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Tensor Canonical Correlation Analysis Networks
for Multi-view Remote Sensing Scene

Recognition
Xinghao Yang, Weifeng Liu, Senior Member, IEEE, Wei Liu, Member, IEEE,

Abstract—Convolutional neural network (CNN) has been proven an effective way to extract high-level features from remote sensing
(RS) images automatically. Many variants of the CNN model have been proposed, including principal component analysis network
(PCANet), canonical correlation analysis network (CCANet), multiple scale CCANet (MS-CCANet) and multiview CCANet (MCCANet).
The PCANet is specialized for single view feature abstraction, while in many real-world practices, the RS data are frequently observed
from many more views. Although CCANet, MS-CCANet and MCCANet can be applied to two or more view data, they consider only the
pair-wise correlation by calculating a series of two-order covariance matrices. However, the high-order consistence, which can only be
explored by collectively and simultaneously examining all views, remains undiscovered. In this paper, we propose the tensor canonical
correlation analysis network (TCCANet) to tackle this problem. Particularly, TCCANet learns filter banks by simultaneously maximizing
arbitrary number of views with high-order-correlation and solves the optimization problem by decomposing a covariance tensor. After
the convolutional stage, we utilize binarization and block-wise histogram strategies to generate the final feature. Furthermore, we also
develop a Multiple Scale version of TCCANet, i.e., MS-TCCANet, to extract enriched representation of the RS data by incorporating all
previous convolutional layers. Numerical experiment results on RSSCN7 and SAT-6 datasets demonstrate the advantages of TCCANet
and MS-TCCANet for RS scene recognition.

Index Terms—Tensor canonical correlation analysis, convolutional neural network, multiview learning, remote sensing.
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1 INTRODUCTION

THE advance of satellite and sensor technology brings
a number of remote sensing (RS) images and provides

opportunities to better understanding the earth surface [1].
RS scene recognition is a main technique in many earth ob-
servation tasks, such as, weather reporting [2], [3], military
defense [4], [5], traffic monitoring [6], [7] and forest protec-
tion [1], [8], and thus attracted widespread attention in the
geoscience and remote sensing community. In real-world
application, the same region is usually observed via multi-
ple views for better understanding, such as multi-scales [9],
multi-angles [10], multi-sensors [11], multi-features [12] and
even different seasons [13], as shown in Fig 1. These het-
erogeneous images provide richer information than single
view input, but they also increase the intra-class variability
and pose challenges to RS scene recognition technique. So a
natural question to ask is how to find out their underlying
consistence features without losing the complementary informa-
tion?

Currently, several multiview RS image classification al-
gorithms have been proposed. For example, Pacifici et al.
[14] demonstrated that including the acquisition angular
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Fig. 1. The multi-view RS data can be collected from different scale
(residential area), space angle (Sydney Opera House), sensor/camera
(Beijing), data feature (seaside), season (California’s Sierra Nevada)
and so on. Multi-view RS data exhibit great difference on appearance,
even though they depict the same region.

information as an additional dimensionality improves the
performance of high-resolution RS imagery analysis from
solely depending on the pixel digital numbers. Chen et
al. [15] proposed a deep brief network (DBN) with three
parts: the 1-D vector input layer, three hidden restricted
Boltzmann machine (RBM), and the logistic regression layer,
where the input layer stacks both spectral and spatial in-
formation. Luus et al. [16] found that the multiscale input
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strategy greatly improves the prediction accuracy of a single
CNN in land-use classification compared with the single-
scale view input. Similarly, the multiscale strategy is also
employed by He et al. [17] to enhance the spatial informa-
tion of hyperspectral image (HSI). Then the handcrafted
multiscale covariance maps are fed into a classical 2D-
CNN for final classification. Notably, the above methods
[14], [15], [16], [17] put multiview data into a single-view
feature extraction model with a simple combination (i.e.,
direct concatenation [14], [15], [16] or load them one by
one [17]) before data input, without fully exploring the
complementary information and the consensus information
hidden in the multiview data [18].

To discover the complementary information, Xu et al. [19]
proposed a two-branch CNN for multisource RS data classi-
fication, with one branch extracting the HSI feature and the
other branch processing the visible images (VIS). Merging
these two view features yields a higher accuracy than using
any single one of them. Recently, Li et al. [20] designed a
two-stage adaptive multiscale deep fusion residual network
network (AMDF-ResNet), where the first stage generates
multiscale hierarchy features via three residual blocks and
the second stage fuses network to select features via differ-
ent weights. Zhang et al. [21] presented the recursive view
elimination (RVE) to fuse social sensing data and remote
sensing data, aiming to identify risky traffic locations of
New York. The social sensing data as the auxiliary view
make up for the lack of information in remote sensing
images. In [19], [20], [21], the multiview data features are
extracted by respective channels of a multiview model so
that the complementary information are mostly contained.
However, they are powerless in finding the consensus fea-
ture, which is really important in reducing the within-class
distance (as shown in Fig 1).

