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Impact of Transportation Infrastructure on Industrial Pollution in 

Chinese Cities: A Spatial Econometric Analysis 

 

Guobin Huanga, Jie Zhangb, Jian Yuc,*, Xunpeng Shid 

 

Abstract: Transportation infrastructure (TI) plays a critical role in China’s economic 

growth, but its negative impacts on the environment have not been sufficiently 

addressed by the government. While studies of TI’s impact on air pollution exist, there 

are few studies examining its impact on industrial pollution. This paper fills this gap 

by using the Spatial Durbin model and balanced panel data from 280 of China’s cities 

spanning 2003 to 2015. The results show that TI, represented by urban roads, 

aggravates the cities’ industrial SO2 emissions, industrial soot (dust) emissions, and 

industrial wastewater over the long run. The channel analysis further shows that TI 

influences industrial pollution through industrial agglomeration, but not urbanization. 

TI has no direct effect on the industrial pollution of neighboring cities but does 

influence neighboring cities’ industrial pollution through the spatial spillover effects 

of industrial agglomeration. Provincial policymakers and city planners should 

together pay more attention to the role of industrial agglomeration when designing 

economic policies to manage the negative effects of TI on the environment, and 

through cross-city cooperation develop means to reduce these effects. 

Keywords: Transportation infrastructure; Industrial pollution; Industrial 

agglomeration; Urbanization; Spatial Durbin model 
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JEL classification: C21; H54; Q53; R10 

 

Highlights 

 The impact of transportation infrastructure on industrial pollution is estimated 

 Transportation infrastructure aggravates cities’ industrial pollution in the long run 

 Transportation infrastructure influences industrial pollution through industrial 

agglomeration but not urbanization 

 Spatial Durbin model is used to measure the spatial spillover effects of industrial 

agglomeration 

 The spatial spillover effects of industrial agglomeration play an important role in 

the impact of TI on industrial pollution 
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1. Introduction 

The Chinese economic miracle has caused serious environmental pollution. 

Infrastructure investment, a key factor that has underpinned the economic miracle, has 

been frequently examined for its impacts on economic performance and air pollution 

(Lin and Chen, 2020), but few studies have examined its impact on industrial 

pollution (Ji and Zhang, 2019). This paper aims to investigate the impact of 

transportation infrastructure (TI)2 on industrial pollution at the city level through 

industrial agglomeration3 and urbanization.  

Over the past four decades, China’s remarkable economic development has come 

to be known as the ―China miracle‖ (Cheng et al., 2019; Yu et al., 2019; Zhang et al., 

2020). China’s gross domestic product (GDP) increased from US$293.6 billion in 

1978 to US$10.8 trillion in 2018, and GDP per capita increased from US$307 to 

US$7,752 during the same period (all values at constant 2010 US$; World Bank, 

2018). Many factors have supported China’s economic success, among which the 

construction of transport infrastructure (TI) is regarded as critical (Coşar and Demir, 

2016; Rokicki and Stępniak, 2018; Yu et al., 2019; Lin and Chen, 2020). Many studies 

have demonstrated that TI plays a positive role in economic growth (Duan et al., 

2018).  

However, the rapid development of the Chinese economy, including TI–a key 

driver of China’s economic growth – has caused serious environmental consequences. 

On the one hand, the construction of roads, itself, is highly polluting. On the other 

hand, when TI increases, there is almost always a rapid increase in private car 

                                                                 

 Environmental pollution can be broadly divided into domestic pollution (such as household 

garbage) and industrial pollution. Industrial pollution can be further divided into primary industry 

pollution (pesticide pollution, etc.), secondary industry pollution and tertiary industry pollution 

(such as exhaust emissions from cars). In this paper, industrial pollution refers specifically to 

secondary industry pollution, that is, waste gas, waste water, etc. produced by the production 

processes of secondary industry enterprises.  
2
 There are many types of TI, e.g., airports, railways, high-speed railways, expressways and urban 

roads. In this paper, TI refers specifically to within-city TI of urban roads, rather than inter-city TI 

of airports, railways, high-speed railways, expressways, etc. See the paragraphs below for more 

details 
3
 In this paper, industrial agglomeration refers specifically to secondary industry agglomeration.  
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ownership, and this leads to increases in air pollution. In China, the speed of urban 

road construction has lagged far behind the growth rate of private car ownership. This 

has inevitably led to increasingly severe urban traffic congestion. C. Sun et al. (2019) 

argued that rail transit has an air pollution-reducing effect in the long run, while the 

construction of rail transit has a negative short-term effect on air quality. Luo et al. 

(2018) looked at road width and road length and found that road width had a 

significant negative effect on PM10 in China, but road length had an insignificant 

positive effect on emissions. 

According to the China State Bulletin on Ecological Environment  (2018) 

(Ministry of Ecology and Environment of the People’s Republic of China, 2018), the 

air quality in 217 (64.2%) of 338 cities at and above the prefectural level exceeded 

the national standard in 2018. Water pollution is also a problem. In 2018, the 10,168 

national groundwater quality monitoring stations, the I-III class water (good quality) 

accounted for only 13.8% of the water quality monitoring, and the IV-V class 

proportion (polluted) was as high as 86.2%. Figures 1(1)-1(3) show the four quartile 

distributions of industrial SO2 emissions, industrial soot (dust) emissions, and 

industrial wastewater, respectively, in Chinese cities. These three types of pollution 

are mainly concentrated in the eastern and central regions. The levels of pollution in 

the western region are relatively lower than those in the eastern and central regions. 

This is because the western region is less densely populated and has less secondary 

industry enterprises than eastern and central regions. 

                                                                 

 There are four levels of cities according to China’s administrative system, says provincial city 

(four municipalities, Beijing, Shanghai, Tianjin and Chongqing), vice-provincial city (capital of 

each province such as Guangzhou), prefecture-level city and county-level city. 338 cities at and 

above the prefectural level include provincial city, vice-provincial city and prefecture-level city. 

Besides, all the cities considered in this paper is at and above the prefectural level. 

 The six pollutants are PM2.5, PM10, SO2, NO2, O3 and CO. According to the ―Technical 

Regulation for Ambient Air Quality Assessment (On Trial)‖ (HJ 663-2013) and the ―Ambient Air 

Quality Standards‖ (GB 3095—2012): the annual average concentration value of PM2.5 cannot 

exceed 35μg/m³, and the average annual concentration value of PM10 cannot exceed 70μg/m³, the 

annual average concentration value of SO2 cannot exceed 60μg/m³, the annual average 

concentration value of NO2 cannot exceed 40μg/m³; and the 90% quantile of the daily maximum 

8-hour average concentration value of O3 in the effective calendar year cannot exceed 160 μg/m³, 

and the 95% quantile of the 24-hour average concentration value of CO in the effective calendar 

year cannot exceed 4 mg/m³. 
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[Insert Figure 1 Here] 

 

Though more and more studies have been carried out on the economic and 

environmental impacts of TI, gaps remain in the research in terms of its impact on 

industrial pollution. An increasing number of researchers have been finding that TI 

has a significant negative impact on the environment (Chen and Whalley, 2012; 

Gallego et al., 2013; Sun et al., 2018, 2014; Wei, 2019; Xu and Lin, 2016). Most of 

their studies have focused on the impact of TI on air pollution from vehicles and other 

means of transportation. The topic of industrial pollution caused by TI through 

industrial agglomeration and urbanization has been insufficiently investigated (Hao 

and Liu, 2016; Zhu et al., 2019). Ignoring the impact of TI on industrial pollution 

leads to incomplete analyses, insufficient cognition of TI, and biased and partial 

evaluation, resulting in misleading policy formulation. 

This paper focuses on pollution of secondary industry because industrialization is 

an important driving force for China’s rapid economic growth (Jiang and Lin, 2012; 

Mukherjee and Zhang, 2007), and industrialization is accompanied by serious 

secondary industry pollution (Xu and Lin, 2015). As far as the concerned topic of 

industrialization and industrial pollution in this article, urban road is one of the 

important means for local governments to attract investment ("three supplies and one 

leveling", supply of water, electricity and road and leveled ground, four conditions 

ready for further economic development), while inter-city transportations such as 

airports, railways, high-speed railways and expressways are planned by the central 

government or higher- level governments and are not fully determined by local 

governments. Therefore, this paper focuses on the internal transportation 

infrastructure of the city, emphasizing the impact of within-city industrial 

agglomeration (specifically secondary industry agglomeration in this paper) on 
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secondary industry pollution caused by urban roads, rather than discussing the impact 

of the connectivity among cities on tertiary industry pollution (exhaust emissions by 

car during personal travel, etc.). Furthermore, the inter-city transportations will have 

impact beyond the city boundary and thus its environmental impact is hardly to be  

matched by the city level pollution data. In this case, we mainly focus on discussing 

the urban roads rather than investigating the inter-city airports, railways, high-speed 

railways or expressways. 

From the perspective of industrial agglomeration and urbanization, we used the 

spatial Dubin model (SDM) to investigate the impact of TI on industrial pollution. 

Our data covered 280 prefecture- level cities in 31 China’s provinces (excluding Hong 

Kong, Macao, and Taiwan) from 2003 to 2015. Our study differs from the literature in 

the following three aspects. First, we focused on the impact of TI on industrial 

pollution instead of air pollution. Industrial pollution is an important component of air 

pollution. Second, we examined two transmission mechanisms though which TI 

influences industrial pollution, namely industrial agglomeration and urbanization. We 

found that TI affects industrial pollution mainly through industrial agglomeration 

rather than urbanization. Third, we examined the spatial spillover effects of these 

three variables (e.g., industrial pollution, TI, and industrial agglomeration) and found 

that the spatial spillover effects of industrial agglomeration play an important 

intermediary role in the impact of TI on industrial pollution. 

