
1

Energy-Harvesting Aided Unmanned Aerial Vehicles for
Reliable Ground User Localization and Communications

Under Lognormal-Nakagami-m Fading Channels

Ngoc Phuc Le†#, Le Chung Tran#, Xiaojing Huang∗, Eryk Dutkiewicz∗, Christian Ritz#, Son Lam Phung#,

Abdesselam Bouzerdoum&#, Daniel Franklin∗ and Lajos Hanzo‡

Abstract—In this paper, we propose a wireless localization sys-
tem based on energy-harvesting aided unmanned aerial vehicles
(UAV). Our proposed system consists of a ground station (GS),
a UAV, and multiple users located on the ground, in which both
the ground station and all the ground users (GUs) want to know
the locations of the ground users. To this end, the UAV first
harvests energy from the GS, and then broadcasts signals to the
GUs for localization. Each GU will estimate its location, and then
transmits data, including its location information, to the GS with
the help of the UAV. The links between nodes experience both
large-scale lognormal shadowing and small-scale Nakagami-m
fading. We first derive the Cramer-Rao lower bound (CRLB)
under spatially correlated shadowing for localization perfor-
mance evaluation. Next, we analyze the system throughput under
delay-limited and delay-tolerant transmission modes. To derive
exact closed-form expressions as well as high signal-to-noise ratio
(SNR) approximations of the performance metrics, we consider
a mixture gamma distribution approximation for the probability
density functions (PDF) of the composite fading channels. We
evaluate the impact of several key system parameters such as
the number of waypoints and the altitude of the UAV, correlated
shadowing and energy-harvesting time both on the localization
performance and on the achievable throughput. Simulations are
provided to validate the theoretical analysis.

Index Terms—Energy harvesting, unmanned aerial vehicle
(UAV), localization, Cramer-Rao lower bound, throughput,
lognormal-Nakagami-m fading.

I. INTRODUCTION

Localization has become an important research area due to

the popularity of wireless sensor networks and location-based

services. Location-aware communications, disaster manage-

ments, search and rescue missions, and military operations are

among critical localization applications [1]. In 5G and beyond

5G networks, it is envisioned that wireless localization plays

an essential role for both human-centric communications and

machine-type communications [2], [3]. It is well-known that

† Institute of Research and Development, Duy Tan University, Danang
550000, Vietnam.

# School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong, Australia.

* School of Electrical and Data Engineering, University of Technology
Sydney (UTS), Australia.

& Division of Information and Computing Technology, College of Science
and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

‡ School of Electronics and Computer Science (ECS), University of
Southampton, United Kingdom.

L. Hanzo would like to acknowledge the financial support of the En-
gineering and Physical Sciences Research Council projects EP/N004558/1,
EP/P034284/1, EP/P034284/1, EP/P003990/1 (COALESCE), of the Royal
Society’s Global Challenges Research Fund Grant as well as of the European
Research Council’s Advanced Fellow Grant QuantCom.

the global positioning system (GPS) is an efficient solution for

outdoor localization. However, GPS does not work reliably in

indoor environments or under harsh conditions (e.g., forest

environments) since satellite signals are severely attenuated.

Furthermore, GPS signals can be easily jammed due to its

low signal intensity. Consequently, alternative localization

techniques have been extensively studied in the literature [4].

Non-GPS localization schemes can be categorized into

range-free and range-based schemes. Range-free methods

work on attributes that approximate the distances, such as hop

count, whereas range-based approaches estimate the absolute

distances [4]. At the expense of requiring a dedicated infras-

tructure, range-based methods can achieve higher accuracy

than their counterparts. Diverse techniques are suitable for

range estimation, relying on Time of Arrival (TOA), Time

Difference of Arrival (TDOA), Angle of Arrival (AOA), and

Received Signal Strength (RSS). Among these techniques, the

RSS is particularly attractive due to its intrinsic simplicity,

requiring no extra antennas or time synchronization [5], [6].

In the RSS method, the relationship between the received

signal strength indicator and the distance between an anchor

and a target object is obtained based on the path-loss [6].

The RSS-based estimator may rely on full-search based max-

imum likelihood (ML) [7] or suboptimal least square (LS)

techniques [8]. The RSS-based localization using terrestrial

anchors has also been widely investigated in the literature [5],

[6]. Furthermore, several research contributions studied RSS-

based localization using mobile anchors [5], [9]. The impact

of spatial correlation between anchors on the localization

performance was examined in [10].

In recent years, unmanned aerial vehicles (UAVs), also

known as drones, have attracted substantial attention due to

their potential for future wireless communications [11], [12].

In general, UAV-based wireless networks may be promptly

rolled out and can enjoy excellent channel conditions due

to the presence of line-of-sight (LoS) links. Typical appli-

cation scenarios of UAV-aided wireless communications in-

clude UAV-aided ubiquitous coverage, UAV-assisted relaying

and UAV-aided information dissemination as well as data

collection [12]. However, one of the main concerns for

the deployment of UAVs is the limited energy available to

sustain their operations. Concurrently, energy-harvesting has

been shown as a promising solution to prolong the lifetime

of energy-constrained wireless networks [13], [14]. In fact,

energy-harvesting has been studied for many types of wire-

less systems, such as multiple-input multiple-output (MIMO)
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schemes [15], multiuser systems [16], relay systems [17] and

cognitive relay networks [18]. Motivated by this, researchers

have considered wireless power transfer to sustain the UAVs’

recharge period [19]-[23]. These research activities include

their performance analysis [20], [21] as well as the joint

optimization of time and power allocation in energy-harvesting

UAV communications [22], [23]. As a compelling design

alternative, laser guns placed on rooftops could be used for

replenishing the batteries [24].

A. Related Contributions on UAV-based RSS Localization and

Open Problems

Recently, some authors have considered aerial anchors,

such as UAVs, for terrestrial object localization [25]-[32]. In

particular, Gong et al. [25] proposed a localization framework

which employs a mobile node to serve as a virtual anchor.

They implemented it on a UAV to verify the reliability of

the proposed system. Sallouha et al. [26] considered multiple

UAVs for outdoor localization in urban environments. They

investigated the optimal altitude for localization accuracy

under a LoS and non-LoS (NLoS) mixed channel model.

They also derived the Cramer Rao lower bound (CRLB) for

quantifying the impact of the UAV altitude on the localization

error. However, it is worth noting that the CRLB derivation

in their study is limited to a performance metric relying on

individual range estimators. Localization algorithms with im-

proved precision were developed by Sorbelli et al. [27] using

both directional and omnidirectional antennas. The ground

nodes calculated their own positions through trilateration based

on the measurements received from the UAV.

With respect to the UAV trajectory design of localization

systems, Perazzo et al. [28] considered path planning based

on the traveling salesman problem for a UAV to localize the

objects’ positions using round trip time for distance estima-

tion which requires reliable timing. In [29], Shahidian et al.

proposed two trajectory control approaches by applying the

extended Kalman filter to increase the localization accuracy.

Trajectory planning was designed by Ji et al. [30] for multi-

target positioning using multiple UAVs who minimized the en-

ergy dissipation of UAVs performing cooperative positioning

via trilateration. Demiane et al. [31] designed an efficient UAV

trajectory that takes into account important levels of objects

in disaster scenarios. Furthermore, a reinforcement learning

technique has been adopted by Ebrahimi et al. [32] for UAV

trajectory design to localize ground objects, which was shown

to be superior to the existing methods regarding localization

errors under a fixed amount of UAV energy consumption, path

length and flying time.

However, the aforementioned contributions only consider

localization performed either at ground users or at UAVs,

which is hence only known by either the ground users or

UAVs, even though in many practical scenarios, it is required

by both as well as by the central station. To fill this knowledge

gap, a joint localization and communications study is essential.

Also, as discussed earlier, the limited energy supplied by an

onboard battery may be replenished by energy harvesting.

Additionally, it is highly likely that there exists spatially

correlated shadowing between UAVs or among waypoints of

a particular UAV due to the inherent characteristics of UAV’s

flying environments. Therefore, it is necessary to consider the

impact of shadowing correlation on UAV-based localization

systems. These concerns will be addressed in this work.

B. Paper Contributions and Structure

In this paper, we consider energy-harvesting UAV based

wireless localization systems, where each ground user (GU)

wants to locate its position. The ground base station (GS) also

wants to know the locations and data of several ground users.

We consider scenarios where the GS is located far from the

GUs or blocked by man-made or natural structures. Therefore,

there is no direct signal transmission from the GUs to the GS.

To accomplish its mission, the UAV is responsible both for

localization and information transfer. We assume that the UAV

is an energy-limited device and thus it has to harvest energy

from the GS for its communication tasks. The GUs estimate

their location using the RSS based on signals broadcast by the

UAV from different waypoints. Our contributions are:

1) We propose and analyse a new energy-harvesting UAV-

based system for joint wireless localization and com-

munications, rather than considering the mature con-

ceived problem of a stand-alone localization scheme.