In order to excavate the consistency information of multi-
view data, Wang et al. [22] presented the Multiview-based
Parameter Free framework (MPF) that explores the coher-
ent property of multi-view subgraphs with a tightness-
based merging strategy. Yang et al. [23] proposed a two-
branch canonical correlation analysis networks (CCANet),
with each branch containing eight channels. In CCANet,
the canonical correlation analysis (CCA) is employed to
calculate the maximally correlated filter kernels for two-
view input, so their consistency features are naturally pre-
served during convolution process. After convolution, the
output layer merges the two-view features together to avoid
the loss of complementary properties. Based on CCANet,
several of its advanced counterparts have been proposed,
e.g., the multiple scale CCANet (MS-CCANet) [24] which
assembles every convolutional layer’s output into the final
feature instead of taking only the last convolutional layer,
and the multiview CCANet (MCCANet) [12] which extends
the CCANet model from two-branch to multi-branch to
include arbitrary (more than two) view data and finds the
optimal filters by maximizing the sum of all possible pair-
wise correlations. However, the methods [12], [23], [24] take
only the pair-wise statistical correlations into consideration
by analyzing a series of covariance matrices, so they can
only be viewed as two-order feature representation tools.

According to the consensus principle [18], finding the
maximal agreement from all distinct views simultaneously
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Fig. 2. The intuitive difference between low-order-correlation (a)/(b) and
high-order-correlation (c). As shown in subfigure (a) and (b), low-order-
correlation is optimized by computing covariance matrices, which con-
tain only the two view correlation information. While (c) extends matrix
to tensor so that encodes much more correlation information by directly
maximizing all views’ consistence.

is an advance way to promote the performance of multi-
view embedding. So when we have V (≥ 3) view data,
directly finding the high-order consistency property among
all views, instead of the roundabout two-view combination,
is more desired. Figure 2 is an intuitive illustration for the
motivation of pursuing high-order-correlation. Without loss
of generality, the number of views is set to V = 3 for any
V > 2 scenarios. By upgrading the covariance matrices to
covariance tensor, a straightforward advantage is that more
correlation information can be discovered.

To explore the multi-view complementary information
and the consensus information, and simultaneously explore
the high-order statistical relationships, in this paper we
propose a novel deep convolutional network called tensor
canonical correlation analysis network (TCCANet). Partic-
ularly, TCCANet is composed of cascaded convolutional
layers and the downstream output layer. Each convolutional
layer contains multiple branches with each branch process-
ing a separate view input, and the multi-view filter kernels
are learned by decomposing a high-order covariance tensor
[25]. In the output layer, the binarization and blockwise his-
togram procedures are utilized to generate the final feature.
Figure 3 elucidates the framework of TCCANet with two
convolutional layers.

The main contribution of this paper lies in the following
four folds:

• We propose TCCANet to learn RS features in a multi-
view strategy. Our TCCANet is capable of handing
the data that stem from V (≥ 3) views, making it
more adaptive to the practical needs. As more view
of data carry more complementary information.

• We explore the multiview consistency features by
simultaneously maximizing all views’ canonical cor-
relation via analyzing a covariance tensor, which
is theoretically incorporated more information than
the previous low-order methods, i.e., CCANet, MS-
CCANet and MCCANet.

• We also design a multiple scale version of TCCANet
(MS-TCCANet), which incorporates all previous-
layer’s features and includes more multi-scale infor-
mation in the final feature set.

• We perform extensive experiments for multi-view RS
image scene recognition to evaluate the proposed
TCCANet and MS-TCCANet on RSSCN7 [26] and
SAT-6 [27] database.
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Fig. 3. A general framework of TCCANet. Different color represents view-specific feature. With the convolution going deep, some consistency
features are gradually shared. Different branch extracts separate view features, and their complementary information are fused in the output layer.
This framework exhibits a two convolutional stages depth network. A deeper structure can be easily constructed by just repeat the former ones.

The rest of this paper is organized as follows: section 2
reviews related work; section 3 formally defines the problem
and presents our proposed methods, i.e., TCCANet and MS-
TCCANet; experimental results are illustrated in section 4;
we conclude this paper in section 5.

2 RELATED WORK

In this section, we first review several traditional single-
view RS feature learning methods in 2.1 and then briefly
formulize several highly related work including both single-
view PCANet and multiview CCANet, MS-CCANet and
MCCANet in 2.2.

2.1 Single View RS Feature Learning Methods
As RS scene recognition is generally carried out in the fea-
ture space, how to construct effective feature representation
is a fundamental problem in designing high-performance
scene recognition models [28].

The early methods for RS scene classification are largely
based on handcrafted features, such as, color histograms
[29], local binary patterns (LBPs) [30], scale invariant fea-
ture transform (SIFT) [31], histogram of oriented gradients
(HOG) [32] and bag of visual words (BoVW) [33]. These fea-
tures are extracted by manually predefined algorithms with
prior domain expertise knowledge. For example, the most
popular BoVW [33] employs a pre-computed codebook of
visual word (discriminative visual patches) to eliminate the
matching time-delay in test images, and has achieved great
success for scene classification [34], [35], [36]. However,
these handcrafted methods incline to select features for a
specific research domain or data type and would lead to
poor results on other unknown practical data [37].

