , ∀𝑖, 𝑐        (4) 

 

Here 𝐷𝑐,𝑚𝑎𝑥  is the maximum distance travelled, 𝐾𝑀𝑐
𝑖   is 

the daily distance travelled, and 𝐵𝐶𝑐
𝑖 is the battery capacity of 

the EV. Level 2 charger having a rate of charging 𝑃𝑐ℎ𝑎𝑟𝑔𝑒= 

3.6 kW and an efficiency 𝜂𝑐ℎ𝑟𝑔 = 0.94 is considered to 

charge EVs in workplace car parks. With the help of 

arrival/departure time energy consumed per kilometre driven, 

battery capacity of EV, we are now able to calculate how 

much charge is needed to charge the battery. 

 

𝐿𝐸𝑉
𝑖,ℎ =  ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒

𝑖 (ℎ)
min ( 𝑇charge

𝑖 , 𝑑𝑐
𝑖 )

𝑎𝑐
𝑖 ∗ 𝜂𝑐ℎ𝑟𝑔   (5) 

 

𝑃𝐿𝑜𝑎𝑑(ℎ) =   ∑ [

𝐿𝐸𝑉
1,1

𝐿𝐸𝑉
1,2 ⋯ 𝐿𝐸𝑉

1,ℎ

⋮ ⋮ ⋮

𝐿𝐸𝑉
𝑖,1

𝐿𝐸𝑉
𝑖,2 ⋯ 𝐿𝐸𝑉

𝑖,ℎ
]

𝑁𝑐
𝑖=1             (6) 

 

Here 𝐿𝐸𝑉
𝑖,ℎ

 is the hourly load demand of 𝑖𝑡ℎ EV,  𝑇𝐿𝑐ℎ𝑎𝑟𝑔𝑒

𝑖  is 

the time required to charge the battery, 𝑃𝐿𝑜𝑎𝑑 is the hourly 

aggregated load demand of EVs in OPL and 𝑁𝑐 is the total 

Figure 2: Hourly EV charging load profile throughout the year 

Figure 1:  Arrival and departure pattern in OPL  



number of vehicles visited OPL in one day. 

  The aggregated load of EVs in OPL is calculated by 

assumed 100% penetration of EVs. Equations (1-6) are used 

to calculate the aggregated annual EV load in the OPL. Fig 2. 

shows the estimated hourly aggregated load demand in OPL 

throughout the year. The daily peak demand is not constant 

because of using the stochastic model for estimating EV load 

in OPL. 

B. Modelling of Battery Energy Storage System: 

The SOC of the battery at any instant can be computed as 

𝑃𝐵(ℎ) =  𝑃𝐵(ℎ − 1) + (𝜂𝑏 ∗ 𝑃𝑎𝑏𝑠(ℎ) −
𝑃𝑠𝑝𝑙𝑦(ℎ)

𝜂𝑏
⁄ )     (7) 

Subject to  

𝑃𝐵
𝑚𝑖𝑛  ≤ 𝑃𝐵(ℎ) ≤  𝑃𝐵

𝑚𝑎𝑥                           (8) 

Where 𝑃𝐵 is the instantons power of the battery and 𝜂𝑏 is the 

charging/discharging efficiency of the battery. 𝑃𝑎𝑏𝑠 and 𝑃𝑠𝑝𝑙𝑦  

are the power absorbed and supply by the BESS 

III. BATTERY SIZING ALGORITHM 

In this section, step by step battery sizing algorithm to flatten 

the energy consumption of EV charging in the PL are 

presented. The battery capacity is computed by taking grid 

power constraints into account. Different cases were 

considered in this work, and each case has different power 

constraint.  