Specifically, we investigate both the performance of the

localization operations performed at the GUs and the in-

formation transmission of the GUs’ locations forwarded

to the GS via the UAV. To this end, we analyze the

localization performance at the GUs under shadowing-

induced correlation as well as the outage probability

and the achievable throughput at the GS. A summary

of system characteristics considered in this paper versus

the related contributions is provided in Table I.

2) We propose an analytical approach for UAV-based sys-

tems by using a mixture gamma distribution approxima-

tion. This novel method allowed us to derive insightful

new closed-form expressions of the key system metrics,

including the outage probability (OP) and throughput

(TP), when composite fading channels (i.e., lognormal-

Nakagami-m fading) are used to model the GU-UAV and

UAV-GS links. Both delay-limited and delay-tolerant

transmission modes are investigated. Consequently, the

results obtained can be applied to a wide range of

channel models, including lognormal-Nakagami-m, KG,

η−µ, Nakagami-q (Hoyt), κ−µ, Nakagami-n (Rician),

Nakagami-m, and Rayleigh channels.

The main results of this paper are summarized below.

• The Cramer-Rao lower bound (CRLB) of location esti-

mation is derived under spatially correlated shadowing

environments. The expression derived reveals the effects

of several key parameters on the bound, thus facilitating

the system design and the evaluation of localization

performance.

• The throughput attained by the ground station is ana-

lyzed. In particular, we calculate the OP and TP for a

delay-limited mode. We also derive the exact closed-

form expressions for the ergodic capacity and throughput
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TABLE I: Related contributions versus this paper on UAV-based localization.

[25]
2017

[26]
2018

[27]
2018

[28]
2017

[29]
2017

[30]
2020

[31]
2020

[32]
2020

This
work

Localization technique RSS RSS RSS RSS RSS RSS RSS RSS RSS

Localization algorithm Newton
iteration
method

Maximum
likeli-
hood

Tri-
lateration

Tri-
lateration

Extended
Kalman
filter

Tri-
lateration

Tri-
lateration

Reinforce-
ment
learning

Maximum
likeli-
hood

Channel model log-
distance
path loss
model
(LPL)

Probabi-
listic
LoS/N-
LoS

LPL LPL LPL LPL LPL Probabi-
listic
LoS/N-
LoS

LPL
and log-
normal
Nakagami-
m fading
channel

Correlated shadowing X

Energy-harvesting X

CRLB Derivation X X(only
for in-
dividual
distance)

X X

UAV trajectory uniformly
dis-
tributed

3 UAVs
forming
a triangle

predefined
path

design
trajectory

design
trajectory

design
trajectory

design
trajectory

design
trajectory

regular-
polygon

Impact of UAV waypoints X X X X X X X X

Impact of UAV altitude X X X X X X

Joint communication and
localization

X

in a delay-tolerant transmission. In addition, we derive

approximate expressions for both the OP and the TP at

high SNRs.

• The optimal energy-harvesting time achieved the maxi-

mum throughput in the system is obtained.

• The effects of the number of waypoints, of the UAV

altitude, of the spatially correlated shadowing and of the

energy-harvesting time both on the localization perfor-

mance and on the system throughput are evaluated.

The rest of the paper is organized as follows. Section II

describes the proposed UAV-based localization system model,

whereas Section III analyzes the ML estimator and the CRLB.

In Section IV, we derive the system throughput in both delay-

limited and delay-tolerant transmission modes. Our simulation

results and discussions are provided in Section V. Finally,

Section VI concludes the paper.

Notation: Throughout this paper, a bold letter denotes a

vector or matrix, whereas an italic letter denotes a vari-

able; (·)T , and E{·} indicate transpose and expectation, re-

spectively; Γ(x) and γ(x, λ) are the gamma function and

lower incomplete gamma function, respectively [33, Eq.

(8.310.1),(8.350.1)]; Kν(x) is the ν-th order modified Bessel

function of the second kind [33, Eq. (8.407.1)]; ψ(·) is the

Euler Psi function [33, Eq. (8.360.1)]; and Gm,n
p,q (·) is the

Meijer G-function [33, Eq. (9.301)].

II. ENERGY-HARVESTING UAV LOCALIZATION SYSTEM

MODEL

We consider an energy-harvesting UAV localization system

that consists of a ground station (GS), a UAV, and I ground

users (GUs), as shown in Figure 1. All nodes are equipped

with a single antenna. All GUs are distributed randomly within

a particular area. We assume that the direct links between

the GS and the GUs are weak due to obstacles and/or poor

channel conditions. Consequently, information is transferred

from the GUs to the GS with the help of the UAV. Here, we

are interested in the deployment of only a single UAV, instead

of multiple UAVs for having a cost-effective implementation.

Additionally, the system complexity is low since no informa-

tion coordination is required among multiple UAVs. However,

it is worth noting that the results in this work are applicable to

the scenarios of multiple UAVs as well. In this contribution, we

consider situations that a UAV scavenges energy from external

sources for extending its continuous operation without landing

to recharge or replace its battery. To this end, we consider

wireless power transfer (WPT) for a UAV. The current status

and potential of WPT for powering UAVs was discussed in

[19], and our work is in line with advanced research papers,

where a charging station is used for wirelessly powering UAVs

[19]-[23]. The position of the GS is defined as (xb, yb, 0),
while the locations (xi, yi, 0), i = 1, 2, ..., I , of the GUs

are denoted as Li = (xi, yi)
T . The UAV flies along its

predefined trajectory at the height of h through K waypoints.

Its position is denoted as (xk, yk, h), k = 1, 2, ...,K. The

proposed system protocol is depicted in Figure 2. The detailed

system operations are described in the next subsections.

A. Air-to-Ground Channel Model

We adopt a channel model in which the channel gains

are dominated by light-of-sight (LoS) links and the Doppler

effect is accurately compensated. Note that this channel model

matches well with practical measurements [34]. To generalize

our analysis, we consider Nakagami-m fading for small-

scale fading effects, and lognormal shadowing for large-scale

effects. In particular, for the UAV-GS link, the multipath

channel coefficient is denoted by hub, with its envelope

|hub| following an independent and identically distributed

(i.i.d) Nakagami-m distribution having the parameter mub and

squared mean of Ωub = E{|hub|2} = 1. Similarly, small-

scale fading channel coefficients for the GU-UAV links are
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TABLE II: Notations for channel links.

Channel links Label(1) Distance-based path gain Large-scale fading Small-scale fading

GS → UAV bu Gbu = g0,b/d
β

ub
Sbu ∼ lognormal(µub, σ

2
ub

) Hbu ∼ Nakagami-m

UAV → GS ub Gub = g0,u/d
β

ub
Sub ∼ lognormal(µub, σ

2
ub

) Hub ∼ Nakagami-m

GU(ith) → UAV (kth) ou Gou = g0,o/d
β

i,k
Sk
ou,i ∼ lognormal(µou, σ2

ou) Hk
ou,i ∼ Nakagami-m

UAV (kth) → GU(ith) uo Guo = g0,u/d
β

i,k
Sk
uo,i ∼ lognormal(µou, σ2

ou) Hk
uo,i ∼ Nakagami-m

(Note: b: base station; u: uav; o: object)

hkou,i, (i = 1, 2, ..., I; k = 1, 2, ...,K). Thus, the small-scale

channel power gains are Hub = |hub|2 and Hk
ou,i = |hkou,i|2.

For large-scale fading, Sub denotes the lognormal variable that

accounts for shadowing variation of the UAV-GS links, where

the mean and variance of the associated Gaussian process of

the shadowing expressed in dB are µub and σ2
ub, respectively.

Similarly, Sk
ou,i represents the GU-UAV links between the ith

ground user with the kth waypoint with the mean µi,k and

variance σ2
i,k. For simplicity, we assume that all GU-UAV

links have the same mean and variance, i.e., µi,k = µou and

σ2
i,k = σ2

ou, ∀i, k. Additionally, the path loss exponent of the

links is denoted as β. Therefore, a distance-based path gain

between the UAV and the GS when the UAV hovers at the

first waypoint can be expressed as1

Gub =
g0,u

dβub
=

g0,u
(h2 + [(xb − x1)2 + (yb − y1)2])β/2

, (1)

where g0,u is the reference gain of the UAV at

the reference distance of 1 meter, and dub =
√

h2 + [(xb − x1)2 + (yb − y1)2] is the distance between the

GS and the first waypoint. Similarly, the distance-based path

gain between the ith GU and the kth waypoint is

Gk
ou,i =

g0,o

dβi,k
=

g0,o
(h2 + [(xi − xk)2 + (yi − yk)2])β/2

. (2)

Here, g0,o is the reference gain of the ith GU, which is

assumed to be the same for all ground users, and di,k =
√

h2 + [(xi − xk)2 + (yi − yk)2] is the distance between the

ith GU and the kth waypoint. A summary of notations for

channel modeling is given in Table II. Note that the large-

scale and small-scale fadings of the forward and reverse links

between the GS and the UAV have the same mean and variance

values, i.e., µbu = µub, σ2
bu = σ2

ub, and mbu = mub.