The rest of this paper is organized as follows. Section 2 presents a literature 

review and the hypotheses, section 3 sets the spatial econometric models, section 4 

describes the data sources and variables selection, and section 5 presents the 

econometric empirical results and discussions. The final section provides the 

conclusions and policy implications. 

2. Literature review and hypotheses 

TI is often considered the engine of economic growth and development (Cheng 
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et al., 2021; Coşar and Demir, 2016; He et al., 2020; Rokicki and Stępniak, 2018), and 

its effects on economic outcomes, including GDP per capita, poverty reduction, and 

efficient energy services, are a common subject in the literature (Barzin et al., 2018; Y. 

Li et al., 2017; Lin et al., 2012). Since the launching of China’s reforms and opening 

up in 1978, the country’s economic miracle over the subsequent four decades has been 

particularly dependent on TI (Ansar et al., 2016). Banerjee et al. (2020) investigated 

the impact of access to TI on the economic performance of different regions in China 

over a twenty-year period of rapid growth. They found that proximity to 

transportation networks had a moderately sized positive causal effect on per capita 

GDP levels across sectors, but had no effect on per capita GDP growth. Using 

manufacturing firm data from 1998 to 2007, Li et al. (2017) argued that infrastructure 

investment (e.g., road investment) contributed to an increase in manufacturing firms’ 

productivity. 

In this section, we present a literature review relevant to our three hypotheses on 

the overall impact and role of industrial agglomeration and urbanization as two 

potential channels. 

Although many researchers have demonstrated that TI has a significant negative 

impact on the environment, especially on air pollution (D. Sun et al., 2019; Yang and 

He, 2016a), emissions (He and Qiu, 2016; Yang and He, 2016b), and traffic pollution 

(Guttikunda et al., 2014), few studies have focused on the impact of TI on industrial 

pollution emissions in Chinese cities. Public transportation and private cars are 

generally the two primary means that the general public uses to travel. Beirão and 

Sarsfield Cabral (2007) pointed out that the investment scale of a city’s TI affects the 

public’s travel preferences.  

Using a panel of 283 prefecture-level cities in China from 2003 to 2015, Xie et al. 

(2019) found an inverted U-shaped relationship between traffic density and urban 

smog pollution in large and medium cities. They argued that direct emissions, spatial 

agglomeration, and technology spillover effects have been the three main channels 
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through which traffic density influence smog pollution in China. Sun et al. (2018) 

found that the relationship between TI and air pollution in China differs in the short 

and long runs. Because the construction of urban traffic infrastructure might cause 

more detours and road blockages, TI has a negative effect on air pollution.  

Recently, a number of studies found that environmental pollution (e.g., carbon 

emissions, air pollution, and SO2 pollution) has obvious spatial spillover effects. 

Using the social network analysis method, Bai et al. (2020) found that the spatial 

association of China’s provincial transportation carbon emissions exhibited an 

intuitive network structure and that the spatial association network presented a 

significant ―core-edge‖ distribution pattern. Jiang et al. (2020) found that SO2 

pollution over the entire country exhibited a significant and positive spatial 

autocorrelation, with the most polluted areas concentrated over the North China Plain. 

Fang et al. (2020) employed panel data from 2003 to 2013 for 283 Chinese cities and 

found that smog pollution had obvious spatial spillover effects via the channel of 

manufacturing agglomerations. Liu et al. (2017) used the Air Quality Index (AQI) as 

the measure of haze pollution and found that there was a significant positive spatial 

autocorrelation of AQI values in Chinese cities. On average, the AQI of a city 

increased by over 0.45% for every 1% increase in the average AQI of neighboring 

cities.  

Based on the literature review, we propose the first testable hypothesis: 

H1. TI increases industrial pollution emissions in Chinese cities, and has spatial 

spillover effects. 

TI has been observed to increase regional economic growth, reduce income 

inequality and energy poverty (Cheong and Wu, 2013; Zhang et al., 2019), and 

improve firms’ production efficiency through industrial agglomeration and space 

overflow (Amann et al., 2016; Castells-Quintana, 2017). Many studies have 

demonstrated that industrial agglomeration is a critical channel for TI to influence 
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environmental pollution (Dong et al., 2019; Han et al., 2018; Wang, 2020), but the 

impacts could be ambiguous due to two opposing factors. On the one hand, industrial 

agglomeration causes obvious effects on industrial production in a region. The 

concentrated production of most firms inevitably increases energy consumption and 

degrades the local ecological environment (Ji et al., 2019; Zhang et al., 2016). On the 

other hand, industrial agglomeration often engenders new production technologies 

and management experience which lead to improved energy efficiencies, and 

effectively alleviate some pressure on the local ecological environment. Wang (2020) 

used China’s province- level data from 2000 to 2017 to estimate the mediating effects 

of industrial agglomeration in the relationship between TI and energy efficiency and 

found that TI directly affects energy efficiency but indirectly affects industrial 

agglomeration. Dong et al. (2019) argued that there is spatial autocorrelation between 

pollution agglomeration and industrial agglomeration in China, and that industrial 

agglomeration increased the pollution agglomeration at the national level and 

provincial level. Han et al. (2018) found that the specialization and diversification 

agglomerations of industries in China had no significant effects on a city, significantly 

reduced the energy efficiencies of the neighboring cities.  

Given the significant but indecisive findings on the role of industrial 

agglomeration, we propose hypothesis 2:  

H2. TI affects industrial pollution emissions in Chinese cities through industrial 

agglomeration. 

The negative impact of urban TI construction on environment could be further 

amplified through the urbanization channel. On the one hand, many studies indicated 

that there is a close relationship between TI and urbanization. The demand for TI in 

particular is significantly related to increasing urbanization rates in developing 

countries. For India, Maparu and Mazumder (2017) found that investment in various 

transport infrastructure may support growth of urban population as well as its spatial 

spread. Maparu and Mazumder (2020) argued that there is a two-way causal 
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relationship between TI investment and urbanization in India. TI can promote 

urbanization, which in turn requires more TI investment in India. For China, urban 

infrastructure plays an important role in determining the future of urbanization rate 

(Lin and Omoju, 2017). Xu and Yang (2019) pointed out that infrastructure 

construction in many Chinese cities is a key driving factor to accelerate the process of 

urbanization. The rational spatial distribution of TI, such as transportation network 

and public facilities, affects sustainable land use and urbanization rate. The 

socio-economic benefits from urban TI have been widely accepted as major tools in 

promoting the sustainable socio-economic development and urbanization in China 

(Sun and Cui, 2018). Zeng et al. (2019) found that there is a significant spatial 

spillover effect of infrastructure network on urbanization in Wuhan, which is the 

capital city of Hubei province in China. 

On the other hand, more and more researchers found that urbanization is an 

important channel for TI to influence environment. For example, Gan et al. (2020) 

found that urbanization plays a mediating role in the impact of the economy (e.g., 

convenient transportation) on haze pollution in China. Yang et al. (2018) pointed out 

that the ongoing urbanization process in China, which has lasted for more than two 

decades, has led to a sharp increase in its urban population. They used the data of 

capital cities in 30 provinces of China from 2002 to 2012 to investigate the impact of 

TI on SO2 emissions and demonstrated that TI increases SO2 emissions in the short 

run but decreases SO2 emissions in the long run. Zhu et al. (2019) argued that China’s 

accelerating urbanization plays a critical role in influencing environmental pollution. 

Using a prefecture- level panel dataset of China’s Yangtze River Economic Belt for the 

period of 2003-2014, they found that economic urbanization, population urbanization, 

and land urbanization impose no significant, significant positive, or significant 

negative impact on PM2.5 concentrations, respectively. Lin and Zhu (2018) 

investigated the air quality in China’s cities during the urbanization stage and found 

that the urbanization process has significant and negative effects on air pollutant 

concentration. Wang et al. (2020) found that the impact of urbanization on energy 
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consumption and emissions tends to vary greatly across regions in different 

urbanization stages. Ji and Chen (2017) found that the impact of urbanization on 

energy consumption and energy efficiency of Chinese provinces is not linear but 

shows significant phased characteristics. However, Xie et al. (2020) used the Chinese 

Residential Energy Consumption Survey data and found urbanization increases 

residential energy consumption in total.  

Based on the literature analysis, we propose hypothesis 3: 

H3. TI affects industrial pollution emissions in Chinese cities through the 

urbanization channel. 

 

3. Econometric methodology 

Based on the hypotheses 1-3, we present the benchmark model: 

2

0 1 2 3

4

ln( ) ln( ) ln( ) ln ( )

ln( )

it it it it

it i it

Pollution TI GDP GDP

FDI Z u

   

  

    

  
 (1) 

Where subscript I and t represent city and time, respectively. ln represents the 

logarithm form of all nonproportional variables. 
it

Pollution  denotes industrial 

pollution, and 
it

TI  denotes transportation infrastructure (TI). 

The level of economic development ( itGDP ) and its squared term, foreign direct 

investment ( itFDI ) were introduced into the model as control variables according to 

the literature on the environmental Kuznets curve (EKC; Diao et al., 2009; Grossman 

and Krueger, 1995; Song et al., 2008) and pollution haven hypothesis (PHH; Cole, 

2004; Eskeland and Harrison, 2003). Z  represents the other set of control variables, 

including industrial structure, technology development, and government behavior. On 

the one hand, government's pursuit of fiscal revenue may cause over- investment in 

secondary industry and results in industrial pollution. On the other hand, government's 

expenditure on environmental protection would reduce industrial pollution. Thus, 

government behavior which is measured by the city’s public fiscal expenditure 
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divided by public fiscal revenue is added into the model. 
i

u  is the city fixed effect, 

and 
it
  is the stochastic error term.  