In comparison with hand-engineered features that need
the involvement of human originality, unsupervised feature
learning methods, e.g., principle component analysis (PCA)
[38], [39], k-means clustering [40] and sparse coding [41],
and deep learning models, e.g., stacked autoencoder (SAE)

[42], [43] and convolutional neural networks (CNN) [26],
[44], automatically learn features from data itself using
a general-purpose learning procedure [45]. For example,
Rodarmel and Shan [39] adopted PCA as a data prepro-
cessing technique to select the best spectrum bands for
hyperspectral images that are most relevant to classification
performance. Nogueira et al. [46] exploited the power of
six popular CNNs (PatreoNet [47], AlexNet [48], CaffeNet
[49], GoogLeNet [50], VGGNet [51] and OverFeat [52]) in
RS scene classification under different training strategies,
i.e., full training, fine tuning and utilizing CNNs as feature
extractors. The results show that the fine-tuned CNNs fea-
ture with a linear SVM achieves the best performance. Lu
et al. [53] designed the feature aggregation CNN (FACNN)
which improves the scene classification accuracy by aggre-
gating CNN’s intermediate features in the supervised man-
ner. Wang et al. [54] incorporated the attention mechanism
and proposed the attention recurrent convolutional network
(ARCNet). It promotes the classification performance by
focusing on critical spatial locations and neglecting those
trivial features. Chan et al. [44] embeded PCA into every
convolutional layer to learn multistage filter banks and
thus named their method as principle component analy-
sis network (PCANet). The PCANet greatly simplify the
traditional CNNs structure by removing the backpropa-
gation procedure. Surprisingly, the naive PCANet with a
nearest neighbor (NN) classifier beats both hand-engineered
features (e.g., Gabor [55] and LBP [56]) and deep models
(e.g., AlexNet [48] and ScatNet [57]) for various kinds of
classification applications.

2.2 Comparison of Highly Related Methods

Denote N training images by {In}Nn=1 and Iυn denotes the
υth view feature of In, with υ = 1, 2, · · · , V . Let Xυ denote
the sample matrix of the υth view, PCANet [44] consists
of stacked convolutional layers, and in each convolutional
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layer, the orthogonal filter banks are found by reshaping the
most significant L1 eigenvectors of XυXυT

Wl1 = vec2mat(ql1(XυXυT )), l1 = 1, 2, · · · , L1 (1)

where Wl1 is the l1
th filter of the first convolutional layer,

vec2mat(α) reshapes a vector α ∈ <k1k2 to a matrix with
size of k1 × k2. ql1(XυXυT ) denotes the l1

th primary
eigenvector of XυXυT . In the output layer, the final fea-
ture representation is generated within the binarization and
block-wise histogram methods.

CCANet [23] extends PCANet from single-view to two-
view scenarios by simultaneously finding a common latent
subspace for two group data. Particularly, it maximizes
the canonical correlation of two-view projected variables as
follows

arg max
α̃

ρ12 = corr(z1, z2) =
αT1 S12α2√

αT1 S11α1

√
αT2 S22α2

(2)

where z1, z2 and α1, α2 are the projected variables and
project directions for the two views, respectively. The co-
variance matrix Sij = XiXjT and desired canonical vector
α̃T = (αT1 , α

T
2 ). Then the two-view filter banks can be easily

obtained by reshaping the canonical vectors to matrices.
Finally, an output layer, followed by the latest convolutional
layer, is employed to form the final feature.

MS-CCANet [24] integrates the multi-scale feature from
every convolutional layer, instead of only the last one, to
fuse more discriminative information. Formally, if {fυn,1}2υ=1

and {fυn,2}2υ=1 denote the two-view output features of the
first and second layers, respectively. Then the final feature
of nth sample image can be formulated as

fn = [f1n,1; f1n,2; f2n,1; f2n,2] (3)

Thus, MS-CCANet builds a more fruitful feature by utilizing
both two-view’s complementary information and different
layer’s multi-scale feature. However, MS-CCANet is still a
two-view representation learning method.

Moreover, MCCANet [12] breaks the two-view limitation
and optimizes the multiview filter banks by simultaneously
maximizing the sum of all possible pair-wise correlations

arg max
α̃

V∑
i=1

V∑
j=1

ρij =
V∑
i=1

V∑
j=1

corr(zi, zj)

=
V∑
i=1

V∑
j=1

αTi Sijαj√
αTi Siiαi

√
αTj Sjjαj

(4)

here α̃T = (αT1 , α
T
2 , · · · , αTV ) is employed to form multi-

view filter kernels. The final representation is constructed
by cascading different view’s output into a long vector.

3 OUR METHOD

The TCCANet framework is composed of two modules, i.e.,
stacked convolutional layers and a subsequent output layer.
In each convolutional layer, the multi-view filter kernels are
optimized by decomposing a high-order tensor [25]. In the
output layer, image binarization and blockwise histogram
methods are employed to produce the final representation

of input samples. In this section, we first introduce neces-
sary notations and then give the first and second convo-
lutional layers and output layer of TCCANet, respectively.
Finally, we extend TCCANet to the multi-scale auxiliary
(MS-TCCANet).