Meanwhile, the difference in terms of a distance-based path

gain (i.e., Gbu and Gub) is due to the difference in the

reference gains between g0,b and g0,u, e.g., their transmit

antenna gains are different. A similar observation applies for

the link between the GU and the UAV. Additionally, the overall

instantaneous channel gain is a superposition of the three types

of gains mentioned above. As an example, the instantaneous

channel gain for a transmission session from the ith GU to

the kth waypoint of the UAV is Gk
ou,iS

k
ou,iH

k
ou,i.

B. Energy-Harvesting Phase

As shown in Figure 2, the UAV harvests energy from the

GU during the time period of (1 − α)T, 0 < α < 1, when it

1Note that since we assume that the UAV only communicates with the GS
when it hovers at the first waypoint, the index k is dropped for simplicity.

UAV

User 1

User 2

User IUser i

(1)

(2)

(k)

(K)

Ground

Station
x

y

z

0

Power transfer

Signal broadcasting 

  for localisation

Information transmission

Fig. 1: An energy-harvesting UAV based localization system model.

  
Information

 transmission 

 (GUs- UAV link)

 Signal broadcasting for

localization from K waypoints 

 (UAV- GUs link)

Energy transfer 

 (GS- UAV link)

 TK/(K+2)(1-   )T

Information

transmission

(UAV-GS link) 

T/(K+2)

T/(K+2)

T/(K+2)

T/(K+2)

T

Fig. 2: A proposed protocol for localization and information transmission.

hovers at the first waypoint. The averaged harvested energy

can be expressed by [15]-[18]

Eu = ηPb(1− α)TGbuSbu, (3)

where η, 0 ≤ η ≤ 1, is the energy conversion efficiency,

and Pb is the transmit power of the GS. The UAV will use

this amount of energy for its communications tasks, including

broadcasting signals to all the GUs from K waypoints and

forwarding signals from the GUs to the GS2. We assume equal

energy allocation for each transmission session. Thus, the

energy allocated for each transmission session is Eu/(K+1).
Consequently, the transmit power for each operation is ex-

pressed as

Pu =
Eu/(K + 1)

αT/(K + 2)
=

(K + 2)(1− α)ηPbGbuSbu

(K + 1)α
. (4)

C. Localization Phase

After harvesting sufficient energy from the GS, the UAV

starts to broadcast signals to the GUs. The UAV will fly along

its trajectory and hover at each waypoint to broadcast signals.

2The power required for propulsion depends on the specific type and the size
of the UAV [35]. A helium-filled tethered UAV does not need any propulsion
power at all, but naturally quadcopters need power for propulsion. Indeed,
for the latter case, a large amount of harvested-energy is required, which can
be delivered by adopting energy beamforming from a high-power charging
station, using a high tower for low-altitude UAVs. Finally, laser beams relying
on laser-guns at roof-tops may be employed [24], [36].
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The time-average signal power received at the ith GU when

the UAV transmits at the kth waypoint, k = 1, 2, ...,K, is

P k
i =PuG

k
uo,iS

k
uo,i=

(K+2)(1−α)ηPbGbuG
k
uo,iSbuS

k
uo,i

(K + 1)α
. (5)

After obtaining K measurements P k
i , k = 1, 2, ...,K, the ith

GU will estimate its location by using range-based methods. In

this study, the maximum likelihood (ML) estimation is adopted

for attaining the best possible result and for validating the

CRLB expression derived in Section III. Note that to estimate

the position of an object in the three-dimensional space, at

least four reference signals are required. When a target object

is located on the ground, as in the case of our system model,

at least three waypoints are needed for localization, requiring

K ≥ 3. Here, the positions of the K waypoints of the UAV

and the UAV transmit power value of Pu may be predefined

or signalled to the GUs by the UAV’s broadcast signals.

D. Information Transmission Phase

Each GU, after finishing its localization calculations, will

transmit its information to the GS on its channel via the UAV,

which includes the estimated location of the GU, together with

other information that the user wants to report to the GS.

We assume that the UAV returns to the first waypoint after

it has traveled along its entire path and it remains hovering

at this waypoint during the information transmission phase.

Thus, the instantaneous received SNR at the UAV for the data

transmitted by the ith GU can be expressed as

γou,i =
Po,iG

1
ou,iS

1
ou,iH

1
ou,i

N0
, (6)

where Po,i is the transmit power of the ith GU and N0 is the

variance of the additive white Gaussian noise (AWGN). Given

that a decode-and-forward (DF) relaying protocol is adopted,

the UAV will decode the received signal and then transmit it to

the GS 3. In case of γou,i being smaller than a threshold γth,

an outage will occur at the UAV. Note that the transmit power

allocated for forwarding information for each GU is Pu/I . At

the GS, the received SNR for the signal transmitted from the

UAV associated with the data of the ith GU is (cf.(3))

γub,i =
(Pu/I)GubSubHub

N0

=
(K + 2)(1− α)ηPbGbuGubSbuSubHub

(K + 1)αIN0
. (7)

Consequently, the OP associated with the data transmission

from the ith GU is formulated as

Pout,i(γth) = Pr(γou,i < γth) + Pr(γub,i < γth, γou,i ≥ γth).
(8)

3In our system model, both DF and amplify-and-forward (AF) relaying
protocols can be adopted at the UAV. However, we are interested in scenarios
that both the GS and the UAV want to know the positions of the GUs.
Unfortunately, AF relaying is less suitable for this application because an
AF relay node simply amplifies and retransmits the signal without decoding.
Thus, DF is adopted at the UAV.

The OP of the whole system is

Pout,
∑(γth) = 1−

I
∏

i=1

[1− Pout,i(γth)]. (9)

III. MAXIMUM LIKELIHOOD ESTIMATION AND

CRAMER-RAO LOWER BOUND (CRLB) ANALYSIS

A. Maximum Likelihood Estimation

The received power at the ith GU corresponding to the kth

waypoint obtained in (5) can expressed in dB as [37]

P
k[dB]
i = −10β log10(di,k) + Ψk

i + S
k[dB]
uo,i , (10)

where Ψk
i,10log10

(

(K+2)(1−α)ηPbSbug0,bg0,u
(K+1)α

)

−10β log10(dub)
and S

k[dB]
uo,i is a normal distribution with variance of σ2

ou (in

dB). The ML estimator will estimate the position of the ith

GU via [38]

L̂i = argmin
Li

(Pi −Θi)
TΛ−1

i (Pi −Θi), (11)

where L̂i = (x̂i, ŷi)
T is the estimated position, Pi ,

[P 1
i P 2

i ... PK
i ]T , Θi is the mean vector, whose the kth

element is [Θi]k,−10β log10(di,k)+Ψk
i , and Λi is the covari-

ance matrix of correlated shadowing variables associated with

the ith GU. The off-diagonal element (m,n), 1 ≤ m,n,≤ K
of the covariance matrix Λi is defined as σ2

ouρm,n, where

ρm,n ∈ [0, 1] is the correlation coefficient between the mth

and nth RSS measurements. In line with [10], we assume that

ρm,n = ρ, ∀m,n for simplicity. Thus, the inverse of the matrix

Λi is obtained as

Λ−1
i =

1

[1 + (K − 2)ρ− (K − 1)ρ2]σ2
ou

×










(K−2)ρ+1 −ρ · · · −ρ
−ρ (K−2)ρ+1 · · · −ρ
...

...
. . .

...

−ρ −ρ · · · (K−2)ρ+1











. (12)

.

Therefore, the problem in (11) is rewritten as

L̂i = argmin
Li

{

K
∑

k=1

(

[(K−2)ρ+1](P k
i − [Θi]k)

2

−ρ×
K
∑

n=1,n6=k

(P k
i − [Θi]k)(P

n
i − [Θi]n)

)







. (13)

This problem can be solved by the quasi-Newton method [38].

B. Analysis of Cramer-Rao Lower Bound

To calculate the lower limit for the variance of any unbiased

estimator, the Crame-Rao Lower Bound (CRLB) is usually

considered [38]. Let Li = (xi, yi)
T be the real position of

the ith GU. We can express the probability density function

(PDF) of P
k[dB]
i defined in (10) conditioned on Li as

fPk
i
(pki |Li) =

1
√

2πσ2
uo

e
− (pki −[Θi]k)2

2σ2
uo , (14)
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In case of no shadowing correlation among the waypoints of

the UAV, the joint PDF of K independent measurements at

the ith GU can be expressed as

fPi
(pi|Li)=

K
∏

k=1

fPk
i
(pki |Li)=

K
∏

k=1

1
√

2πσ2
uo

e
− (pki −[Θi]k)2

2σ2
uo , (15)

where pi , [p1i p
2
i ... p

K
i ]T .

In many practical scenarios, the shadowing-induced corre-

lation coefficients are as high as 0.2 for indoor and 0.8 for

outdoor [10]. The PDF for a multivariate Gaussian random

variable is given by [38]

fPi
(pi|Li)=

1

(2π)K/2|Λi|1/2
e−

1
2 (pi−Θi)

TΛ
−1
i (pi−Θi), (16)

where |Λi| is the determinant of Λi.