Due to technical and institutional reasons, TI and industrial pollution may have 

many externalities, which lead to spatial spillover effects (Xie et al., 2019). On the 

one hand, in the planning and construction of local TI, consideration of the planning 

and construction of TI in neighboring provinces and cities is necessary. Industrial 

pollution spreads to surrounding areas due to natural forces such as wind and water 

flow. On the other hand, the positive externalities of TI and the negative externalities 

of industrial pollution may lead to an ―Infrastructure Race‖ and thus ―Pollution Race‖ 

between neighboring regions as a result of the Chinese government’s behavior, and 

leading to a spatial correlation between TI and industrial pollution. Studies have also 

demonstrated that TI and industrial pollution have strong spatial dependence 

(Maddison, 2006; Zhu et al., 2019). 

Due to the possibility of spatial correlation in TI, this paper adopted the 

relatively general SDM to investigate its impact on industrial pollution. The 

most-used spatial econometric models have been the spatial error model (SEM) and 

spatial lag model (SLM) (also called the spatial autoregression model [SAR]), 

respectively. As a general form of the SEM and SLM, the SDM considers the spatial 

hysteresis of both the independent variable and dependent variable; thus, it plays a 

critical role in practical applications. This feature of SDM also helps us explore the 

spatial effects of TI on industrial pollution more comprehensively. Therefore, based 

on the benchmark model, we establish the following SDM: 

0 1 21

2

3 4 5 61 1

2

7 81 1

ln( ) ln( ) ln( ) ln( )

ln ( ) ln( ) ln( ) ln( )

ln ( ) ln( )

N

it ij it it itj

N N

it it ij it ij itj j

N N

ij it ij it i itj j

Pollution w Pollution TI GDP

GDP FDI w TI w GDP

w GDP w FDI Z u

   

   

   



 

 

    

   

   



 

 

 (2) 

Here, 
ij

w  is an element in the spatial weight matrix. Thus, we take the spatial 

lag terms of industrial pollution (
it

Pollution ), transportation infrastructure (
it

TI ),
it

GDP  
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and 
it

FDI  into the model simultaneously, to investigate the spatial spillover effects 

from the industrial pollution, TI, GDP, and FDI of a neighboring city. 

Hypotheses 2 and 3 indicate that TI may affect industrial pollution through 

industrial agglomeration and urbanization. Thus, the following four equations are 

used to verify hypotheses 2 and 3. 

0 1 ln( )  it it i itAgg TI Z u         (3) 

0 1 ln( )it it i itUrban TI Z u         (4) 

0 1 21

2

3 4 5 6 1

2

7 8 91 1 1

ln( ) ln( ) ln( )

ln( ) ln ( ) ln( ) ln( )

ln( ) ln ( ) ln( )

N

it ij it it itj

N

it it it ij itj

N N N

ij it ij it ij itj j j

i it

Pollution w Pollution TI Agg

GDP GDP FDI w TI

w GDP w GDP w FDI

Z u

   

   

  

 





  

    

   

  

 





  
 (5) 

0 1 21

2

3 4 5 6 1

2

7 8 91 1 1
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N
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Pollution w Pollution TI Urban

GDP GDP FDI w TI

w GDP w GDP w FDI
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   

   

  

 





  

    

   

  

 





  
 (6) 

Equations (3) and (4) inspect the impacts of TI on industrial agglomeration and 

urbanization, respectively. Equations (5) and (6) consider industrial agglomeration 

and urbanization as the explanatory variables in Equation (2). Equations (3) and (5) 

estimate the mediating effects of industrial agglomeration, and Equations (4) and (6) 

investigate the mediating effects of urbanization. 

Various methods have been used to measure industrial agglomeration in the 

literature, for example, the industrial concentration, location quotient method (LQM), 

E-G index, and Herfindahl–Hirschman index. Because the dependent variable is 

industrial pollution, the LQM of the secondary industry was adopted as the measuring 

index of industrial agglomeration. The expression of 
it

Agg  is 

( / ) / ( / )
it sit it snt nt

Agg p p p p ; here, 
it

Agg  represents the LQM of the secondary 

industry of city i in year t, 
sit

p  represents the secondary industry output value of city 
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i in year t, 
it

p  represents the total output value of city i in year t, 
snt

p  represents the 

secondary industry output value of all cities in the country in year t, and 
nt

p  is the 

total national output value in year t. This index measures the degree of specialization 

of the secondary industry in the city. The larger the index, the higher the degree of 

specialization in the secondary industry in the city compared with the whole country, 

that is, the higher the degree of agglomeration. Krugman(1991) pointed out that 

industrial agglomeration is the interaction result of the transportation cost, market size, 

and factor flow. TI can refer to transportation costs. We also measure market size by 

adding population size, and measure factor flow by adding FDI and government 

behavior, respectively, from the perspective of openness and the institutional 

environment. 

The urbanization indicators include land urbanization and population 

urbanization. Land urbanization is measured by the proportion of urban land 

constructed, following (Zhu et al., 2019). Population urbanization is defined as the 

proportion of the non-agricultural population (Zhu et al., 2019). Additionally, the 

population size, industrial structure, and proportion of real estate investment are 

added as control variables. 

In order to investigate the spatial spillover effects of industrial agglomeration, we 

introduced the spatial lag terms of industrial agglomeration and TI into Equation (3) 

to obtain Equation (7) and added the spatial lag terms of industrial agglomeration into 

Equation (5) to obtain Equation (8).  

1 10 1 2
ln( ) ln( )N N

j jit ij it it ij it i it
Agg w Agg TI w TI Z u               (7) 

1 0 1 2 3

2

1 14 5 6 7

18

ln( ) ln( ) ln( ) ln( )

                           ln ( ) ln( ) ln( )

                          ln

N

jit ij it it it it

N N

j jit it ij it ij it

N

j ij

Pollution w Pollution TI Agg GDP

GDP FDI w TI w Agg

w

    

   





 



     

    


2

1 19 10
( )  ln ( ) ln( )

                                                                                                             

N N

j jit ij it ij it

i it

GDP w GDP w FDI

Z u

 

 

    

 

 (8) 

4. Variable and data 

4.1 Variable selection 
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Industrial pollution. Similar to most of the other relevant studies carried out to date, 

due to data limitations, the scope of this paper is mainly air pollution and water 

pollution. Air pollution is measured by industrial SO2 emissions and industrial soot 

(dust) emissions, while water pollution is measured by industrial wastewater. 

TI and transportation infrastructure investment (TII). Because no unified 

standard is available to measure TI, we used ―urban road area‖ (unit of 10,000 m2) to 

measure TI. As a stock variable, urban road area captures the long-term effects. The 

flow variable of the annual growth of urban road area was also adopted to capture the 

short-term effect, which is TII (Sun et al., 2018). 

Control variables. Following the practice used in the most of the existing literature, 

we used GDP per capita to measure the level of economic development. Moreover, its 

square term was included to test the ―inverted-U shape‖ relationship between 

industrial pollution and economic development, namely, the EKC. Therefore, the 

actual amount of foreign capital in the current year was used to measure FDI. Its 

impact was found to be ambiguous. On the one hand, according to the PHH (Cole, 

2004; Eskeland and Harrison, 2003), transnational corporations generally move 

pollution- intensive enterprises to developing countries with relatively low 

environmental standards. On the other hand, foreign enterprises’ advanced 

technologies typically reduce pollution emissions. 

Industrial structure may affect industrial pollution. Some researchers observed 

that the higher the proportion of secondary industry, the more serious the pollution 

(Hao and Liu, 2016). Therefore, the proportion of secondary industry in GDP was 

adopted to measure industrial structure. Higher levels of technology often means 

lower pollution emissions (Zhu et al., 2019). However, the level of the technologies 

used in a city’s industrial sectors are a function of the city’s level of scientific research 

and development. Thus, the science and technology expenditure of the city measures 

the technological development level of a city. Government behavior is considered an 

important factor in industrial pollution. On the one hand, government's pursuit of 
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fiscal revenue may cause over- investment in secondary industry and results in 

industrial pollution. On the other hand, government's expenditure on environmental 

protection would reduce industrial pollution. Consequently, the government behavior 

variable included a control variable and was measured by the city’s public fiscal 

expenditure divided by public fiscal revenue. 

Spatial weight matrix. In this paper, the commonly used spatial adjacency weight 

matrix was adopted. In other words, if two cities are adjacent, the weight is 1, and if 

two cities are not adjacent, the weight is 0. The form of the spatial weight matrix W in 

panel data is as follows: 

2003

2015

0 0

0 0

0 0

W

W

W

 
 
 
  

 (9) 

The dimension of the spatial weight matrix W  is NT NT , where N is the 

number of cities in the cross-section (i.e., 280), T is the time span (i.e., 13 years), and 

the off-diagonal elements are all zero, and the diagonal elements are the annual 

cross-section spatial weight matrix TW . The dimension of TW is N N , because the 

spatial geography of each city does not change with time; thus, 

2003 2004 2015W W W  . 

4.2 Data sources 

The data were collected from the China City Statistical Yearbook (2004–2016), 

Yearbook of China’s Cities (2004–2016), China Urban Construction Statistical 

Yearbook (2004–2016), China Statistical Yearbook on Environment (2004–2016), and 

China Environment Yearbook (2004–2016). The data set covered 290 prefecture-level 

cities in 31 provinces, municipalities directly under the central government and 

autonomous regions in China (excluding Hong Kong, Macao, and Taiwan). The time 

span was from 2003 to 2015. All nominal data were adjusted by a price index (2003 = 

100) to obtain the actual value. Due to missing data for some cities, to make the 

empirical results more robust and the spatial econometric analysis feasible, 10 cities 
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with serious missing data problems were excluded. For a small number of other cities 

with slight missing data problems, linear interpolation (including interpolation and 

extrapolation) was used for data supplement. After processing, the original 31 

provinces in the data were reduced to 30, among which Tibet is missing, and the 

original 290 prefecture- level cities were reduced to 280. The statistical description of 

the main variables is presented in Table 1. 

 

[Insert Table 1 Here] 

 

5. Results and discussions 

5.1 Baseline results 

The baseline results of Equation (1) are shown in Table 2 and Table 3. We chose 

the appropriate model according to the Hausman Test, which is reported in the last 

row. The Hausman Test shows that the fixed effect model is the appropriate one in 

most models. 