3.1 Notations

Let T be a V -order tensor with dimension of D1 × D2 ×
· · · ×DV , then the Frobenius norm of T is defined as

‖T ‖2F =
D1∑
d1=1

D2∑
d2=1

· · ·
DV∑
dV =1

T (d1, d2, · · · , dV )2 (5)

Let u be a Dυ dimensional vector, the contracted υ-mode
tensor-vector product is thenA = T ×̄υu, whereA is a V −1
order tensor with dimensionD1×· · ·Dυ−1×Dυ+1 · · ·×DV .
Formally, A can be computed as

A(d1, · · · , dυ−1, dυ+1, · · · , dV )

=
Dυ∑
dυ=1

T (d1, d2, · · · , dV )u(dυ)
(6)

LetU be a Jυ×Dυ matrix, the υ-mode tensor-matrix product
is denoted as A = T ×υ U , where A is a D1 × · · ·Dυ−1 ×
Jυ ×Dυ+1 · · · ×DV tensor where each element

A(d1, · · · , dυ−1, jυ, dυ+1, · · · , dV )

=
Dυ∑
dυ=1

T (d1, d2, · · · , dV )U(jυ, dυ)
(7)

Accordingly, the product between tensor T and a series of
matrices {Uυ ∈ <Jυ×Dυ}Vυ=1 is a J1 × J2 × · · · × JV tensor,
which can be expressed as

A = T ×1 U1 ×2 U2 · · · ×V UV (8)

This sequence of tensor-matrices product in (8) can be
computed by a forward cyclic Kronecker products (⊗):

A(υ) = UυT(υ)(Uυ−1 · · · ⊗ U1 ⊗ UV ⊗ · · ·Uυ + 1) (9)

where T(υ) denotes the mode-υ unfolding matrix of T with
dimension of Dυ × (D1 · · ·Dυ−1Dυ+1 · · ·DV ). The mode-υ
“matrix unfolding” of T is achieved by mapping the υ-fiber
as rows and re-arranging all the other fibers as columns one
after another.

3.2 The First Convolutional Layer

Suppose we are given a database of N examples, i.e., S =
{In ∈ <w×h}Nn=1, and the V view features can be denoted as
Sυ = {Iυn ∈ <w×h}Nn=1, υ = 1, 2, · · · , V . We first construct a
sample matrix for each view by the following steps: (1) select
patches around every pixel of Iυn with size of k1 × k2, and
vectorize them as xυn,1, x

υ
n,2, · · · , xυn,wh ∈ <k1k2 ; (2) organize

these vectors into a matrix Xυ
n = [xυn,1, x

υ
n,2, · · · , xυn,wh] ∈

<k1k2×wh, and centered as X̄υ
n (i.e., has zero mean); and (3)

the sample matrix of the υth view can be denoted as Xυ =
[X̄υ

1 , X̄
υ
2 , · · · , X̄υ

N ] = [xυ1 ,x
υ
2 , · · · ,xυNwh] ∈ <k1k2×Nwh,

with xυi denotes the ith column of Xυ . Then the variance
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matrix for the υth view is Sυυ = XυXυT and covariance
tensor of all views, i.e., C12···V , could be calculated as

C12···V =
1

Nwh

Nwh∑
i=1

x1
i ◦ x2

i ◦ · · · ◦ xVi (10)

where ◦ is tensor (outer) product and C12···V is a V -order
tensor with each dimension, D1, D2, to DV being k1k2.

We learn multi-view filter banks from sample matrices
{Xυ}Vυ=1 by employing the tensor concept. In contrast to
CCANet and MCCANet, where only the pair-wise statistical
correlations are considered, TCCANet explores high-order-
correlation by directly maximizing the correlation between
all canonical variables zυ = XυTαυ, υ = 1, 2, · · · , V . Thus,
the optimization problem can be formulated as

arg max
α̃

ρ12···V = corr(z1, z2, · · · , zV ) (11)

s.t. zTυ zυ = 1, υ = 1, 2, · · · , V

where corr(z1, z2, · · · , zV ) = (z1 � z2 � · · · � zV )Te is the
high-order canonical correlation, the symbol � denotes the
element-wise product, and e ∈ <Nwh represents an all ones
column vector. We introduce the following theorem.

Theorem 1. The high order canonical correlation is given by

ρ12···V = (z1 � z2 � · · · � zV )Te

= C12···V ×̄1α
T
1 ×̄2α

T
2 · · · ×̄V αTV

(12)

The proof can be found in Appendix A. By simul-
taneously considering Theorem 1 and variance matrices
Sυυ = XυXυT , υ = 1, 2, · · · , V , the original model (11)
can be converted to the following problem

arg max
α̃

ρ12···V = C12···V ×̄1α
T
1 ×̄2α

T
2 · · · ×̄V αTV (13)

s.t. αTυ Sυυαυ = 1, υ = 1, 2, · · · , V

We then add a regularization item for each constraint, i.e.,
S̃υυ = Sυυ + εE, where ε is a non-negative parameter and
E is an identity matrix. Therefore, the constraints of model
(13) become αTυ S̃υυαυ = 1, υ = 1, 2, · · · , V . Let hυ = S̃

1
2
υυαυ

andK = C12···V ×1 S̃
− 1

2
11 ×2 S̃

− 1
2

22 · · ·×V S̃
− 1

2

V V . Then Appendix
B proves that the problem (13) is equivalent to (14).

arg max
h̃

ρ12···V = K×̄1h
T
1 ×̄2h

T
2 · · · ×̄V hTV (14)

s.t.hTυ hυ = 1, υ = 1, 2, · · · , V

Lathauwer et al. [58] proves that the problem (14) equals to
finding the best rank-1 approximation of K. Specifically, the
best rank-1 approximation problem minimizes the distance
between K and its rank-1 manifold approximation, i.e.,
K̂ def

= λh1 ◦ h2 ◦ · · · ◦ hV , as

arg min
h̃

‖K − K̂‖2F (15)

Solving approximation problem (15) by alternating least
squares (ALS) algorithm [59] yields the main solution of
TCCA. Inspired by CCA, the remaining solutions are ob-
tained by iteratively optimizing the same correlation as

Algorithm 1 The ALS algorithm
Input:

Tensor K;
The termination threshold fitchangetol = 10−4;
The maximal iterative times maxiters = 50.