The covariance matrix associated with the location estima-

tion can be formulated as

CLi
(L̂i)=ELi

{(L̂i − Li)(L̂i − Li)
T}=

[

σ2
x̂i

σx̂iŷi

σŷix̂i
σ2
ŷi

]

,

(17)

where ELi
{.} is the expectation conditioned on Li. Note that

the diagonal elements in (17) are the mean squared errors

between the estimated and real positions. The CRLB is then

given by [38]

CLi
(L̂i) ≥ [F(Li)]

−1, (18)

where F(Li) is the Fisher information matrix defined as

F(Li) =

[

Fxixi
(Li) Fxiyi

(Li)
Fyixi

(Li) Fyiyi
(Li)

]

. (19)

The calculations of the elements of this matrix are provided

in Appendix A.

Let us denote the variance of the location estimate for the

ith GU by varLi
(L̂i). It is seen from (18) that the matrix

CLi
(L̂i)−[F(Li)]

−1 is positive semidefinite. For any unbiased

estimation, we arrive at

varLi
(L̂i) = σ2

x̂i
+ σ2

ŷi
≥ [F(Li)]

−1
1,1 + [F(Li)]

−1
2,2

=
Fxixi

(Li) + Fyiyi
(Li)

|F(Li)|
, (20)

where |F(Li)| = Fxixi
(Li)Fyiyi

(Li) − Fxiyi
(Li)Fyixi

(Li).
After some further manipulations, we obtain the expression

for the CRLB.

Theorem 1. The CRLB for the estimated location of the ith

GU under spatially correlated shadowing is given by (21)

(on the top of this page), where Xi,k , (xi − xk)/d
2
i,k,

Yi,k , (yi − yk)/d
2
i,k, K is the number of waypoints, ρ is

the correlation coefficient, β is the path-loss exponent and

σ2
ou is the lognormal shadowing variance.

Proof : See Appendix A.

The CRLB expression (21) explicitly reveals the impact of the

lognormal shadowing variance σ2
ou of the UAV-GU link, of the

path-loss exponent β, of the spatial correlation coefficient ρ
and of the number of waypoints K on the lower bound. In

particular, an increase in σ2
ou will result in a higher bound,

while the increase of β will lead to the reduction of the

CRLB bound. Theoretical evaluations of the impact of ρ and

K on CRBi is challenge due to the complex of the CRLB

expression. We present further discussions of this impact based

on simulations in Section V. Additionally, the effect of the

number of waypoints K on the CRLB under no shadowing

correlation is characterized by the following corollary.

Corollary 1. The inclusion of an additional waypoint reduces

the CRLB.

Proof : See Appendix B.

Remark: Note that (21) is for the scenario that the UAV’s

transmit power value Pu is updated at the GUs after the period

of T (second) (denoted as Scenario 1). In cases that the GUs

know the GS’s transmit power value Pb but not Pu (denoted as

Scenario 2), the noise term in (10) is a sum of two normally

distributed variables, i.e., S
k[dB]

uo,i , S
[dB]
bu + S

k[dB]
uo,i . In our

system, we assume that the shadowing variables of the GS-

UAV link and the UAV-GU link are independent. Thus, S
k[dB]

uo,i

is a normal variable with variance of σ2
ou , σ2

ub+σ
2
ou (in dB).

Additionally, it can be shown that the correlation coefficient

between the RSS measurements becomes ρ =
σ2
ub+ρσ2

ou

σ2
ou

(see

Appendix C). As a result, the CRLB expression in this case

is obtained by replacing σou and ρ in (21) by σou and

ρ, respectively. Performance comparison between these two

scenarios are provided in Section V.

IV. ANALYSIS OF OUTAGE PROBABILITY AND SYSTEM

THROUGHPUT

We now consider the information transmission phase from

the GUs to the GS. We analyze the OP and the TP both in

delay-limited and delay-tolerant transmission modes. In our

system, the DF relaying protocol is adopted at the UAV. Both

the GU-UAV and UAV-GS links experience composite fading

conditions of large-scale lognormal shadowing and small-scale

Nakagami-m fading. Since the Nakagami-lognormal PDF has

a more complex integral form, it is impossible to obtain closed-

form expressions for the various system metrics. To circum-

vent this issue, we approximate the composite fading channels

considered by using the mixture gamma (MG) distribution

approach proposed in [39]. It is well established that a MG

approximation can offer high accuracy for different kinds of

fading channels. Thus, the results obtained in this work can

be applied not only to other composite fading channels but

also to small-scale fading channels, including η − µ channels

and κ−µ channels, and Nakagami-q (Hoyt) channels. Since

data transmission from the GUs to the GS is assumed to be

performed on orthogonal subchannels, the index i is dropped

throughout this section for simplicity.

A. Approximation of Fading Channel Distribution

We first describe some PDF approximations that will be

utilized to facilitate derivations of closed-form expressions for

both the OP and TP. For the lognormal shadowing, it is shown

in [40] that the gamma PDF is capable of characterizing the
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CRBi ≥
σou ln 10

10β

(

1− (K − 1)ρ2

(K − 2)ρ+ 1

)1/2

×


















K
∑

k=1



X2
i,k + Y 2

i,k− ρ
(K−2)ρ+1

K
∑

n=1
n6=k

(Xi,kXi,n + Yi,kYi,n)





K
∑

k=1



X2
i,k− ρ

(K−2)ρ+1

K
∑

n=1
n6=k

Xi,kXi,n



×
K
∑

k=1



Y 2
i,k− ρ

(K−2)ρ+1

K
∑

n=1
n6=k

Yi,kYi,n



−





K
∑

k=1



Xi,kYi,k− ρ
(K−2)ρ+1

K
∑

n=1
n6=k

Xi,kYi,n









2



















1/2

(21)

lognormal shadowing affects. In particular, the lognormal PDF

that admits the form

fL,φ(x) =
1

√

2πσ2
L,φx

e
− (ln(x)−µL,φ)2

2σ2
L,φ , (22)

where µL,φ and σL,φ represent the mean and the standard

deviation, which can be approximated by the gamma PDF

fG,φ(x) =
1

θ
ϕφ

φ Γ(ϕφ)
xϕφ−1e−x/θφ , (23)

where Γ(.) is the gamma function and φ = {ou, ub} where

ou stands for the channel between the GUs and the UAV,

while ub is for the channel between the UAV and the GS.

The relationship between the parameters of the gamma PDF

and lognormal PDF is given by [40]

σL,φ =
√

ψ′(ϕφ), (24)

µL,φ = ln(θφ) + ψ(ϕφ), (25)

where ψ(.) and ψ′(.) are the digamma (or Psi) and trigamma

functions. The use of the gamma PDF is preferred to the log-

normal PDF from an analytic computation perspective [40].

For the composite Nakagami-lognormal fading channel in

either the GU-UAV or the UAV-GS link, the PDF can be

expressed as

fNL,φ(x)=

∫ ∞

0

xmφ−1e−mφx/̺φy

Γ(mφ)

(

mφ

̺φy

)mφ e
− (ln(y)−µL,φ)2

2σ2
L,φ

√
2πσL,φy

dy,

(26)

where mφ is the fading parameter of Nakagami-m fading and

̺φ is the unfaded SNR. By using a mixture gamma distribution

approximation, we can approximate the above PDF by the

following one [39]

fMG,φ(x) =

Nφ
∑

n=1

aφ,nx
bφ,n−1e−cφ,nx, x ≥ 0, (27)

where Nφ is the number of terms, while aφ,n, bφ,n, and cφ,n
are the parameters associated with the nth Gamma component.

These parameters are formulated as

aφ,n =
ξn

∑Nφ

j=1 ξjΓ(bφ,j)c
−bφ,j

φ,j

,

bφ,n = mφ, (28)

cφ,n =
mφ

̺φ
e−(

√
2σL,φχn+µL,φ),

where ξn = (mφ/̺φ)
mφwne

−mφ(
√
2σL,φχn+µL,φ)/[

√
πΓ(mφ)],

while χn and wn are the abscissas and weight factors for the

Gaussian-Hermite integration. Note that the accuracy of the

MG approximation depends on the number of components

Nφ, which is selected for ensuring that the mean-square error

(MSE) between the lognormal-Nakagami-m distribution and

the MG distribution is below a threshold. As shown in [39],

the MSE accuracy requirement of 10−3 is guaranteed for

Nφ = 8. To achieve a better accuracy, a larger value of Nφ

is needed.

From (27), the cumulative distribution function (CDF) of

the MG distribution is

FMG,φ(x) =

Nφ
∑

n=1

aφ,nc
−bφ,n

φ,n γ(bφ,n, cφ,nx), (29)

where γ(., .) is the lower incomplete gamma function. Given

the mathematically tractable form of the MG distribution, we

can efficiently evaluate the system performance metrics of OP

and TP in the next sections.