Table 2 captures the long-term effects. The regression coefficients of TI are 

statistically significant, suggesting that TI has a long-run impact on industrial 

pollution. In addition, the positive regression coefficients of TI indicate that TI will 

aggravate industrial pollution. For instance, in models (2), (4) and (6), if urban road 

construction increases 1%, industrial SO2 emissions, industrial soot (dust) emissions, 

and industrial wastewater will increase by 0.116%, 0.171%, and 0.079%, respectively. 

Hypothesis 1 has been preliminarily verified. 

                                                                 
 The 10 cities are Sansha in Hainan Province, Bijie and Tongren in Guizhou Province, Lhasa in 

Tibet Autonomous Region, Jiayuguan, Jinchang and Longnan in Gansu Province, Haidong in 

Qinghai Province, Guyuan and Zhongwei in Ningxia Hui Autonomous Region. 
 Since the Hausman Test shows that the fixed effect model is the most appropriate, only the 

results of the fixed effect model are reported hereafter due to space limitations. Moreover, the 

estimated results of the fixed effect model resemble that of the random effect model. The random 

fixed regression results are also available upon request. 
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In terms of controlling variables, the estimation coefficients of GDP per capita 

and their squared terms were statistically significant only in Model (2) where 

industrial SO2 emissions were treated as the dependent variable. The GDP per capita 

coefficient was positive while the squared term carries a negative sign. These results 

indicate that an ―inverted-U shape‖ relationship, namely the EKC, exists only in 

industrial SO2 pollution. As the FDI regression coefficients of FDI were not 

statistically significant in most models, the PHH was difficult to validate in the 

benchmark model. The regression coefficient of TC has a basically significant and 

negative effect, indicating that improvements in science and technology can reduce 

industrial pollution. In most of the models, the industrial structure and government 

behavior variables did not obtain consistent and significant results.  

Table 3 captures the short-term effect. The TII regression coefficients were not 

statistically significant, suggesting that TII does not have a short-run impact on 

industrial pollution. As a robustness check, we added the control variables one by one. 

The estimation results are shown in Table A.1 - Table A.6 in the Appendix. All the 

results were consistent with Table 2 and Table 3. Because TI has a long-run impact on 

industrial pollution instead of a short-run impact, we focused on the long-run impact 

in the following section. Spatial effects are considered in the next section. 

 

[Insert Table 2 Here] 

[Insert Table 3 Here] 

 

5.2 SDM estimation results 

Before formal analysis of the spatial effects, we must assess the spatial 

correlation of TI and industrial pollution. In this paper, Moran’s I was used to examine 

the spatial correlation effect. Table 4 reports the annual Moran’s I of both industrial 
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pollution variables and the TI variable. Table 4 shows that Moran’s I was positive and 

highly significant, indicating that industrial pollution and TI have a positive spatial 

spillover effect at any given level of significance. Figure 2 also presents the Moran’s I 

scatterplot in 2015. In Figure 2, industrial pollution and TI have strong positive spatial 

autocorrelation, which indicates the necessity of adopting the SDM. 

 

[Insert Table 4 Here] 

[Insert Figure 2 Here] 

 

The estimation results of Equation (2) are presented in Table 5. The regression 

coefficients of TI were significantly positive in all models, which is consistent with 

the basic results. From the perspective of marginal effect, although the indirect effect 

was not significant, the direct and total effects were statistically significant and 

positive. We can conclude that TI mainly influences a city’s industrial pollution, 

which has no obvious direct effect on the industrial pollution of adjacent cities. The 

insignificant regression coefficient of W×TI also confirms the aforementioned 

conclusion. The results demonstrate that a 1% increase in a city’s urban road 

construction increases a city’s industrial SO2 emissions, industrial soot (dust) 

emissions, and industrial wastewater discharge by approximately 0.104%, 0.138%, 

and 0.079%, respectively.  

 

[Insert Table 5 Here] 

 

The spatial autoregressive coefficient   in all the models was positive and 

highly significant, indicating that industrial pollution indeed has positive spatial 
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spillover effects. Industrial pollution between adjacent cities will affect each other, 

that is, a ―Pollution Race‖ may occur. For example, when the industrial SO2 emissions 

of adjacent cities increase by 1%, the city’s industrial SO2 emissions increase by 

0.236% (e.g., Model (1) in Table 5). These results further verify hypothesis 1. 

The conclusions of the controlling variables are basically the same as the basic 

results. The results with the EKC were the same as the basic results: the results with 

the EKC were statistically significant for only industrial SO2 pollution. Notably, the 

spatial lag of GDP per capita was negative and statistically significant, indicating that 

the economic development of adjacent cities can reduce a city’s industrial pollution. 

The possible reason for this finding is that in the process of attracting investment, 

local governments have paid too much attention to economic development while 

ignoring environmental costs (Xu et al., 2020). If many high-polluting enterprises 

move to other cities, a city’s industrial pollution is effectively reduced. FDI in 

neighboring cities has a statistically significant effect on a city’s industrial soot (dust) 

emissions. The development of science and technology can significantly reduce 

industrial pollution, and increases in the degree of industrialization can also aggravate 

the emissions of industrial SO2. In addition, the regression coefficients of government 

behavior were not significant, meaning that government’s fiscal expenditure and fiscal 

revenue do not influence industrial pollution.  

 Therefore, we can draw the following conclusions: 1) Despite the significant 

spatial spillover effects of industrial pollution, TI mainly aggravates a city’s industrial 

SO2 emissions and industrial soot (dust) emissions. The amount of industrial 

wastewater discharged has no effect on the industrial pollution of neighboring cities. 2) 

EKC was found only for industrial SO2 emissions, and PHH was observed with 

respect to industrial SO2 emissions and industrial wastewater. Improvements in 

science and technology can reduce industrial pollution significantly.  

5.3 Robustness check 
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We also adopted the more commonly used SEM and SLM to perform a more 

robust check and found that the empirical results were all robust apart from the PHH, 

which no longer exists. All of the results are presented in Table 6 and are consistent 

with the results of the SDM.  

 [Insert Table 6 Here] 

In Table 7, we used emission intensity and urban road density to replace the total 

emissions and the total area of urban roads to control the scale effect between 

different cities. The pollution intensity was measured by pollution emissions per 

square kilometer, and the road density was measured by the area of urban roads per 

square kilometer. After controlling the city scale effect, the estimated results were 

consistent with the original results. The estimated results are shown in Table 7. 

 

[Insert Table 7 Here] 

 

5.4 Channel analysis: industrial agglomeration or urbanization 

The estimation results of Equations (3) and (5) are presented in Table 8. The TI 

coefficient was positive and highly significant in Model (1), indicating that TI can 

promote industrial agglomeration. For industrial SO2 emissions and industrial 

wastewater in Models (2) and (4), the TI coefficients remained positive and 

statistically significant after introducing the industrial agglomeration variable. 

Furthermore, the regression coefficients of industry agglomeration were negative and 

statistically significant. All the results suggest that industrial agglomeration plays a 

mediating role in the association between TI and industrial SO2 emissions (or 

industrial wastewater discharged), that is, TI reduces industrial SO2 emissions and 

industrial wastewater through promoting industrial agglomeration.  
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[Insert Table 8 Here] 

 

For industrial soot (dust) emissions in Model (3), the TI coefficients were also 

positive, although statistically insignificant. Additionally, the coefficients of industry 

agglomeration were positive and statistically significant, suggesting that industrial 

agglomeration also plays a reverse mediating role in the association between TI and 

industrial soot (dust) emissions, that is, TI promotes industrial soot (dust) emissions 

through aggravating industrial agglomeration. 

From the perspective of marginal direct effect, industrial agglomeration has a 

negative and highly significant direct effect on industrial SO2 emissions and industrial 

wastewater, and has a positive and highly significant direct effect on industrial soot 

(dust) emissions. Thus, we conclude that TI reduces a city’s industrial SO2 emissions 

and industrial wastewater but aggravates a city’s industrial soot (dust) emissions 

through promoting a city’s industrial agglomeration. For example, a 1% increase in a 

city’s urban road construction will reduce a city’s industrial SO2 emissions and a 

city’s industrial soot (dust) emissions by 0.096% (=0.083×1.151) and 0.121% 

(=0.083×1.452), respectively, and aggravate a city’s industrial wastewater by 0.172% 

(=0.083×2.070). 

From the perspective of marginal indirect effect, industrial agglomeration has a 

negative and highly significant indirect effect on industrial SO2 emissions and 

industrial wastewater, and has a positive and highly significant indirect effect on 

industrial soot (dust) emissions. Thus, we concluded that TI reduces a neighboring 

city’s industrial SO2 emissions and industrial wastewater but aggravates its industrial 

soot (dust) emissions through promoting a city’s industrial agglomeration and the 

spatial spillover effects of industrial pollution. For example, a 1% increase in a city’s 

urban road construction reduces a neighboring city’s industrial SO2 emissions and 

neighboring city’s industrial soot (dust) emissions by 0.025% (=0.083×0.295) and 
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0.026% (=0.083×0.309), respectively, and aggravates a neighboring cities’ industrial 

wastewater by 0.065% (=0.083×0.785) through promoting a city’s industrial 

agglomeration and the spatial spillover effect of industrial pollution. Hypothesis 2 has 

been verified. 

The estimation results of Equations (4) and (6) are presented in Table 9. Because 

the estimation results of land urbanization and population urbanization were the same, 

only the estimation results of land urbanization are reported. The estimation results of 

population urbanization are presented in Table A.7 in the Appendix. The positive and 

significant TI coefficient in Model (1) in Table 9 suggests that TI can promote land 

urbanization. Although the TI coefficients remained positive and statistically 

insignificant after adding the urbanization variable in Models (2)-(4), the coefficients 

of the urbanization variable were neither statistically significant nor robust. The 

direct effect, indirect effect, and total effect of urbanization were also neither 

significant nor robust. These findings indicate that the urbanization channel between 

TI and industrial pollution does not exist.  