Output: Optimized transformation: hυ, υ = 1, 2, 3.
1: Randomly initialize hυ(0) ∈ <k1k2×L, υ = 1, 2, 3;
2: Initialize fit = 0;
3: for i = 1 : maxiters do
4: fitold = fit;
5: h2(i) = fh2

(
h3(i− 1), h1(i− 1)

)
;

6: h3(i) = fh3

(
h1(i− 1), h2(i)

)
;

7: h1(i) = fh1

(
h2(i), h3(i)

)
;

8: P =
∑L
l=1 λl(i)h1,l(i) ◦ h2,l(i) ◦ h3,l(i);

9: fit = 1− ‖K−P‖F‖K‖F ;
10: fitchange = |fitold− fit|;
11: if fitchange < fitchangetol then
12: break
13: end if
14: end for
15: Output transformations: hυ, υ = 1, 2, 3.

presented in (14). This leads to the sum of best rank-1 opti-
mization, a.k.a., the best rank-L CANDECOMP/PARAFAC
decomposition [60] of the tensor K

K ≈
L∑
l=1

λlh1,l ◦ h2,l ◦ · · · ◦ hV,l (16)

Let hυ = (hυ,1, hυ,2, · · · , hυ,L) ∈ <k1k2×L be the optimal
solution for the υth view, where hυ,l represents the lth

column of hυ . Without loss of generality, we set V = 3 and
formulate the principle of ALS as follows

hT1 = (h2 � h3)†KT(1)
def
= fh1

(h2, h3)

hT2 = (h3 � h1)†KT(2)
def
= fh2(h3, h1)

hT3 = (h1 � h2)†KT(3)
def
= fh3(h1, h2)

(17)

where � is the Khatri-Rao product [59] and h† is the pseudo-
inverse of h. Then hυ is updated by the iterative ALS
algorithm, which is illustrated in Algorithm 1. Based on the
hυ , we compute the transformation directions of first layer
αυ = S̃

− 1
2

υυ hυ = [αυ,1, αυ,2, · · · , αυ,L1 ] ∈ <k1k2×L1 which
are ordered by the significance of λl.

The V -view filter kernels of the first layer, i.e.,
{Wυ,l1 , l1 = 1, 2, · · · , L1}Vυ=1 are constructed by just re-
shaping the transformation directions, i.e., {αυ,l1 , l1 =
1, 2, · · · , L1}Vυ=1, from vectors to matrices

Wυ,l1 = vec2mat(αυ,l1) ∈ <k1×k2 , l1 = 1, 2, · · · , L1 (18)

where the function vec2mat(α) maps a vector α ∈ <k1k2
to a matrix. The parameter L1 denotes the filter number of
first convolutional layer. For each input image Iυn , it yields
L1 output features when passing by the convolutional stage

Oυn,l1 = Iυn ∗Wυ,l1 , l1 = 1, 2, · · · , L1. (19)

where ∗ is the 2-dimensional discrete convolution operator.
It is worth mentioned that the edge of Iυn should be zero



6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Algorithm 2 The filter banks optimization algorithm
Input: V view sample matrices Xυ

Output: V view transformation directions αυ
1: Compute the covariance tensor C12···V =

∑
i x

1
i ◦ x2

i ◦
· · · ◦ xVi ;

2: Calculate variance matrices Sυυ = XυXυT ;
3: Add regularizer item S̃υυ = Sυυ + εE;
4: Compute K = C12···V ×1 S̃

− 1
2

11 ×2 S̃
− 1

2
22 · · · ×V S̃

− 1
2

V V ;
5: Find the best rank-L approximation of K by ALS Algo-

rithm 1, i.e., hυ = (hυ,1, hυ,2, · · · , hυ,L);

6: Output αυ = S̃
− 1

2
υυ hυ ;

padded before the convolutional stage, which is used to
ensure its size is the same as that of the input image. For
quick reference, we conclude the overall process of filter
optimization in Algorithm 2

3.3 The Second Convolutional Layer
The output feature images of first convolutional layer, i.e.,
{Oυn,l1}

L1

l1=1, n = 1, 2, · · · , N , are fed as the inputs of the
second layer. After patch selection, vectorizing and mean
removing as described previously, we construct the sam-
ple matrix of υth view as Y υ = [yυ1 ,y

υ
2 , · · · ,yυNL1wh

] ∈
<k1k2×NL1wh. Then the variance matrices for the second
layer are

Sυυ = Y υY υT , υ = 1, 2, · · · , V (20)

and the covariance tensor is

D12···V =
1

NL1wh

NL1wh∑
i=1

y1
i ◦ y2

i ◦ · · · ◦ yVi (21)

The multiview’s consistence filter banks are learned by the
optimization Algorithm 2 but with the new input Y υ . Let
the transformation directions be {βυ}Vυ=1 and the rotated
directions {hυ = S̃