B. Outage Probability and Throughput in Delay-Limited

Transmission

1) Outage probability: In our system model, outages are

imposed by the composite fading in the GU-UAV and UAV-

GS links. The OP is defined as the probability that the received

SNR at the GS is below a given threshold. When DF-relaying

is used by the UAV, it can be calculated as

Pout(γth)=Pr(γou<γth)+Pr(γub<γth, γou≥γth), (30)

where γth is the SNR to be exceeded at the GS for correct data

detection. The closed-form expression of Pout is formulated

in the following theorem.

Theorem 2. The OP of information transmission from a
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particular GU to the GS is given by

Pout(γth) =

Nou
∑

n=1

aou,nc
−bou,n
ou,n Γ(bou,n)



1−e−
cou,nγth

γou

bou,n−1
∑

m=0

(cou,nγth/γou)
m

m!





+

[

1−
Nou
∑

n=1

aou,nc
−bou,n
ou,n Γ(bou,n)

(

1− e−
cou,nγth

γou ×

bou,n−1
∑

m=0

(cou,nγth/γou)
m

m!

)



×
Nub
∑

n=1

{

aub,nc
−bub,n

ub,n Γ(bub,n)

[

1−

bub,n−1
∑

m=0

2

m!Γ(ϕub)

(

cub,nγth
θubγub

)

ϕub+m

2

Kϕub−m

(

2

√

cub,nγth
θubγub

)

]}

,

(31)

where γou ,
PoG

1
ou

N0
, γub ,

(K+2)(1−α)ηPbGbuGub

(K+1)αIN0
, and Kν(.)

is the ν-th order modified Bessel function of the second kind.

Proof : See Appendix D.1.

Note that the above expression consists of only elementary

functions and the K(.) function, hence it can be easily evalu-

ated numerically. At high SNRs, we can derive an approximate

OP expression provided by the following corollary.

Corollary 2. The approximate OP in the high SNR regime is

Pout(γth)≈
Nou
∑

n=1

aou,n
bou,n

(

γth
γou

)bou,n

+

[

1−
Nou
∑

n=1

aou,n
bou,n

(

γth
γou

)bou,n
]

×
Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

(

1−
bub,n−1
∑

m=0

Γ(ϕub −m)

m!Γ(ϕub)
×

(

cub,nγth
θubγub

)m(

1− cub,nγth
(ϕub −m− 1)θubγub

)

)

. (32)

Proof : See Appendix D.2.

2) Throughput in delay-limited transmission: In delay-

limited (DL) scenarios, GUs transmit their data at a constant

rate of Rc. For the whole block duration of T , the effec-

tive transmission time from a particular GU to the GS is

αT/(K + 2). The TP at the GS can be expressed as

τDL=
αT/(K+2)

T
(1−Pout)Rc=

α

K+2
(1−Pout)Rc, (33)

where Pout is the OP obtained in (31), and Rc = log2(1 +
γth). Note that at high SNRs, we can obtain an approximate

expression of the TP by substituting the result in (32) into

(33). The total throughput of the whole system is the sum of

the throughput of each user obtained in (33).

C. Throughput in Delay-Tolerant Transmission

For delay-tolerant (DT) scenarios, a source can transmit data

at any rate upper-bounded by the ergodic capacity. Therefore,

the TP can be obtained by evaluating the ergodic capacity. In

particular, we have [17]

τDT =
αT/(K + 2)

T
C =

α

K + 2
min{Cou, Cub}, (34)

where C is the ergodic capacity in a DF-relaying protocol,

i.e., C = min{Cou, Cub} where Cou and Cub are the ergodic

capacities of the GU-UAV link and the UAV-GS link, respec-

tively. These capacities are given by

Cou = E{log2(1 + γou)}, (35)

and

Cub = E{log2(1 + γub)}. (36)

By performing some further mathematical manipulations, we

obtain the closed-form expressions of Cou and Cub in the

following theorem.

Theorem 3. The ergodic capacities of the GU-UAV and UAV-

GS links are given by

Cou =
1

ln 2

Nou
∑

n=1

aou,nc
−bou,n
ou,n Γ(bou,n)

(

cou,n
γou

)bou,n

×

e
cou,n
γou

bou,n
∑

v=1

Γ(−bou,n + v, cou,n/γou)

(cou,n/γou)
v

, (37)

and

Cub =
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n (bub,n − 1)!

bub,n−1
∑

m=0

1

m!Γ(ϕub)
×

[

−mG1,4
4,2

(

θubγub
cub,n

−ϕub + 1,−m+ 1, 1, 1
1, 0

)

+

G1,4
4,2

(

θubγub
cub,n

−ϕub + 1,−m, 1, 1
1, 0

)]

, (38)

where Γ(., .) and Gm,n
p,q (.) are the upper incomplete gamma

function and the Meijer G-function, respectively.

Proof : See Appendix E.1.

It is worth mentioning that the Meijer G-function is a standard

built-in function in several software packages, such as Matlab

or Mathematica. Hence, the system throughput can be evalu-

ated efficiently based on the expressions derived. Additionally,

in the high SNR regime, a simpler approximate expression

can be obtained for the ergodic capacities by utilizing the

approximation of log(1 + x) ≈ log(x), when x→ ∞.

Corollary 3. The approximate ergodic capacities under delay-

tolerant scenarios in the high SNR regime are given by

Cou≈
1

ln 2

Nou
∑

n=1

aou,nc
−bou,n
ou,n Γ(bou,n)

[

ψ(bou,n)−ln

(

cou,n
γou

)]

,(39)

and

Cub ≈
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)×


ψ(ϕub + 1) + ψ(1)− ln

(

cub,n
θubγub

)

+

bub,n−1
∑

m=1

1

m



 ,(40)

where ψ(.) is the Psi function [33, Eq. (8.360.1)].

Proof : See Appendix E.2.
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D. Optimal Energy-Harvesting Time for Maximal Throughput

In the previous sections, the expressions of the achiev-

able throughput of both the delay-tolerant and delay-limited

transmission modes have been derived. We now examine the

optimal energy-harvesting time fraction αopt designed for

maximal throughput. The high SNR region is considered for

the analytical results. In a delay-limited transmission mode, it

is an open challenge to derive a closed-form expression for

αopt. For a delay-tolerant mode, the result is given by the

following theorem.

Theorem 4. The optimal energy-harvesting time fraction for

the maximal throughput under delay-tolerant transmissions in

the high SNR regime is

αopt =
1

1 + eW (eΦ/Υ−1)+1−Φ/Υ
, (41)

where W (.) is the Lambert W function [41],

Φ ,
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

[

ψ(ϕub + 1) + ψ(1)+

ln

(

θub(K + 2)ηPbGbuGub

cub,n(K + 1)IN0

)

+

bub,n−1
∑

m=1

1

m

]

, (42)

and

Υ ,
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n). (43)

Proof : See Appendix F.

Simulations matching these results are provided in Section V.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulation results for validating

the analysis of the previous sections. We assume that I = 100
GUs are uniformly distributed in an area of 100m × 100m,

centered at (0,0), while the GS is located at a position of

(150m, 0). The UAV flies at the height of h(m) through K
waypoints that is specified by a circle with a radius of R(m).
Specifically, the position of the kth waypoint is (xk, yk, h),

where xk = R cos 2π(k−1)
K and yk = R sin 2π(k−1)

K , k =
1, 2, ...,K. The simulation results are evaluated by using

the actual lognormal-Nakagami-m fading channel coefficients,

while the analysis results are obtained based on the MG

distribution approximation described in Section IV. To gen-

erate correlated shadowing coefficients, we use the Cholesky

decomposition for decomposing the covariance matrix Λi.

In particular, we have Λi = ∆∆T , where ∆ is a lower

triangular matrix. Thus, the vector of shadowing components

Si associated with the covariance matrix of Λi is generated

as Si = Λin, where n is a vector of zero-mean, unit-variance

i.i.d. Gaussian random variables [10]. Unless otherwise spec-

ified, the other parameters are used in our simulations are:

h = 50(m), R = 30(m), β = 2, g0 = −30 (dB), η = 0.8,

α = 0.7, mφ = 2, Nφ = 8, ρ = 0.4, σou = σub = 1
(dB), Pb = 10 W, Po,i = 100 mW, Rc = 1 (bps/Hz) and

N0 = 10−15 W. The results are averaged over 103 channel

realizations.
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Fig. 3: Localization error and throughput versus the number of waypoints K.

A. Impact of the Number of Waypoints and the UAV Altitude

We first investigate the impact of the number of waypoints

as well as of the UAV altitude on both the localization error

and the throughput. In Figure 3, we plot the localization error

in terms of the root mean-square error (RMSE) together with

the throughput versus the number of waypoints K. It can be

readily seen that the error is reduced when K increases, which

indicates the significant impact of adding more waypoints on

the localization accuracy. This also agrees our analysis result

in Corollary 1. As expected, the localization error attained

in Scenario 1, where the UAV’s transmit power value Pu is

known, is smaller than that in Scenario 2 where the value Pu

is unknown by the GUs. From a mathematical viewpoint, the

performance degradation in Scenario 2 is mainly because the

equivalent noise variance σ2
ou is higher than σ2

ou in Scenario

1 (cf.(21)). Note that the advantage in Scenario 1 comes

at the cost of the inclusion of the value Pu in the UAV

broadcast signals. Additionally, the average running time of

the ML estimator on CPU AMD Athlon Silver 3050U 2.3 GHz

with the numbers of waypoints set to K = 4, 12, 20, 28, and

36 are 5.7(ms), 6.2(ms), 7.7(ms), 9.7(ms), and 12.3(ms),
respectively. Regarding the throughput, Figure 3 illustrates

that the achievable throughput is reduced, when K increases.