Thus, we concluded that TI exerts its influence on industrial pollution through 

industrial agglomeration but not urbanization. Specifically, TI reduces a city’s 

industrial SO2 emissions and industrial wastewater but aggravates a city’s industrial 

soot (dust) emissions through promoting a city’s industrial agglomeration. In addition, 

TI reduces neighboring cities’ industrial SO2 emissions and industrial wastewater but 

aggravates neighboring cities’ industrial soot (dust) emissions through promoting a 

city’s industrial agglomeration and the spatial spillover effects of industrial pollution. 

 

[Insert Table 9 Here] 

                                                                 
 Although the coefficients of urbanization were statistically signif icant in Models (3) and (4), the 

coefficients of urbanization were not statistically signif icant in the random-effect models which 

are not reported. Besides, the estimation results of population urbanization were also not 

statistically significant as shown in Table A.7 in the Appendix. 
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5.5 Spatial spillover effects of industrial agglomeration 

We proved the spatial spillover effects of TI and industrial pollution in 

Subsection 5.2. In this subsection, we investigate the spatial spillover effects of 

industrial agglomeration. Notably, Table 4 also shows that the annual Moran’s I of 

industrial agglomeration is positive and highly significant, indicating that industrial 

agglomeration had positive spatial spillover effects. Figure 3 presents the Moran’s I 

scatterplot in 2015 and shows that industrial agglomeration has strong positive spatial 

autocorrelation, indicating that the settings of Equations (7) and (8) are reasonable. 

The estimation results of Equation (7) are presented in Model (1) of Table 10. 

The spatial autoregressive coefficient  was positive and highly significant in Model 

(1), indicating that industrial agglomeration had a positive spatial spillover effect. 

Additionally, the direct effect and indirect effect of TI on industrial agglomeration 

were positive and statistically significant, suggesting that TI can promote a city’s 

industrial agglomeration directly and improve the industrial agglomeration of 

neighboring cities indirectly through the spatial spillover effect of industrial 

agglomeration. Models (2)-(4) of Table 10 are the estimation results of Equation (8). 

The coefficients of W×Agg in all the models were significantly negative, indicating 

that the industrial agglomeration of a city reduces the industrial pollution of 

neighboring cities through its spatial spillover effects. From the estimation results of 

Equations (7) and (8), we concluded that TI reduces neighboring cities’ industrial 

pollution through promoting a city’s industrial agglomeration and the spatial spillover 

effects of industrial agglomeration. In this case, we concluded that TI reduces 

neighboring cities’ industrial SO2 emissions, industrial wastewater, and industrial soot 

(dust) emissions through promoting a city’s industrial agglomeration and the spatial 

spillover effects of industrial agglomeration. 

 

[Insert Figure 3 Here] 
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[Insert Table 10 Here] 

 

6. Conclusions and implications 

Because China’s economic miracle has caused serious environmental pollution, 

the impacts of TI, a key contributing factor, have been the subject of many studies. 

While most of these have demonstrated that TI plays a positive role in economic 

growth.an increasing number of researchers have found that TI has a significant 

negative impact on the environment. However, previous studies have focused mainly 

on the impacts of TI on air pollution (D. Sun et al., 2019), smog pollution, and traffic 

pollution (Guttikunda et al., 2014) in Chinese cities. Few studies have investigated the 

impact of TI on industrial pollution emissions.  

Using the SDM and a balanced panel data of Chinese 280 cities, this paper 

verifies that TI aggravates a city’s industrial air pollution and water pollution 

problems in the long run. Further mechanism analysis demonstrated that TI influences 

industrial pollution through industrial agglomeration, but not urbanization. 

Specifically, there could be three paths for TI to influence industrial pollution through 

industrial agglomeration. First, TI aggravates a city’s industrial SO2 emissions and 

industrial wastewater, but reduces its industrial soot (dust) emissions through a city’s 

industrial agglomeration. Second, TI reduces neighboring cities’ industrial SO2 

emissions and industrial wastewater, but aggravates their industrial soot (dust) 

emissions through a city’s industrial agglomeration and the spatial spillover effects of 

industrial pollution. Third, TI reduces neighboring cities’ industrial SO2 emissions, 

industrial wastewater, and industrial soot (dust) emissions through a city’s industrial 

agglomeration and the spatial spillover effects of industrial agglomeration. 

Our findings complement the existing literature on TI and the environment by 

adding the impacts of industrial pollution, a key factor determining total 

environmental pollution. Moreover, different from the existing literature that 
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examines the environmental impacts through channels such as direct emissions, 

spatial agglomeration, and technology spillover effects (Xie et al., 2019;Bai et al., 

2020; Fang et al., 2020), we demonstrated the additional channels of urbanization and 

industrial agglomeration. Our finding that TI influences industrial pollution through 

industrial agglomeration, but not urbanization, is new to the literature.  

The policy implications are as follows. First, the negative impacts of TI on 

environment suggest that city planners need to integrate the broad environmental 

dimension into their planning process. With the additional target of minimizing 

industrial pollution, transportation infrastructure development decisions will likely 

change. Second, the insignificant channel of urbanization suggests that the negative 

environmental impacts of TI are avoidable if the industrial locations can be effectively 

managed. This might suggest that the popular industrial park model may not be 

favorable when evaluated from environmental perspectives. Industrial parks pool 

industries together, usually at a distance from residential areas. This can increase 

industrial agglomeration and the demand for transport services. Third, when industrial 

agglomerations cannot be changed, further actions can be taken to reduce the adverse 

environmental impacts. For example, in the promotion of industrial agglomeration, 

clean and green industries should be chosen to promote the positive effects of TI on 

industrial pollution. The finding that improved science and technology can effectively 

reduce industrial pollution also provides theoretical support for this suggestion. Lastly, 

although TI falls largely under a city’s own authority, cross-city cooperation and 

coordination are useful as TI does influence neighboring cities’ industrial pollution 

through the spatial spillover effects of industrial agglomeration. 

Without doubt, urban transportation infrastructure can also influence air quality 

through changes in passenger travel. This issue has not been studied due to limitations 

in the data pertaining to automobile exhaust emissions and their environmental 

consequences. However, it should be investigated in the future when the necessary 

data are available.  
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Figures and tables  

 

Figure 1. Spatial distribution of industrial pollution and TI in 2015 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



37 

 

 

Figure 2. Moran’s I scatterplots for industrial pollution and TI in 2015 

 

 

Figure 3. Moran’s I scatterplots for industrial agglomeration in 2015 
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Table 1. Summary statistics for the key variables 

Variables Definition Observations Mean S. D Min Max Unit 

SO2 
industrial SO2 

emissions  
3,640 61,340 60,085 2 683,162 ton 

SD 
industrial soot 

(dust) emissions 
3,640 33,934 125,641 34 5,168,812 ton 

WW 
industrial 

wastewater  
3,640 77,040,000 98,250,000 170,000 912,600,000

 
ton 

TI 
transport 

infrastructure 
3,640 1,415 1,986 14 21,490 

10,000 

m
2 

TII 

Transportation 

Infrastructure 

Investment 

3,360 126 296 0 5,320 
10,000 

m
2
 

Agg 

location quotient of 

the secondary 

industry 

3,640 98.71 21.63 18.37 180.50 % 

Urban 

proportion of 

construction land  
3,640 8.65 9.86 0.02 97.18 % 

proportion of 

non-agricultural 

population 

3,360 28.30 20.27 1.99 100 % 

GDP GDP per capita 3,640 30,707 26,128 1892 256,877 
yuan 

(RMB) 

FDI 

actual amount of 

foreign capital 

investment 

3,640 6 16 0 211 

100 

million 

dollars 

SI 
proportion of 

secondary industry 
3,640 49 11 3 91 % 

TC 

science and 

technology 

expenditure 

3,640 47,731 173,592 0.13 2,877,956 

10,000 

yuan 

(RMB) 

Gov 

fiscal expenditure 

divided by fiscal 

revenue 

3,640 2.61 1.72 0.65 39.03  

Pop total population 3,640 436 304 30 3,375 
10,000 

persons 

Est 

proportion of 

investment in real 

estate 

3,640 14.55 9.24 0.03 91.96 % 

W 
spatial weight 

matrix 
280×280  0.02 0 1  
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Table 2. Basic results of the estimation: Long-term Effect 

Models 
(1) (2) (3) (4) (5) (6) 

SO2 SO2 SD SD WW WW 

TI 0.094
**

 0.116
**

 0.312
***

 0.171
**

 0.096
***

 0.079
*
 

 (2.158) (2.247) (6.119) (2.554) (2.594) (1.823) 

GDP  1.685
**

  -0.918  0.509 

  (2.548)  (-0.975)  (0.881) 

GDP
2 

 -0.086
**

  0.059  -0.024 

  (-2.556)  (1.215)  (-0.831) 

FDI  0.014
**

  -0.005  0.017
***

 

  (1.982)  (-0.341)  (2.731) 

SI  0.009
**

  -0.005  0.001 

  (2.162)  (-1.174)  (0.352) 

TC  -0.052
***

  -0.026
***

  -0.024
***

 

  (-6.524)  (-3.303)  (-3.912) 

Gov  0.001  -0.003  0.004 

  (0.102)  (-1.555)  (0.373) 

cons 9.961
***

 1.496 7.720
***

 12.610
***

 16.998
***

 14.413
***

 

 (34.145) (0.470) (21.588) (2.799) (68.676) (5.152) 

Observations 3640 3640 3640 3640 3640 3640 

R
2 

0.154 0.178 0.094 0.070 0.296 0.270 

F/Chi
2 

4.656
**

 12.547
***

 37.437
***

 9.592
***

 6.731
***

 4.906
***

 