A. Battery sizing method 

The method to compute the BESS to meet the intermittent 

load demand of EVs is computed as follows. The error 

between the EV charging load and power supply by the utility 

grid for each case “c” is calculated as  

 

𝑃𝑒𝑟𝑟𝑜𝑟
𝑐 (ℎ) =  𝑃𝐿𝑜𝑎𝑑(ℎ) − 𝑃𝐺

𝑐(ℎ)     ∀𝑐 , ℎ > 0            (9) 

 

      Where 𝑃𝐺
𝑐 is the power constraint by the grid in case “c”. 

and 𝑃𝐿𝑜𝑎𝑑 is the hourly load demand of the EVs. The negative 

values of the error are the additional load that the grid cannot 

supply. The maximum battery capacity (𝐸𝑚𝑎𝑥
𝑐 ) required to 

meet the extra load demand is calculated by taking the sum of 

all the negative values of the error. The 𝐸𝑚𝑎𝑥
𝑐 can be computed 

as 

𝐸𝑚𝑎𝑥
𝑐 = ∑ {

𝑃𝑒𝑟𝑟𝑜𝑟
𝑐 (ℎ)     𝑃𝑒𝑟𝑟𝑜𝑟

𝑐 (ℎ) > 0
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ∀𝑐 , ℎ > 0𝑛
ℎ=1     (10) 

 

      Where 𝐸𝑚𝑎𝑥
𝑐  is the maximum battery capacity that can be 

employed to support the load of EVs in the parking lot. 𝐸𝑚𝑎𝑥
𝑐  

is reliable but it’s not the optimal capacity of BESS. The 

required BESS can be less than or equal to 𝐸𝑚𝑎𝑥
𝑐 . A modified 

region reduction method is used to find the required battery 

capacity 𝐵𝐶𝑟𝑒𝑞
𝑐  for each case and it is calculated as 

 

𝐵𝐶𝑟𝑒𝑞
𝑐 =  {

𝐸𝑚𝑎𝑥 
𝑐     𝛼 < min(𝑃𝐵

𝑐) < 𝛽 
𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑐             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (11) 

 

      Here 𝑃𝐵
𝑐 is the instantaneous energy of the selected battery,  

𝛼 = 0.1 ∗ 𝑃𝐵
𝑐(1) and 𝛽 = 0.15 ∗ 𝑃𝐵

𝑐(1). The battery is not 

allowed to discharge less than 10% of its rated capacity and 

not to hold a charge of more than 90% of its rated capacity. If 

the min(𝑃𝐵
𝑐) is in-between 10% to 15% of its rated battery 

capacity than the solution is optimal otherwise 𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐  is 

needed.  

      Before calculating 𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐 , decision variable “k” is 

selected depending on the SOC of the battery. K equals zero, 

if at any instance of time, the battery discharge less than 10% 

of its maximum capacity. This condition is referred as under-

sizing. Conversely, k equals to 1 if the minimum SOC of the 

Figure 3: Flow chart of the proposed method  



battery remains above 15% of its maximum capacity. This 

condition implies that the battery is oversized.   

 

𝑘 =  {
0     min(𝑃𝐵

𝑐) ≤ 𝛼 

1     min(𝑃𝐵
𝑐) ≥ 𝛽

              (12) 

Updated battery capacity 𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐  is calculated by using the 

following relations.  

𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐 (𝑢) = (𝑋𝑚𝑖𝑛

𝑐 (𝑢) + 𝑋𝑚𝑎𝑥
𝑐 (𝑢)) 2⁄   (13) 

      Here u is the iteration number. 𝑋𝑚𝑖𝑛
𝑐 (𝑢) and 𝑋𝑚𝑎𝑥

𝑐 (𝑢) are 

the minimum and maximum bounds of the solution. Initially, 

the values of 𝑋𝑚𝑖𝑛
𝑐 (𝑢) and 𝑋𝑚𝑎𝑥

𝑐 (𝑢) in each case are set to be 

zero and 𝐸𝑚𝑎𝑥 
𝑐  respectively.  