1
2
υυβυ}Vυ=1 with S̃υυ = Sυυ+εE. Then we

discover the high-order-correlation by solving the following
problem:

arg max
h̃

ρ12···V = R×̄1h
T
1 ×̄2h

T
2 · · · ×̄V hTV (22)

s.t. hTυhυ = 1, υ = 1, 2, · · · , V

whereR = D12···V ×1S̃
− 1

2
11 ×2S̃

− 1
2

22 · · ·×V S̃
− 1

2

V V . This problem
is then extended to a sum of rank-1 problem to acquire a
series of directions

R ≈
L2∑
l=1

λlh1,l ◦ h2,l ◦ · · · ◦ hV,l (23)

Solving this problem by the ALS algorithm, we have
L2 directions for each view {βυ = S̃

− 1
2

υυ hυ =
[βυ,1, βυ,2, · · · , βυ,L2

] ∈ <k1k2×L2}Vυ=1. So the filter banks
of the second layer are given by

Wυ,l2 = vec2mat(βυ,l2) ∈ <k1×k2 , l2 = 1, 2, · · · , L2 (24)

where Wυ,l2 denotes the l2
th filter of the υth view. For each

input image Oυn,l1 , we obtain L2 outputs by convolution
with L2 filters

Oυ
n,l1l2 = {Oυn,l1 ∗Wυ,l2}

L2

l2=1. (25)

This completes the second convolutional layer. Clearly, for
each training image In, the first convolutional layer pro-
duces V × L1 feature images (i.e., {Oυn,l1}

L1

l1=1) and the
second convolutional layer yields V ×L1×L2 feature images
(i.e., {Oυ

n,l1l2
}L1,L2

l1=1,l2=1). The proposed TCCANet frame-
work can be extended to a deeper convolutional network
by just repeating the former procedure. For simplicity, we
only introduce the two-convolutional-layer model.

3.4 The Output Layer
The objective of the output layer is to form the final
feature representation fn for each training sample In. To
this end, it implements binarization and blockwise his-
togram as the nonlinear processing and feature pooling,
respectively. In the nonlinear processing stage, we bina-
rize the feature images of the last convolutional layer as
H
(
{Oυ

n,l1l2
}L1,L2

l1=1,l2=1

)
. The H(·) is a hashing function,

which maps a real-valued number τ as follows

H(τ) =

{
1, τ > 0

0, τ ≤ 0
(26)

Therefore, we have V × L1 × L2 binary feature images. For
each fixed l1, we sum the L2 binary images {Oυ

n,l1l2
}L2

l2=1 to
one decimal image by their bits weight

Dυ
n,l1 =

L2∑
l2=1

2l2−1H(Oυ
n,l1l2) (27)

where each Dυ
n,l1

denotes a decimal image in which every
pixel belongs to [0, 2L2 − 1].

In the feature pooling stage, we first partition every
decimal image Dυ

n,l1
into B blocks and the block size is

b1 × b2. Secondly, we statistic the histogram of decimal
pixels for each block and concatenate these histograms into
one vector as BlkHist(Dυ

n,l1
) ∈ <2L2B . By repeating this

encoding procedure, the histogram feature of Iυn can be
computed as

fυn = [BlkHist(Dυ
n,1); · · · ;BlkHist(Dυ

n,L1
)] ∈ <2L2L1B

(28)
Finally, the final feature representation for each training
sample In is defined as

fn = [f1n; f2n; · · · ; fVn ] ∈ <2L2V L1B (29)

The workflow of TCCANet is summarized in Algorithm
3.

3.5 Multiple Scale TCCANet (MS-TCCANet)
In the TCCANet framework, the output layer follows only
the last convolutional layer. As a consequence, it extracts
the feature only from the last convolutional layer and ig-
nores all the previous layers. In this section, we extend the
TCCANet to a multiple scale version, i.e., MS-TCCANet.
MS-TCCANet adds an output layer after every convolu-
tional layer, following the idea that different layer contains
different discriminative information. In terms of the two-
convolutional-layer TCCANet model, MS-TCCANet adds
an additional output layer to the end of the first convo-
lutional layer. Specifically, the feature images of the first
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Algorithm 3 The TCCANet algorithm

Input: N training samples S = {In}Nn=1

Output: N feature vectors {fn}Nn=1

1: Extract V view features Sυ = {Iυn}Vυ=1;
2: for the first convolutional layer do
3: Construct V view sample matrices {Xυ}Vυ=1;
4: Compute V view transformation directions via Algo-

rithm 2, i.e., αυ = [αυ,1, αυ,2, · · · , αυ,L1 ];
5: Form filter banks Wυ,l1 = vec2mat(αυ,l1);
6: Calculate the output of first layer Oυn,l1 = Iυn ∗Wυ,l1 ;
7: end for
8: for the second convolutional layer do
9: Construct V view sample matrices {Y υ}Vυ=1;

10: Compute V view transformation directions via Algo-
rithm 2, i.e., βυ = [βυ,1, βυ,2, · · · , βυ,L2 ];

11: Form filter banks Wυ,l2 = vec2mat(βυ,l2);
12: Calculate the output of second layer Oυ

n,l1l2
= {Oυn,l1∗

Wυ,l2};
13: end for
14: Calculate the binary image H(Oυ

n,l1l2
);