   0.822 0.823 0.667 0.687 0.853 0.853 

Effect FE FE RE FE FE FE 

Huausman 40.060
***

 85.080
***

 0.490 45.710
***

 106.65
***

 203.93
***

 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model, Chi
2
 is the Wald Chi

2
 test of the random effect model.   is the fraction of variance 

due to individual effect ui. FE is the fixed effect, and RE is the random effect. Hausman is the Chi
2
 

value of the Hausman test. We clustered standard errors at the city level when indicated.  
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Table 3. Basic results of the estimation: Short-term Effect 

Models 
(1) (2) (3) (4) (5) (6) 

SO2 SO2 SD SD WW WW 

TII -0.001 -0.002 0.005 -0.004 0.005 0.003 

 (-0.092) (-0.292) (0.388) (-0.337) (0.783) (0.506) 

GDP  2.317
***

  -0.294  0.672 

  (3.167)  (-0.282)  (1.024) 

GDP
2 

 -0.118
***

  0.049  -0.031 

  (-3.213)  (0.922)  (-0.948) 

FDI  0.010  -0.007  0.021
***

 

  (1.245)  (-0.494)  (3.279) 

SI  0.007  -0.011
**

  -0.000 

  (1.633)  (-2.270)  (-0.111) 

TC  -0.027  -0.112
***

  -0.016 

  (-1.294)  (-4.489)  (-0.974) 

Gov  0.001  -0.002  0.001 

  (0.125)  (-1.280)  (0.820) 

cons 10.614
***

 -0.879 9.804
***

 9.581
*
 17.631

***
 13.934

***
 

 (352.735) (-0.246) (201.079) (1.916) (662.146) (4.302) 

Observations 3360 3360 3360 3360 3360 3360 

R
2 

0.067 0.024 0.036 0.026 0.120 0.130 

F 0.009 3.425
***

 0.151 9.469
***

 0.613 2.470
***

 

  0.840 0.841 0.690 0.706 0.868 0.865 

Effect FE FE FE FE FE FE 

Hausman 66.590
***

 129.890
***

 36.130
***

 79.430
***

 128.040
***

 256.070
***

 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model.   is the fraction of variance due to indiv idual effect  u i. FE is the fixed effect. Haus man 

is the Chi
2
 value of the Hausman test. We clustered standard errors at the city level when indicated. 
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Table 4. The spatial correlation test of Moran’s I  

Year SO2 SD WW TI Agg 

2003 0.129*** 0.19*** 0.132*** 0.101*** 0.315*** 

2004 0.122*** 0.214*** 0.131*** 0.116*** 0.331*** 

2005 0.142*** 0.313*** 0.142*** 0.115*** 0.309*** 

2006 0.117*** 0.33*** 0.181*** 0.106*** 0.304*** 

2007 0.124*** 0.298*** 0.168*** 0.134*** 0.279*** 

2008 0.124*** 0.248*** 0.183*** 0.117*** 0.250*** 

2009 0.121*** 0.201*** 0.184*** 0.110*** 0.203*** 

2010 0.146*** 0.183*** 0.225*** 0.106*** 0.162*** 

2011 0.180*** 0.021 0.262*** 0.106*** 0.175*** 

2012 0.205*** 0.024*** 0.292*** 0.097*** 0.174*** 

2013 0.215*** 0.076*** 0.298*** 0.107*** 0.184*** 

2014 0.208*** 0.195*** 0.264*** 0.108*** 0.215*** 

2015 0.190*** 0.065** 0.265*** 0.100*** 0.235*** 

Notes: 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. 
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Table 5. The estimation results of SDM 

Models 
(1) (2) (3) 

SO2 SD WW 

TI 0.098
**

 0.120
*
 0.076

*
 

 (2.148) (1.834) (1.886) 

GDP 2.279
***

 1.704 1.901
***

 

 (2.846) (1.597) (2.624) 

GDP
2 

-0.118
***

 -0.071 -0.091
***

 

 (-3.126) (-1.314) (-2.641) 

FDI 0.023
***

 0.013 0.025
***

 

 (2.823) (1.106) (4.015) 

SI 0.010
**

 0.001 0.002 

 (2.071) (0.183) (0.732) 

TC -0.040
***

 -0.020
**

 -0.022
***

 

 (-4.460) (-2.481) (-3.592) 

Gov 0.005 -0.004 0.012 

 (0.356) (-0.285) (1.082) 

W*TI 0.055 0.172 0.016 

 (0.597) (1.302) (0.201) 

W*GDP -1.282 -4.608
***

 -3.002
***

 

 (-1.565) (-3.716) (-3.331) 

W*GDP
2 

0.066 0.224
***

 0.149
***

 

 (1.557) (3.516) (3.290) 

W*FDI -0.069
***

 -0.071
***

 -0.024 

 (-2.854) (-3.028) (-1.253) 

  0.236
***

 0.308
***

 0.213
***

 

(5.505) (9.697) (6.079) 

Direct effect 
0.104

**
 0.138

**
 0.079

*
 

(2.209) (2.015) (1.875) 

Indirect effect 
0.093 0.275 0.036 

(0.856) (1.614) (0.391) 

Total effect 
0.197 0.413

**
 0.114 

(1.610) (2.112) (1.055) 

Observations 3640 3640 3640 

R
2 

0.014 0.019 0.040 

LogL -2.00E+03 -3.10E+03 -1.53E+03 

Effect FE FE FE 

Notes: t statistics are in parentheses, * p < 0.1, ** p  < 0.05, *** p  < 0.01.  is the spatial 

autoregressive coefficient. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed effect. 

We clustered standard errors at the city level when indicated. 
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Table 6. The estimation results of SEM and SLM 

Models 

SEM SLM 

(1) (2) (3) (4) (5) (6) 

SO2 SD WW SO2 SD WW 

TI 0.101
**

 0.116
*
 0.077

*
 0.108

**
 0.129

**
 0.078

*
 

 (2.038) (1.841) (1.794) (2.133) (2.039) (1.809) 

GDP 1.800
**

 0.109 0.877 1.528
**

 -0.510 0.552 

 (2.566) (0.106) (1.364) (2.340) (-0.575) (0.955) 

GDP
2 

-0.093
***

 0.005 -0.043 -0.080
**

 0.033 -0.028 

 (-2.602) (0.098) (-1.340) (-2.396) (0.729) (-0.947) 

FDI 0.022
***

 0.008 0.021
***

 0.017
**

 0.002 0.019
***

 

 (2.859) (0.685) (3.407) (2.555) (0.124) (2.863) 

SI 0.011
**

 0.002 0.002 0.010
**

 -0.000 0.002 

 (2.378) (0.422) (0.703) (2.289) (-0.096) (0.578) 

TC -0.049
***

 -0.018 -0.023
***

 -0.041
***

 -0.017
**

 -0.019
***

 

 (-4.518) (-1.499) (-3.053) (-5.136) (-2.239) (-3.286) 

Gov 0.005 -0.001 0.008 0.003 -0.014 0.006 

 (0.352) (-0.081) (0.725) (0.220) (-0.848) (0.505) 

  
0.247

***
 0.333

***
 0.217

***
 0.227

***
 0.316

***
 0.198

***
 

(5.822) (9.555) (5.586) (5.330) (9.963) (5.715) 

Direct effect 
   0.111

**
 0.134

**
 0.080

*
 

   (2.116) (2.022) (1.799) 

Indirect effect 
   0.030

*
 0.056

*
 0.018

*
 

   (1.921) (1.929) (1.729) 

Total effect 
   0.140

**
 0.190

**
 0.098

*
 

   (2.122) (2.011) (1.811) 

Observations 

R
2
 

3640 3640 3640 3640 3640 3640 

0.172 0.092 0.256 0.120 0.049 0.250 

LogL 

Effect 

-2.00E+03 -3.10E+03 -1.60E+03 -2.00E+03 -3.10E+03 -1.60E+03 

FE FE FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01.   is the spatial 

autocorrelation parameter. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed effect. 

We clustered standard errors at the city level when indicated.  
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Table 7. Robustness check of SDM 

Models 
(1) (2) (3) 

SO2 SD WW 

TI 0.123** 0.120* 0.106** 

 (2.460) (1.796) (2.381) 

GDP 2.360*** 1.785* 1.985*** 

 (2.952) (1.678) (2.727) 

GDP
2
 -0.121*** -0.075 -0.095*** 

 (-3.235) (-1.378) (-2.746) 

FDI 0.020** 0.010 0.022*** 

 (2.169) (0.892) (3.574) 

SI 0.010** 0.000 0.002 

 (1.989) (0.038) (0.596) 

TC -0.041*** -0.021*** -0.023*** 

 (-4.658) (-2.728) (-3.860) 

Gov 0.005 -0.005 0.012 

 (0.361) (-0.328) (1.090) 

W*TI 0.048 0.122 0.002 

 (0.526) (0.953) (0.022) 

W*GDP -1.279 -4.633*** -2.994*** 

 (-1.566) (-3.757) (-3.311) 

W*GDP
2
 0.065 0.227*** 0.148*** 

 (1.538) (3.577) (3.256) 

W*FDI -0.068*** -0.071*** -0.024 

 (-2.791) (-3.027) (-1.248) 


 

0.236*** 0.303*** 0.212*** 

(5.523) (9.639) (6.101) 

Direct effect 
0.129** 0.134* 0.108** 

(2.504) (1.925) (2.347) 

Indirect effect 
0.092 0.207 0.026 

(0.849) (1.268) (0.292) 

Total effect 
0.221* 0.342* 0.134 

(1.785) (1.816) (1.242) 

Observations 3640 3640 3640 

R
2
 0.074 0.079 0.037 

LogL -1974.264 -3069.967 -1559.281 

Effect FE FE FE 

Notes: t statistics are in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.   is the spatial 

autocorrelation parameter. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed effect. 