This is because the time period allocated for information

transmission will be reduced when K increases. Thus there

exists a compromise between the localization error at the GUs

and the throughput at the GS. Note that the analytical results

match well with the simulation, which confirms the tightness

of the derived bound as well as the accuracy of the expressions

derived in Section IV.

Figure 4 shows both the localization error and throughput

versus the UAV altitude. It can be seen that the UAV’s

altitude has a significant influence on the localization error.

Specifically, the localization error increases upon increasing

the altitude h. When h becomes large, the distance between

the UAV and the GUs is very large. Therefore, the localization

error becomes larger (cf. (21)). With respect to the system

throughput, the result shows that its value decreases when h
increases. This is due to the fact that the longer transmission

distance results in reduced capacities and increased OP.
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Given a specific number of waypoints K and UAV altitude

h, the localization performance also depends on the positions

of the waypoints themselves. To demonstrate this, we plot

in Fig. 5 the localization errors for two different trajectories,

namely the circular trajectory as mentioned earlier and a cell-
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Fig. 7: Localization error and throughput versus the shadowing standard
deviation (K = 16).

based trajectory, as illustrated in Fig. 6. For the cell-based

trajectory, the whole area is divided into equal cells, and the

waypoints are at the centre of the cells. It can be seen from Fig.

5 that the UAV associated with the cell-based trajectory could

achieve a higher localization accuracy than its counterpart.

Note that this comparison does not take into considerations the

length of the trajectory, which is constrained by many factors,

including the time required to accomplish the localization task,

the energy budget of the UAV, or geographical conditions.

Additionally, the optimality of UAV trajectory might be af-

fected by the distribution of the GUs. Having said that the

optimal trajectory design is beyond the scope of this treatise,

the readers are referred to [28], [30]-[32], and [42] for design

approaches.

B. Impact of Fading Parameters

We next evaluate the impact of the fading environment,

including the shadowing variances, the spatial correlation of

shadowing and the small-scale Nakagami-m fading parame-

ter. In particular, Figure 7 shows the localization error and

throughput versus the standard deviation of the lognormal

shadowing. It can be seen that the localization error increases

upon increasing the shadowing. As for the system throughput,

it is interesting to note that when σ is larger, the throughput

achieved in the delay-limited mode becomes lower, whereas

in the delay-tolerant mode it is higher. This behavior of the

ergodic capacity (and thus the throughput) under composite

fading channels was reported in the literature [43].

In Figure 8a, we plot the localization error versus the

shadowing correlation coefficient ρ, which shows that the error

is reduced when ρ increases. The impact of the shadowing

correlation is similar that in [10], where four anchor nodes

were deployed. Additionally, Figure 8b demonstrates that the

system throughput is enhanced when m increases, representing

better small-scale fading conditions.

C. Impact of Energy-Harvesting Time on Throughput

Finally, we examine the optimal energy-harvesting time in

the system. Figure 9a shows the achievable throughput versus
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the energy-harvesting time fraction α. Firstly, it can be seen

that the throughput first increases then decreases when α
increases for both the delay-limited and delay-tolerant modes.

This behavior is characterized by the trade-offs between the

time period used for harvesting energy and the OP (for delay-

limited) or ergodic capacity (for delay-tolerant). This trade-

off is also observed in other energy-harvesting based relaying

systems [17], [18]. Secondly, there exists an optimal energy-

harvesting time fraction attaining the maximal throughput. The

optimal value αopt versus the value Pb is shown in Figure 9b.

It can be seen that αopt is increased, when Pb increases. This

behavior can be evaluated from the analytical result of (41).

Figure 9b also shows that the maximal throughput is improved,

when the GS’s transmit power is increased.

VI. CONCLUSIONS

We have harnessed energy-harvesting aided UAVs for terres-

trial localization systems subjected to lognormal-Nakagami-m
fading channels. The performance of RSS-based localization

at the GUs in spatially correlated shadowing environments

has been examined via the CRLB derived. The system has

been analyzed in terms of its OP, egordic capacity and

achievable throughput. The results unveil the significant impact

of the number of waypoints and the UAV altitude, of the

spatial correlation level and fading parameters, as well as

of the energy-harvesting time fraction on both localization

and communications. These results facilitate an exploration

of different trade-offs and provide useful insights into the

system design. Our future research would include investigating

optimal UAV trajectory designs using a machine learning

approach, taking into account the practical requirements of the

UAV’s propulsion mechanisms, and combining the RSS-based

method with other localization methods, such as TOA and

AOA, for attaining a further improved system performance.

APPENDIX A

CALCULATION OF THE ELEMENTS OF FISHER

INFORMATION MATRIX (FIM)

The entries of the FIM defined in (19) is calculated as [38]

Fuv(Li)=
∂ΘT

i

∂u
Λ−1

i

∂Θi

∂v
+
1

2
tr

{

Λ−1
i

∂Λi

∂u
Λ−1

i

∂Λi

∂v

}

,(44)

where u, v ∈ {xi, yi}, tr{.} denotes the trace of a matrix, Θi

is the mean vector and

∂ΘT
i

∂u
=

[

∂[Θi]1
∂u

,
∂[Θi]2
∂u

, ...,
∂[Θi]K
∂u

]

, (45)

In our system model, Λi is independent of Li. Thus, (44) can

be simplified to

Fuv(Li) =
∂ΘT

i

∂u
Λ−1

i

∂Θi

∂v
. (46)

From (45), (46), and (12), we have

Fuv(Li) =
1

[1 + (K − 2)ρ− (K − 1)ρ2]σ2
ou

×

K
∑

k=1



[(K−2)ρ+1]
∂[Θi]k
∂u

∂[Θi]k
∂v

−ρ
K
∑

n=1,n6=k

∂[Θi]k
∂u

∂[Θi]n
∂v



.

(47)

Note that
∂[Θi]k
∂xi

= − 10β(xi−xk)
d2
i,n ln 10

and
∂[Θi]k
∂yi

= − 10β(yi−yk)
d2
i,n ln 10

.

By substituting these results into (47), we have

Fxixi
(Li) =

1

1+(K−2)ρ−[(K−1)ρ2]σ2
ou

×
(

10β

ln 10

)2

×

K
∑

k=1



[(K−2)ρ+1]
(xi−xk)

2

d4i,k
−ρ

K
∑

n=1,n6=k

(xi−xk)(xi−xn)

d2i,kd
2
i,n



, (48)
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Fyiyi
(Li) =

1

1+(K−2)ρ−[(K−1)ρ2]σ2
ou

×
(

10β

ln 10

)2

×

K
∑

k=1



[(K−2)ρ+1]
(yi−yk)

2

d4i,k
−ρ

K
∑

n=1,n6=k

(yi−yk)(yi−yn)

d2i,kd
2
i,n



, (49)

Fxiyi
(Li)=Fyixi

(Li) =

1

1+(K−2)ρ−[(K−1)ρ2]σ2
ou

×
(

10β

ln 10

)2

×

K
∑

k=1



[(K−2)ρ+1]
(xi−xk)(yi−yk)

d4i,k
−ρ

K
∑

n=1,n6=k

(xi−xk)(yi−yn)

d2i,kd
2
i,n



.

(50)

Note that
K
∑

k=1

K
∑

n=1,n6=k

(xi−xk)(yi−yn)
d2
i,kd

2
i,n

=
K
∑

k=1

K
∑

n=1,n6=k

(yi−yk)(xi−xn)
d2
i,kd

2
i,n

,

thus we have Fxiyi
(Li)=Fyixi

(Li) . Finally, (21) is obtained

by substituting the above results into (20).