15: Map L2 binary images to one decimal image Dυ
n,l1

=∑L2

l2=1 2l2−1H(Oυ
n,l1l2

);
16: Extract the histogram feature fυn ;
17: Output the final feature fn = [f1n; f2n; · · · ; fVn ]

layer, i.e., {Oυn,l1}
L1

l1=1, are first converted into binary images

H
(
{Oυn,l1}

L1

l1=1

)
. Every set of L1 binary images are then

mapped to one decimal image

Dυ
n =

L1∑
l1=1

2l1−1H(Oυn,l1) (30)

Each pixel of Dυ
n is an integer which in the range of [0, 2L1−

1]. To pool the histogram feature, each decimal image Dυ
n

is segmented to B blocks. Then its block-wise histogram
feature can be denoted as BlkHist(Dυ

n) ∈ <2L1B . The final
feature of the first convolutional layer can be obtained by
concatenate the V views histogram vector

fn,1 = [BlkHist(D1
n); · · · ;BlkHist(DV

n )] ∈ <2L1V B (31)

Let the final feature obtained from the output layer of
the second convolutional layer be fn,2 = fn. Therefore,
MS-TCCANet stacks the output features obtained from all
convolutional layers together as

fn = [fn,1; fn,2] ∈ <(2L1+2L2L1)V B (32)

We summarize the overall framework MS-TCCANet in
Algorithm 4.

Both the TCCANet and MS-TCCANet involve several
model parameters, such as, the filter size (or patch size) k1×
k2, filter number of first (L1) and second (L2) convolutional
layer, the block size b1 × b2 and the block overlapping ratio.
We found the block overlapping ratio has minor impact on
the application result, so we fix it to 0.5 in our experiments
and investigate the impact of other parameters in Section 4.

4 EXPERIMENTS

In this section, we evaluate the proposed TCCANet and
MS-TCCANet on RSSCN7 [26] and SAT-6 [27] databases

Algorithm 4 The MS-TCCANet algorithm

Input: N training samples S = {In}Nn=1

Output: N feature vectors {fn}Nn=1

1: Extract V view features Sυ = {Iυn}Vυ=1;
2: for the first convolutional layer do
3: Construct V view sample matrices {Xυ}Vυ=1;
4: Compute V view transformation directions via Algo-

rithm 2, i.e., αυ = [αυ,1, αυ,2, · · · , αυ,L1 ];
5: Form filter banks Wυ,l1 = vec2mat(αυ,l1);
6: Calculate the output of first layer Oυn,l1 = Iυn ∗Wυ,l1 ;
7: Calculate the binary image H(Oυn,l1);
8: Map L1 binary images to one decimal image Dυ

n =∑L1

l1=1 2l1−1H(Oυn,l1);
9: Extract the histogram feature of the first layer fn,1;

10: end for
11: for the second convolutional layer do
12: Construct V view sample matrices {Y υ}Vυ=1;
13: Compute V view transformation directions via Algo-

rithm 2, i.e., βυ = [βυ,1, βυ,2, · · · , βυ,L2
];

14: Form filter banks Wυ,l2 = vec2mat(βυ,l2);
15: Calculate the output of second layer Oυ

n,l1l2
= {Oυn,l1∗

Wυ,l2};
16: Calculate the binary image H(Oυ

n,l1l2
);

17: Map L2 binary images to one decimal image Dυ
n,l1

=∑L2

l2=1 2l2−1H(Oυ
n,l1l2

);
18: Extract the histogram feature of the second layer fn,2;
19: end for
20: Output the final feature fn = [fn,1; fn,2];

for multi-view remote sensing scene recognition. The linear
support vector machine (SVM) classifier with the penalty
factor c = 1 is adopted for the classification tasks of
PCANet, CCANet, MS-CCANet, MCCANet, TCCANet and
MS-TCCANet. The regularization parameter ε is set to 0.01
in this paper. Section 4.1 introduces the datasets and section
4.2 illustrates the experimental results. We also compare
the TCCANet and MS-TCCANet with several deep CNN
models, i.e., VGGNet, ResNet and SENet, in section 4.3.

4.1 Database Description
The RSSCN7 database [26] contains 2800 RS images with
seven typical scene classes, i.e., the grassland, farmland,
forest, parking lot, residential area, industrial area, and
river&lake. In each class, there are 400 images with size of
400 × 400. All images are collected by Google Earth from
different weather, scales and seasons. Figure 4 illustrates
several examples of RSSCN7. The three-view features, in-
cluding a gray feature, an edge feature and a low-frequency
wavelet transform (WT) feature, are extracted, and then
all images are resized to 64 × 64 pixels. Figure 5 gives an
example of one selected image and its corresponding three-
view features.

The SAT-6 [27] database consists of 405, 000 sample
images with size 28 × 28 and including 6 landcover scene
classes — buildings, water bodies, trees, barren land, grass-
land, and roads. All these images are divided into four-fifths
(324, 000) for training and the rest (81, 000) for testing. In
our experiment, a subset of SAT-6 is utilized to evaluate
our algorithm. Particularly, the subset is composed of 18000
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Grassland Farmland Forest Parking Resident Industry River/lake

Fig. 4. Several samples of RSSCN7 database. Each column represents
a specific class whose label is given in the bottom of each column.

Original Gray Edge WT

Fig. 5. One sample image in RSSCN7 database and its corresponding
three view features.

Fig. 6. Several samples of SAT-6 database. From left to right, every two
columns belong to one class.