We clustered standard errors at the city level when indicated. 
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Table 8. Regression on the mediating effect: industrial agglomeration 

Models 
(1) (2) (3) (4) 

Agg SO2 SD WW 

TI 0.083
*** 0.110

** 0.1 0.091
** 

 (7.807) (2.396) (1.547) (2.236) 

Agg  -1.125
*** 2.047

*** -1.426
*** 

  (-3.556) (4.596) (-4.729) 

Pop 0.068    

 (0.876)    

GDP  2.399
*** 1.467 2.038

*** 

  (2.957) (1.368) (2.801) 

GDP
2  -0.122

*** -0.061 -0.097
*** 

  (-3.242) (-1.131) (-2.789) 

FDI 0.006 0.023
*** 0.014 0.024

*** 

 (1.409) (2.735) (1.207) (3.853) 

SI  0.030
*** -0.035

*** 0.028
*** 

  (7.034) (-4.266) (5.790) 

TC  -0.037
*** -0.027

*** -0.017
*** 

  (-3.978) (-3.336) (-2.885) 

Gov -0.004
* 0.003 -0.002 0.01 

 (-1.888) (0.244) (-0.152) (0.946) 

cons -0.022    

 (-0.051)    

W*TI  0.087 0.122 0.054 

  (0.950) (0.921) (0.680) 

W*GDP  -1.432
*
 -4.283

***
 -3.202

***
 

  (-1.731) (-3.478) (-3.544) 

W*GDP
2
  0.073

*
 0.210

***
 0.158

***
 

  (1.707) (3.324) (3.488) 

W*FDI  -0.072
***

 -0.066
***

 -0.028 

  (-3.058) (-2.759) (-1.458) 

   0.219
*** 0.297

*** 0.190
*** 

  (5.068) (9.303) (5.172) 

Direct effect     

TI  0.118
** 0.114

* 0.096
** 

  (2.470) (1.666) (2.248) 

Agg  -1.151
*** 2.070

*** -1.452
*** 

  (-3.731) (4.726) (-4.942) 

Indirect effect     

TI  0.141 0.216 0.089 

  (1.294) (1.223) (0.985) 

Agg  -0.295
*** 0.785

*** -0.309
*** 

  (-2.785) (4.208) (-3.957) 
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Total effect     

TI  0.259
** 0.329 0.184

* 

  (2.065) (1.597) (1.676) 

Agg  -1.445
*** 2.855

*** -1.761
*** 

  (-3.689) (4.776) (-5.148) 

Observations 3640 3640 3640 3640 

R
2 

0.012 0.016 0.019 0.038 

F 25.296
***    

  0.866    

LogL  -1.90E+03 -3.10E+03 -1.51E+03 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01.  is the spatial 

autocorrelation parameter. F is the F test of the fixed effect model.   is the fraction of variance 

due to individual effect ui. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed  

effect. We clustered standard errors at the city level when indicated. 
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Table 9. Regression on the mediating effect: land urbanization 

Models 
(1) (2) (3) (4) 

Unban SO2 SD WW 

TI 0.687
*
 0.098

** 0.120
* 0.076

* 

 (1.806) (2.148) (1.827) (1.895) 

Urban  0.00005 -0.007
* 0.003

* 

  (-0.02) (-1.655) (1.752) 

Pop 4.266    

 (0.945)    

Est 0.048
**    

 (2.117)    

GDP  2.279
*** 1.603 1.954

*** 

  (2.843) (1.500) (2.700) 

GDP
2  -0.118

*** -0.066 -0.094
*** 

  (-3.125) (-1.220) (-2.719) 

FDI  0.023
*** 0.013 0.025

*** 

  (2.823) (1.094) (4.028) 

SI 0.023 0.010
** 0.001 0.002 

 (1.005) (2.069) (0.208) (0.711) 

TC  -0.040
*** -0.020

** -0.022
*** 

  (-4.460) (-2.449) (-3.631) 

Gov  0.005 -0.004 0.01 

  (0.356) (-0.291) (1.084) 

cons -22.846    

 (-0.897)    

W*TI  0.055 0.162 0.021 

  (0.597) (1.235) (0.269) 

W*GDP  -1.282 -4.550
***

 -3.032
***

 

  (-1.561) (-3.662) (-3.363) 

W*GDP
2
  0.066 0.222

***
 0.150

***
 

  (1.555) (3.481) (3.314) 

W*FDI  -0.069
***

 -0.071
***

 -0.024 

  (-2.855) (-3.025) (-1.260) 

   0.236
*** 0.307

*** 0.212
*** 

  (5.504) (9.743) (6.037) 

Direct effect     

TI  0.104
** 0.138

** 0.080
* 

  (2.203) (1.992) (1.891) 

Urban  0.0001 -0.007
* 0.003

* 

  (-0.042) (-1.758) (1.779) 

Indirect effect     

TI  0.103 0.279 0.05 

  (0.928) (1.587) (0.543) 
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Urban  0.00003 -0.003
* 0.001

* 

  (-0.034) (-1.682) (1.651) 

Total effect     

TI  0.208 0.417
** 0.129 

  (1.628) (2.040) (1.173) 

Urban  0.0002 -0.010
* 0.004

* 

  (-0.041) (-1.748) (1.772) 

Observations 3640 3640 3640 3640 

R
2 

0.099 0.014 0.02 0.038 

F 3.782
**    

  0.763    

LogL  -2.00E+03 -3.10E+03 -1.53E+03 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01.   is the spatial 

autocorrelation parameter. F is the F test of the fixed effect model.   is the fraction of variance 

due to individual effect ui. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed  

effect. We clustered standard errors at the city level when indicated.  
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Table 10. Regression on the spatial spillover effects of industrial agglomeration 

Models 
(1) (2) (3) (4) 

Agg SO2 SD WW 

TI 0.042
*** 0.097

** 0.086 0.081
** 

 (4.745) (2.144) (1.337) (1.968) 

Agg  -0.724
* 2.437

*** -1.135
*** 

  (-1.816) (5.040) (-3.454) 

Pop -0.082    

 (-1.243)    

GDP  2.121
** 1.198 1.820

** 

  (2.524) (1.113) (2.526) 

GDP
2  -0.112

*** -0.051 -0.088
** 

  (-2.912) (-0.947) (-2.576) 

FDI 0.003 0.022
*** 0.013 0.024

*** 

 (1.438) (2.621) (1.177) (3.802) 

SI  0.029
*** -0.037

*** 0.027
*** 

  (6.762) (-4.430) (5.492) 

TC  -0.032
*** -0.022

*** -0.014
** 

  (-3.637) (-2.704) (-2.223) 

Gov -0.006
** 0.002 -0.004 0.01 

 (-2.476) (0.128) (-0.243) (0.834) 

W*TI 0.011 0.102 0.137 0.066 

 (0.898) (1.113) (1.037) (0.811) 

W* Agg  -1.010
** -0.976

** -0.770
** 

  (-2.562) (-2.300) (-2.295) 

W*GDP  -0.225 -3.121
**

 -2.275
**

 

  (-0.229) (-2.440) (-2.265) 

W*GDP
2
  0.017 0.157

**
 0.116

**
 

  (0.368) (2.427) (2.313) 

W*FDI  -0.074
***

 -0.068
***

 -0.029 

  (-3.245) (-2.895) (-1.526) 

  0.562
*** 0.217

*** 0.297
*** 0.181

*** 

 (18.699) (5.099) (9.312) (4.967) 

Direct effect     

TI 0.048
*** 0.105

** 0.101 0.085
** 

 (5.210) (2.255) (1.482) (2.002) 

Agg  -0.799
** 2.399

*** -1.191
*** 

  (-2.126) (5.132) (-3.803) 

Indirect effect     

TI 0.071
*** 0.156 0.23 0.099 

 (3.479) (1.459) (1.328) (1.093) 

Agg  -1.380
*** -0.315 -1.103

*** 

  (-3.452) (-0.642) (-2.877) 
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Total effect     

TI 0.120
*** 0.261

** 0.331 0.185
* 

 (4.970) (2.147) (1.632) (1.673) 

Agg  -2.179
*** 2.084

*** -2.294
*** 

  (-5.570) (3.104) (-5.317) 

Observations 3640 3640 3640 3640 

R
2 

0.126 0.131 0.017 0.035 

LogL 4370.288 -1.90E+03 -3.00E+03 -1.50E+03 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01.   is the spatial 

autocorrelation parameter. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed effect. 

We clustered standard errors at the city level when indicated.  
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Appendix 

Table A.1 Robustness check of the long-term effect: SO2 

Models 
(1) (2) (3) (4) 

SO2 SO2 SO2 SO2 

TI 0.096
*
 0.099

*
 0.108

**
 0.116

**
 

 (1.882) (1.940) (2.082) (2.251) 

GDP 2.835
***

 2.818
***

 2.176
***

 1.695
***

 

 (4.816) (4.810) (3.503) (2.627) 

GDP
2 

-0.146
***

 -0.146
***

 -0.115
***

 -0.087
***

 

 (-4.784) (-4.803) (-3.648) (-2.629) 

FDI  0.013
**

 0.013
*
 0.014

*
 

  (1.969) (1.839) (1.961) 

SI   0.009
**

 0.009
**

 

   (2.117) (2.128) 

TC    -0.052
***

 

    (-6.501) 

cons -3.714 -3.729 -0.907 1.454 

 (-1.280) (-1.291) (-0.304) (0.468) 

Observations 3640 3640 3640 3640 

R
2 

0.077 0.086 0.196 0.179 

F 8.420
***

 7.674
***

 6.173
***

 14.609
***

 

  0.829 0.828 0.820 0.823 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of fixed 

effect model.   is the fraction of variance due to indiv idual effect u i. FE is the fixed  effect. We 

clustered standard errors at the city level when indicated.  
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Table A.2 Robustness check of the long-term effect: SD 

Models 
(1) (2) (3) (4) 