𝑋𝑚𝑖𝑛
𝑐 (𝑢 + 1) = {

𝑋𝑚𝑖𝑛
𝑐 (𝑢)         𝑘 = 1

𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐 (𝑢)   𝑘 = 0

   (14) 

𝑋𝑚𝑎𝑥
𝑐 (𝑢 + 1) = {

 𝐵𝐶𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑐 (𝑢)  𝑘 = 1

𝑋𝑚𝑎𝑥
𝑐 (𝑢)          𝑘 = 0

    (15) 

𝑋𝑚𝑖𝑛
𝑐 (𝑢) and 𝑋𝑚𝑎𝑥

𝑐 (𝑢) are updated in each iteration based on 

decision variable “k”. The algorithm continues until the 

solution reaches to its acceptable convergence (i.e. 𝛼 <

min(𝑃𝐵
𝑐) < 𝛽).   

IV. RESULTS AND DISCUSSION: 

      The results of the proposed method to obtain the required 

battery capacity in the OPL is presented in this section. Table 

1 shows five cases of constrained grid. Each case represents 

the maximum power limit supplied by the grid. Optimal sizing 

of the BESS in the PLs is entirely dependent on the EV 

charging load and the grid power constraints.  

     We randomly selected a load profile of three consecutive 

days (i.e. 72 hours) to clearly visualise the results, as shown in 

Fig 4. The dotted line represents the power constraint applied 

by the utility grid. So, the grid can only supply a maximum of 

1.0 MW of power. The shaded region in Fig. 4 is the additional 

load that need to be fulfilled by PLO. 

      Fig. 5 shows the instantaneous power flow between EV 

load, utility grid and the selected BESS of case 2. Fig. 5 shows 

1) the load profile of EVs (blue line), 2) power supply by the 

grid (orange line) and 3) charging/discharging of BESS (black 

dotted line) of case 2. In this work, fixed tariff is considered 

throughout the day. In the peak hours, BESS is supplying 

power to charge EVs and recharge itself in off peak hours. In 

Fig. 5, the orange line represents the sum of the EV load and 

the charging load of the BESS. The load profile is flattened, 

and at any instance of time the battery is not discharge below 

10% of its rated battery capacity. Consequently, the computed 

battery capacity can meet the load in peak hours and hence 

manage the EV load under a constrained grid.  

      Fig 6 represents the required battery capacity (𝐵𝐶𝑟𝑒𝑞
𝑐 ) 

together with the grid power limits. It can be observed that the 

required battery size is inversely proportional to the grid 

constraints. Moreover, the size of the battery increases 

exponentially when grid committed less than 60% of the peak 

load of OPL. A simple cost analysis was performed and the 

results are tabulated in Table 1.  

In this work, Tesla powerwall2 battery having a cost of 

571.4 $/KWh is considered [13] for cost analysis. The BESS 

is not economically feasible if the grid commits less than 60% 

power of the daily peak demand. Conversely, if the grid is 

supplying more than 60% of the average peak demand than Figure 4: EV charging load demand for 3 random days  

Figure 5: Instantaneous power flow and load demand of EVs  

Figure 6 Required battery capacity for each case 



less battery capacity is needed to meet the charging demand in 

constrained grid. 
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VI. CONCLUSION 

This work proposed the battery sizing algorithm for parking 

lots incorporating charging infrastructure of EVs. The 

proposed sizing algorithm is developed by using real data of 

household travel survey and parking occupancy data of office 

parking lot. The resulted battery energy storage system 1) 

effectively balance the intermittent EV load, 2) flatter the EV 

charging demand, 2) maintain the reliability of the grid and 3) 

ensures the maximum utilisation of the BESS. Moreover, the 

battery installation would not be economically viable, if the 

grid commits less than 60% of the peak charging demand. The 

proposed generic sizing method applies to other situations as 

well.  
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Table.1 Required battery capacity and grid constraints  

Cases Grid Power 

limits  

(MW) 

𝑩𝑪𝒓𝒆𝒒
𝒄  

(MWh) 

Battery Capital 

Cost 

($) 

Case 1 

Case 2 

Case 3 

Case 4 

Case 5 

1.1 

1 

0.8 

0.6 

0.5 

0.13 

0.53 

1.73 

3.35 

4.32 

74285.7 

302857.1 

988571.4 

1914285.7 

2468571.4 

 