APPENDIX B

PROOF OF COROLLARY 1

When ρ = 0, the CRLB in (21) is simplified to CRBi =
σou ln 10

10β

√

g(K), where

g(K),

∑K
k=1(X

2
i,k + Y 2

i,k)
∑K

k1=1

∑K
k2=1(X

2
i,k1
Y 2
i,k2

−Xi,k1
Xi,k2

Yi,k1
Yi,k2

)
.(51)

To show that CRBi is a decreasing function, we prove that

g(K) decreases, when K increases. In other words, we will

show that g(K)− g(K + 1) ≥ 0. From (51), we can express

g(K)− g(K + 1) =
U(K)

V(K)
, (52)

where

U(K) ,
(

K
∑

k=1

(X2
k + Y 2

k )

)(

K+1
∑

k1=1

K+1
∑

k2=1

(X2
k1
Y 2
k2

−Xk1
Xk2

Yk1
Yk2

)

)

−
(

K+1
∑

k=1

(X2
k+Y

2
k )

)(

K
∑

k1=1

K
∑

k2=1

(X2
k1
Y 2
k2
−Xk1

Xk2
Yk1
Yk2

)

)

, (53)

and

V(K) ,

(

K
∑

k1=1

K
∑

k2=1

(X2
k1
Y 2
k2

−Xk1
Xk2

Yk1
Yk2

)

)

×
(

K+1
∑

k1=1

K+1
∑

k2=1

(X2
k1
Y 2
k2

−Xk1
Xk2

Yk1
Yk2

)

)

. (54)

In what follows, we will prove that both the denominator and

numerator of (52) are non-negative. Let us first consider the

denominator. To show that V(K) ≥ 0, we have to show that

W(K),

K
∑

k1=1

K
∑

k2=1

(X2
k1
Y 2
k2
−Xk1

Xk2
Yk1
Yk2

)≥0,∀K≥1.(55)

We use the mathematical induction proof. To start with, when

K = 1, (55) is reduced to

W(1) = X2
1Y

2
1 −X1X1Y1Y1 = 0. (56)

When K = 2, (55) is reduced to

W(2) =
2
∑

k1=1

2
∑

k2=1

(X2
k1
Y 2
k2

−Xk1
Xk2

Yk1
Yk2

)

= (X1Y2 −X2Y1)
2 ≥ 0. (57)

Now, assuming that (55) holds for K, i.e., W(K) ≥ 0, we

will show that W(K + 1) ≥ 0. Indeed, we can write that

W(K + 1) =
K+1
∑

k1=1

K+1
∑

k2=1

(X2
k1
Y 2
k2

−Xk1
Xk2

Yk1
Yk2

)

= W(K) +X2
K+1

K
∑

k2=1

Y 2
k2

−XK+1YK+1

K
∑

k2=1

Xk2
Yk2

+

Y 2
K+1

K
∑

k1=1

X2
k1

−XK+1YK+1

K
∑

k1=1

Xk1
Yk1

+

X2
K+1Y

2
K+1 −XK+1YK+1XK+1YK+1

= W(K) +

K
∑

k=1

(XK+1Yk −XkYK+1)
2. (58)

It is plausible that W(K + 1) ≥ 0 given that W(K) ≥ 0.

Therefore, we have V(K) ≥ 0, ∀K ≥ 1.

Next, we show that the numerator U(K)≥0, ∀K≥1. By us-

ing the result in (58) and noting that
∑K

k1=1

∑K
k2=1(X

2
k1
Y 2
k2
−

Xk1
Xk2

Yk1
Yk2

)=
∑K

k=1X
2
k

∑K
k=1Y

2
k −

(

∑K
k=1XkYk

)2

, we

can rewrite (53) as

U(K) =

(

K
∑

k=1

(X2
k + Y 2

k )

)

×
(

K
∑

k=1

(XK+1Yk −XkYK+1)
2

)

−
(

X2
K+1 + Y 2

K+1

)

×





K
∑

k=1

X2
k

K
∑

k=1

Y 2
k −

(

K
∑

k=1

XkYk

)2




= X2
K+1

[(

K
∑

k=1

X2
k +

K
∑

k=1

Y 2
k

)

K
∑

k=1

Y 2
k −

K
∑

k=1

X2
k

K
∑

k=1

Y 2
k +

(

K
∑

k=1

XkYk

)2


+ Y 2
K+1

[(

K
∑

k=1

X2
k +

K
∑

k=1

Y 2
k

)

K
∑

k=1

X2
k−

K
∑

k=1

X2
k

K
∑

k=1

Y 2
k +

(

K
∑

k=1

XkYk

)2


−

2XK+1YK+1

(

K
∑

k=1

X2
k +

K
∑

k=1

Y 2
k

)

K
∑

k=1

XkYk. (59)

After some further manipulations, we obtain

U(K) =

(

XK+1

K
∑

k=1

Y 2
k − YK+1

K
∑

k=1

XkYk

)2

+

(

YK+1

K
∑

k=1

X2
k −XK+1

K
∑

k=1

XkYk

)2

≥ 0. (60)

The proof is thus completed.
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APPENDIX C

CALCULATION OF CORRELATION COEFFICIENTS

In Scenario 2, the shadowing associated with the location

estimation of the ith GU is characterized by S
k[dB]

uo,i =

S
[dB]
bu + S

k[dB]
uo,i , k = 1, 2, ...,K, where S

[dB]
bu ∈ CN (0, σ2

ub)

and S
k[dB]
uo,i ∈ CN (0, σ2

ou). Thus, the covariance matrix of the

RSS measurements at the ith GU is given by

cov
(

S
[dB]

uo,i

)

= cov
(

S
[dB]
bu + S

[dB]
uo,i

)

, (61)

where S
[dB]

uo,i , [S
1[dB]

uo,i , S
2[dB]

uo,i , ..., S
K[dB]

uo,i ],

S
[dB]
bu , [S

[dB]
bu , S

[dB]
bu , ..., S

[dB]
bu ] and S

[dB]
uo,i ,

[S
1[dB]
uo,i , S

2[dB]
uo,i , ..., S

K[dB]
uo,i ]. The (m,n) entry of this

covariance matrix can be formulated as [44]

cov
(

S
m[dB]

uo,i , S
n[dB]

uo,i

)

= cov
(

S
[dB]
bu + S

m[dB]
uo,i , S

[dB]
bu + S

n[dB]
uo,i

)

= cov
(

S
[dB]
bu , S

n[dB]
bu

)

+ cov
(

S
[dB]
bu , S

n[dB]
uo,i

)

+cov
(

S
m[dB]
uo,i , S

[dB]
bu

)

+ cov
(

S
m[dB]
uo,i , S

n[dB]
uo,i

)

. (62)

Since the shadowing variables S
[dB]
bu and S

n[dB]
uo,i are inde-

pendent, we have cov
(

S
[dB]
bu , S

n[dB]
uo,i

)

= 0, ∀n. Recall that

cov
(

S
m[dB]
uo,i , S

n[dB]
uo,i

)

= σ2
ouρm,n. Thus, (62) is simplified to

cov
(

S
m[dB]

uo,i , S
n[dB]

uo,i

)

= cov
(

S
[dB]
bu , S

n[dB]
bu

)

+ σ2
ouρm,n

= σ2
ub + σ2

ouρm,n. (63)

Finally, the correlation coefficient associated with the (m,n)
entry of the covariance matrix is obtained as [44]

ρm,n =
cov

(

S
m[dB]

uo,i , S
n[dB]

uo,i

)

√

var
(

S
m[dB]

uo,i

)

√

var
(

S
n[dB]

uo,i

)

=
σ2
ub + σ2

ouρm,n

σ2
ou

,

(64)

where σ2
ou , σ2

ub + σ2
ou. This completes the proof.

APPENDIX D

DERIVATION OF OUTAGE PROBABILITY

1) Exact expression of outage probability: The first term

in (30), which is the outage probability at the UAV, can be

calculated as (cf. (6))

Pr(γou < γth) = Pr

(

PoG
1
ouS

1
ouH

1
ou

N0
< γth

)

= Pr

(

S1
ouH

1
ou <

γthN0

PoG1
ou

)

= FM1
ou

(

γthN0

PoG1
ou

)

, (65)

where M1
ou , S1

ouH
1
ou and FM1

ou
(x) is the CDF of M1

ou.

We note that the composite fading M1
ou of the GU-UAV

link follows the lognormal-Nakagami-m distribution. Thus, its

CDF can be expressed by using the mixture gamma approach,

as shown in Section IV.A. Specifically, (65) can be expressed

as (cf. (29))

Pr(γou<γth)=

Nou
∑

n=1

aou,nc
−bou,n
ou,n γ(bou,n,

γthN0

PoG1
ou

cou,n), (66)

where the parameters Nou, aou,n, bou,n, and cou,n are defined

as in (28). In this work, we consider integer values of the

Nakagami fading paramter m. Thus, bou,n is a positive integer

number (cf. (28)). By using the result in [33, Eq. (8.352.1)],

we can rewrite (66) as

Pr(γou < γth) =

Nou
∑

n=1

aou,nc
−bou,n
ou,n Γ(bou,n)×



1−e−
cou,nγth

γou

bou,n−1
∑

m=0

(cou,nγth/γou)
m

m!



, (67)

where γou ,
PoG

1
ou

N0
.

The second term in (30), which accounts for the outage

probability at the GS given that no outage occurs at the UAV,

can be formulated as

Pr(γub<γth, γou≥γth) = Pr(γub<γth)Pr(γou≥γth)
= Pr(γub<γth) [1−Pr(γou<γth)] . (68)

Note that the above result is obtained, since γub and γou are

independent. The probability Pr(γub < γth) can be expressed

as (cf. (7))

Pr(γub < γth)

= Pr

(

(K + 2)(1− α)ηPbGbuGubSbuSubHub

(K + 1)αIN0
< γth

)

= Pr

(

SbuSubHub <
(K + 1)αIN0γth

(K + 2)(1− α)ηPbGbuGub

)

= Pr (Sbu ×Mub < γth/γub) , (69)

where Mub , SubHub and γub ,
(K+2)(1−α)ηPbGbuGub

(K+1)αIN0
.