SD SD SD SD 

TI 0.175
***

 0.174
***

 0.169
**

 0.173
**

 

 (2.642) (2.623) (2.535) (2.583) 

GDP -1.220 -1.213 -0.903 -1.137 

 (-1.448) (-1.441) (-1.014) (-1.229) 

GDP
2 

0.071 0.070 0.056 0.070 

 (1.623) (1.621) (1.218) (1.460) 

FDI  -0.005 -0.005 -0.004 

  (-0.334) (-0.320) (-0.287) 

SI   -0.004 -0.005 

   (-0.962) (-0.979) 

TC    -0.026
***

 

    (-3.226) 

cons 13.773
***

 13.779
***

 12.412
***

 13.564
***

 

 (3.355) (3.355) (2.910) (3.052) 

Observations 3640 3640 3640 3640 

R
2 

0.081 0.079 0.065 0.062 

F 11.085
***

 8.328
***

 7.709
***

 10.473
***

 

  0.682 0.683 0.687 0.689 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model.   is the fraction of variance due to individual effect u i. FE is the fixed effect. We 

clustered standard errors at the city level when indicated.  
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Table A.3 Robustness check of the long-term effect: WW 

Models 
(1) (2) (3) (4) 

WW WW WW WW 

TI 0.071
*
 0.074

*
 0.075

*
 0.079

*
 

 (1.651) (1.725) (1.743) (1.821) 

GDP 0.856 0.834 0.758 0.540 

 (1.598) (1.569) (1.425) (0.986) 

GDP
2 

-0.043 -0.042 -0.039 -0.026 

 (-1.568) (-1.569) (-1.445) (-0.929) 

FDI  0.017
**

 0.017
**

 0.017
***

 

  (2.525) (2.532) (2.686) 

SI   0.001 0.001 

   (0.328) (0.308) 

TC    -0.024
***

 

    (-3.913) 

cons 12.894
***

 12.875
***

 13.211
***

 14.279
***

 

 (4.937) (4.954) (5.123) (5.373) 

Observations 3640 3640 3640 3640 

R
2 

0.273 0.321 0.336 0.280 

F 3.019
***

 3.104
***

 2.485
***

 5.319
***

 

  0.855 0.851 0.851 0.853 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of fixed 

effect model.   is fraction of variance due to individual effect u i. FE is fixed effect. We cluster 

standard errors at the city level when indicated.  
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Table A.4 Robustness check of the short-term effect: SO2 

Models 
(1) (2) (3) (4) 

SO2 SO2 SO2 SO2 

TII -0.0005 -0.001 -0.002 -0.002 

 (-0.064) (-0.098) (-0.225) (-0.293) 

GDP 2.837
***

 2.821
***

 2.277
***

 2.325
***

 

 (4.073) (4.053) (3.155) (3.239) 

GDP
2 

-0.147
***

 -0.147
***

 -0.120
***

 -0.119
***

 

 (-4.149) (-4.144) (-3.303) (-3.291) 

FDI  0.010 0.009 0.010 

  (1.279) (1.203) (1.221) 

SI   0.007
*
 0.007 

   (1.673) (1.607) 

TC    -0.027 

    (-1.290) 

cons -2.999 -2.983 -0.539 -0.911 

 (-0.876) (-0.872) (-0.154) (-0.260) 

Observations 3360 3360 3360 3360 

R
2 

0.010 0.004 0.016 0.026 

F 6.117 4.917 4.090 3.492 

  0.848 0.847 0.842 0.841 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model.   is the fraction of variance due to indiv idual effect u i. FE is the fixed  effect. We 

clustered standard errors at the city level when indicated.  
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Table A.5 Robustness check of the short-term effect: SD 

Models 
(1) (2) (3) (4) 

SD SD SD SD 

TI -0.003 -0.003 -0.002 -0.004 

 (-0.243) (-0.223) (-0.131) (-0.316) 

GDP -1.246 -1.232 -0.612 -0.408 

 (-1.267) (-1.254) (-0.596) (-0.395) 

GDP
2 

0.079 0.078 0.048 0.055 

 (1.566) (1.561) (0.922) (1.042) 

FDI  -0.008 -0.008 -0.006 

  (-0.544) (-0.521) (-0.443) 

SI   -0.008
*
 -0.010

**
 

   (-1.756) (-2.152) 

TC    -0.115
***

 

    (-4.583) 

cons 14.421
***

 14.407
***

 11.621
**

 10.047
**

 

 (3.006) (3.005) (2.349) (2.017) 

Observations 3360 3360 3360 3360 

R
2 

0.047 0.043 0.022 0.021 

F 10.276 7.775 7.947 10.590 

  0.688 0.689 0.697 0.707 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model.   is the fraction of variance due to indiv idual effect u i. FE is the fixed  effect. We 

clustered standard errors at the city level when indicated.  
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Table A.6 Robustness check of the short-term effect: WW 

Models 
(1) (2) (3) (4) 

WW WW WW WW 

TI 0.004 0.004 0.004 0.003 

 (0.607) (0.522) (0.535) (0.489) 

GDP 0.701 0.666 0.695 0.722 

 (1.112) (1.067) (1.108) (1.143) 

GDP
2 

-0.034 -0.033 -0.034 -0.034 

 (-1.063) (-1.045) (-1.091) (-1.070) 

FDI  0.021
***

 0.021
***

 0.021
***

 

  (3.148) (3.158) (3.158) 

SI   -0.000 -0.001 

   (-0.112) (-0.183) 

TC    -0.015 

    (-0.908) 

cons 14.036
***

 14.069
***

 13.940
***

 13.729
***

 

 (4.511) (4.549) (4.521) (4.382) 

Observations 3360 3360 3360 3360 

R
2 

0.101 0.219 0.210 0.175 

F 0.713 2.611 2.205 1.846 

  0.867 0.863 0.863 0.863 

Effect FE FE FE FE 

Notes: t statistics are in parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. F is the F test of the fixed 

effect model.   is the fraction of variance due to indiv idual effect u i. FE is the fixed  effect. We 

clustered standard errors at the city level when indicated.  
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Table A.7 Regression on the mediating effect: population urbanization 

Models 
(1) (2) (3) (4) 

Unban SO2 SD WW 

TI -7.484
***

 0.112
**

 0.138
**

 0.086
**

 

 (-8.752) (2.427) (2.183) (2.078) 

Urban  -0.001 -0.002 -0.0005 

  (-0.581) (-0.649) (-0.231) 

Pop -14.422    

 (-1.529)    

Est -0.052    

 (-1.221)    

GDP  2.045
**

 1.589 1.994
***

 

  (2.421) (1.501) (2.757) 

GDP
2 

 -0.109
***

 -0.069 -0.096
***

 

  (-2.896) (-1.288) (-2.771) 

FDI  0.028
***

 0.018
*
 0.023

***
 

  (2.690) (1.722) (3.653) 

SI -0.288
***

 0.010 0.004 0.002 

 (-5.072) (1.638) (0.764) (0.469) 

TC  -0.041
***

 -0.023
***

 -0.022
***

 

  (-4.228) (-2.835) (-3.625) 

Gov  0.004 -0.006 0.01 

  (0.329) (-0.379) (1.239) 

cons 177.735
***

    

 (3.438)    

W*TI  0.104 0.198 0.035 

  (1.157) (1.479) (0.436) 

W*GDP  -1.172 -4.549
***

 -3.214
***

 

  (-1.446) (-3.633) (-3.486) 

W*GDP
2
  0.062 0.220

***
 0.160

***
 

  (1.510) (3.418) (3.437) 

W*FDI  -0.070
***

 -0.076
***

 -0.024 

  (-2.634) (-3.062) (-1.207) 

  0.230
***

 0.323
***

 0.206
***

 

  (5.250) (9.917) (5.897) 

Direct effect    

TI  0.121
**

 0.161
**

 0.090
**

 

  (2.520) (2.377) (2.089) 

Urban  -0.002 -0.002 -0.001 

  (-0.647) (-0.717) (-0.281) 

Indirect effect    

TI  0.167 0.346
*
 0.067 

  (1.512) (1.860) (0.728) 
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Urban  -0.0005 -0.001 -0.0002 

  (-0.639) (-0.722) (-0.307) 

Total effect    

TI  0.287
**

 0.506
**

 0.158 

  (2.242) (2.347) (1.423) 

Urban  -0.002 -0.004 -0.001 

  (-0.648) (-0.721) (-0.287) 

Observations 3360 3360 3360 3360 

R
2 

0.005 0.011 0.020 0.039 

F 67.687
***

    

  0.933    

LogL  -1.80E+03 -2.76E+03 -1.35E+03 

Effect  FE FE FE 

Notes: t statistics are in  parentheses, 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01. The non-agricu ltural 

population data were co llected from the China Population and Employment Statistics Yearbook , which  

were not published after 2015. F is the F test of the fixed effect model.   is the fraction of variance 

due to individual effect u i. LogL is the Maximum Log-pseudolikelihood value. FE is the fixed effect. 

We clustered standard errors at the city level when indicated.  

 

Table A.8 Acronyms 

Abbreviations Descriptions 

TI Transportation Infrastructure 

TII Transportation Infrastructure Investment 

SDM Spatial Durbin Model 

EKC Environmental Kuznets Curve 

PHH Pollution Haven Hypothesis 

SEM Spatial Error Model 

SLM Spatial Lag Model 

SAR Spatial Autoregression Model 

LQM Location Quotient Method 

HHI Herfindahl-Hirschman Index 
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Highlights 

 The impact of transportation infrastructure on industrial pollution is estimated 

 Transportation infrastructure aggravates cities’ industrial pollution in the long run 

 Transportation infrastructure influences industrial pollution through industrial 

agglomeration but not urbanization 

 Spatial Durbin model is used to measure the spatial spillover effects of industrial 

agglomeration 

 The spatial spillover effects of industrial agglomeration play an important role in 

the impact of TI on industrial pollution 
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