Recall that Sbu and Mub are the lognormal and Nakagami-

lognormal random variables, respectively. By using the ap-

proximation results in Section IV.A, we have

Pr(γub < γth) = Pr

(

Mub <
γth

γubSbu

)

=

∫ +∞

0

FMub

(

γth
γubx

)

fSbu
(x)dx

=
1

θϕub

ub Γ(ϕub)

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

∫ +∞

0

xϕub−1e−x/θub

×



1− e
− cub,nγth

γubx

bub,n−1
∑

m=0

1

m!

(

cub,nγth
γubx

)m


 dx. (70)

The integral in (70) is computed by using the integral results

of
∫ +∞
0

tν−1e−λtdt = Γ(ν)/λν [33, Eq. (3.381.4)] and
∫ +∞
0

tν−1e−β/t−λtdt = 2(β/λ)ν/2Kν(2
√
βλ), where Kν(.)

is the ν-th order modified Bessel function of the second kind

[33, Eq. (3.478.4)]. After some manipulations, we have

Pr(γub<γth)=

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)



1−
bub,n−1
∑

m=0

2

m!Γ(ϕub)

×
(

cub,nγth
θubγub

)(ϕub+m)/2

Kϕub−m

(

2

√

cub,nγth
θubγub

)

)

. (71)

By substituting the results in (67), (68) and (71) into (30), we

obtain the result in (31).
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2) High SNR approximation: In the high SNR regime

(i.e., γou → +∞, γub → +∞), by using the approxi-

mation of the lower incomplete gamma function, we have

γ(bou,n, cou,nγth/γou) ≈ (cou,nγth/γou)
bou,n/bou,n [33, Eq.

(8.354.1)]. After some manipulations, we arrive at (cf. (66))

Pr(γou < γth) ≈
Nou
∑

n=1

aou,n
bou,n

(

γth
γou

)bou,n

. (72)

Additionally, we can approximate the function

Kϕub−m

(

2
√

cub,nγth

θubγub

)

when γub → +∞. In particular,

we have [45]

Pr(γub<γth)≈
Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)



1−
bub,n−1
∑

m=0

Γ(ϕub−m)

m!Γ(ϕub)

×
(

cub,nγth
θubγub

)m(

1− cub,nγth
(ϕub −m− 1)θubγub

))

. (73)

Substituting the results in (68), (72) and (73) into (30), we

arrive at the result in (32).

APPENDIX E

DERIVATION OF ERGODIC CAPACITIES

1) Exact expression of ergodic capacities: We first calcu-

late the ergodic capacity Cou. From (35), we arrive at

Cou =

∫ +∞

0

log2(1 + x)fγou
(x)dx, (74)

where fγou
(x) is the PDF of the SNR γou at the UAV

(cf. (6)). Recall that the composite fading S1
ouH

1
ou follows

the lognormal-Nakagami-m distribution. Thus, by using the

mixture gamma approximation in Section IV.A, we have

fγou
(x) =

Nou
∑

n=1

aou,n

γ
bou,n
ou

xbou,n−1e−
cou,nx

γou . (75)

Upon substituting (75) into (74), we have

Cou=

Nou
∑

n=1

aou,n

ln 2γ
bou,n
ou

∫ +∞

0

xbou,n−1e−
cou,nx

γou ln(1+x)dx.(76)

The integral in (76) is solved by using the results in [46, Eq.

(32), Eq. (78)]. After some manipulations, we obtain (37).

Regarding the capacity Cub, from (36) we have

Cub =

∫ +∞

0

log2(1 + x)fγub
(x)dx, (77)

where fγub
(x) is the PDF of the SNR γub at the GS (cf. (7)),

which is expressed as

fγub
(x) =

∂Fγub
(x)

∂x
=

∂

∂x
Pr(γub < x), (78)

where Pr(γub < x) is given in (71). By taking the first-order

derivative in (78) and using the result of ∂(zυKυ(z))/∂z =
−zυKυ−1(z) [33, Eq. (8.486.14)], we obtain

fγub
(x) =

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

bub,n−1
∑

m=0

2

m!Γ(ϕub)
×

(

cub,n
θubγub

)

ϕub+m

2
[

−mx
ϕub+m−2

2 Kϕub−m

(

2

√

cub,nx

θubγub

)

+

√

cub,n
θubγub

x
ϕub+m−1

2 Kϕub−m−1

(

2

√

cub,nx

θubγub

)]

, (79)

where Kν(.) is the ν-th order modified Bessel function of the

second kind. Substituting (79) into (77), we have

Cub =

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

bub,n−1
∑

m=0

2

m!Γ(ϕub) ln 2
×

(

cub,n
θubγub

)

ϕub+m

2
[

−mI

(

ϕub+m−2

2
, ϕub−m, 2

√

cub,n
θubγub

)

+

√

cub,n
θubγub

I

(

ϕub+m−1

2
, ϕub−m−1, 2

√

cub,n
θubγub

)]

, (80)

where I(p, q, u) ,
∫ +∞
0

xpKq(u
√
x) ln(1 + x)dx. The in-

tegral I is computed by first expressing the logarithmic

function in terms of the Meijer-G function, i.e., log(1 +

z) = G1,2
2,2

(

z
1, 1
1, 0

)

[47, Chapter 2], and then using the

equations in [33, Eq. (7.821.3)] and [33, Eq. (9.31.5)]. After

some manipulations, we obtain the expression of Cub in (38).
2) High SNR approximation: In the high SNR regime, we

can apply the approximation of log(1 + x) ≈ log(x) when

x→ +∞. In particular, (76) can be rewritten as

Cou≈
Nou
∑

n=1

aou,n

ln 2γ
bou,n
ou

∫ +∞

0

xbou,n−1e−
cou,nx

γou ln(x)dx. (81)

With the help of the integral result of
∫ +∞
0

tn−1 ln(t)e−λtdt =
1
λnΓ(n)[ψ(n) − ln(λ)] [33, Eq. (4.352.1)], the closed-form

expression of Cou is obtained in (39). With respect to the

approximation of Cub, we have

Cub ≈
Nub
∑

n=1

aub,nc
−bub,n

ub,n (bub,n − 1)!

bub,n−1
∑

m=0

2

m!Γ(ϕub) ln 2
×

(

cub,n
θubγub

)

ϕub+m

2
[

−mU

(

ϕub+m−2

2
, ϕub−m, 2

√

cub,n
θubγub

)

+

√

cub,n
θubγub

U

(

ϕub+m−1

2
, ϕub−m−1, 2

√

cub,n
θubγub

)]

, (82)

where U(p, q, u) ,
∫ +∞
0

xpKq(u
√
x) ln(x)dx. To calculate

this integral we first change variable y =
√
x and then use the

result in [48, Eq. (2.16.20.1)]. By substituting the obtained

expression of U into (82) and using the results in [33, Eq.

(8.365.4)] and [48, Eq. (2.16.20.1)], we have

Cub,(m=0) ≈
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

[

ψ(ϕub+1)+ψ(1)−ln

(

cub,n
θubγub

)]

,

(83)
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and

Cub,(m>0)≈
1

ln 2

Nub
∑

n=1

aub,nc
−bub,n

ub,n Γ(bub,n)

bub,n−1
∑

m=1

1

m
. (84)

Finally, the capacity Cub is obtained as Cub = Cub,(m=0) +
Cub,(m>0), which is given in (40). This completes the proof.

APPENDIX F

DERIVATION OF OPTIMAL ENERGY-HARVESTING TIME

For delay-tolerant transmission, the optimal value αopt is

obtained by solving the following optimization problem

αopt = arg max
0<α<1

α

K + 2
min{Cou, Cub}, (85)

where the capacities Cou and Cub are given in Corollary 3.

It is worth noting that Cou is independent of α. Meanwhile,

Cub is a function of α. Specifically, we can express

Cub(α) = Φ +Υ ln

(

1− α

α

)

, (86)

where Φ and Υ are defined as in (41). From (86), it is

readily seen that Cou ≤ Cub, when α ≤ α where α ,

1/(1 + e(Cou−Φ)/Υ), and otherwise. Thus, in case of α ≤ α,

(85) can be rewritten as

αopt = arg max
0<α≤α

α

K + 2
Cou. (87)

Since Cou is independent of α, the objective function in (87)

is an increasing function w.r.t. α. As a result, the maximal

throughput is achieved at α = α for α ≤ α. This implies that

the optimal value αopt for the problem (85) always occurs

in the range α ≤ α < 1. Note that when α ≥ α, we have

Cou ≥ Cub. Therefore, the problem in (85) is equivalent to

αopt = arg max
α≤α<1

α

K + 2

[

Φ+Υ ln

(

1− α

α

)]

. (88)

This problem is solved by using similar calculation steps as

in [49]. The result in (41) is thus obtained.
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