Original Gray Edge WT

Fig. 7. One sample image in SAT-6 database and its corresponding gray,
edge and WT features.

images (3000 images for each class) and these entries are
randomly selected from the training set of SAT-6 database.
Several examples in our subset are shown in Figure 6, and
one selected image and its three-view features (a gray sub-
image, an edge sub-image and a low frequency WT sub-
image) are elucidated in Figure 7.

4.2 Experimental Results

In this section, we compare the proposed TCCANet and
MS-TCCANet with several highly related works covering
PCANet, CCANet, MS-CCANet and MCCANet for multi-
view RS scene recognition. These algorithms contain several
common parameters like the number of training samples,

TABLE 1
The default parameter settings

Parameters RSSCN7 SAT-6
] of Training samples N = 1000 N = 8000

Filter Number L1 = L2 = 8 L1 = L2 = 8
Filter Size k1 × k2 = 5× 5 k1 × k2 = 5× 5
Block Size b1 × b2 = 31× 31 b1 × b2 = 27× 27

the filter number, the filter size and the block size. For fair
comparison, the default parameter settings are identical for
all these algorithms referring to Table 1 for precise values. In
the following paragraphs, the impact of different parameters
is discussed in the cross validation manner. That means,
when we check a certain parameter, all other parameters
are fixed to their defaults. Additionally, since we have
three-view features, i.e., gray sub-images, edge sub-images
and WT sub-images, they also form three combinations
for single-view and two-view methods including PCANet,
CCANet and MS-CCANet. To make the experiments more
convincing, all possible combinations are tested in the fol-
lowing parts. We evaluate the RS scene classification per-
formance by the recognition accuracy, which is the ratio of
the number of correctly predicted test samples Testcorrect
to the total number of test samples Testtotal.

Recognition Accuracy =
Testcorrect
Testtotal

× 100% (33)

4.2.1 The number of training samples
In this part, we investigate the influence of the size of
the training set on the recognition results. For the RSSCN7
database, N = {1000, 2000} images are randomly selected
as the training set and the rest constitutes the testing set.
For the SAT-6 database, the number of training samples
varies from 8000 to 16000. For each parameter tunning, we
conduct the experiment for 10 times and select the training
samples by random permutations in each time. Table 2 lists
the mean recognition rate and standard deviation of ten runs
for PCANet, CCANet, MS-CCANet, MCCANet, TCCANet
and MS-TCCANet on RSSCN7 and SAT-6 database. The
best results are marked in bold. Table 2 illustrates that: (1)
with the increase of N , the recognition rate generally goes
up for all algorithms and different feature combinations;
(2) Our MS-TCCANet achieves the highest recognition rate
for all changes of the training set. Specifically, our MS-
TCCANet outperforms the average performance of the fa-
mous PCANet by a large margin on both RSSCN7 (11.41%)
and SAT-6 (19.53%) under default parameter settings (Table
1); (3) TCCANet also makes a significant improvement com-
pared with all previous works including PCANet, CCANet,
MS-CCANet and MCCANet; (4) Our previous work, i.e.,
MS-CCANet, also achieves prominent performance in SAT-
6 database, suggesting the effectiveness of the multiple scale
feature; (5) PCANet performs much poor when the ‘edge’
feature is utilized. Therefore, the ‘PCANet (edge)’ case is
abandoned in the following experiments. This may imply
that the ‘edge’ feature is difficult to distinguish in scene
classification tasks, so other refined feature may yield a
higher recognition rate. Nevertheless, it is still reasonable to
use the ‘edge’ feature in our multiview experiments, since it
provides a specific view of complementary information.
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TABLE 2
RECOGNITION RESULTS WITH DIFFERENT NUMBERS OF TRAIN SET ON RSSCN7 AND SAT-6 DATASET

Dataset RSSCN7 SAT-6
# of training samples N 1000 2000 8000 16000

PCANet
gray 67.21% ± 0.79% 69.86% ± 1.50% 79.26% ± 0.26% 81.35% ± 1.41%
WT 67.52% ± 0.85% 70.51% ± 1.75% 78.86% ± 0.44% 80.94% ± 0.95%

edge 47.13% ± 0.73% 50.64% ± 1.43% 41.12% ± 0.96% 41.99% ± 1.90%

CCANet
WT & edge 65.99% ± 1.58% 70.70% ± 1.70% 82.51% ± 1.16% 83.49% ± 0.70%
edge & gray 66.81% ± 1.13% 69.83% ± 2.00% 84.14% ± 0.71% 84.89% ± 1.15%
WT & gray 66.31% ± 1.28% 68.31% ± 2.16% 83.79% ± 0.50% 84.27% ± 0.98%

MS-CCANet
WT & edge 66.83% ± 1.31% 70.86% ± 1.54% 83.80% ± 0.97% 84.95% ± 0.90%
edge & gray 67.23% ± 1.04% 71.28% ± 1.78% 85.18% ± 0.81% 86.64% ± 1.03%
WT & gray 69.48% ± 0.77% 71.39% ± 1.51% 85.85% ± 0.48% 86.41% ± 1.07%

MCCANet gray & edge & WT 68.43% ± 1.28% 71.43% ± 1.38% 83.47% ± 0.54% 84.67% ± 0.78%
TCCANet gray & edge & WT 71.80% ± 0.99% 73.09% ± 1.83% 85.23% ± 0.52% 86.18% ± 1.05%

MS-TCCANet gray & edge & WT 72.03% ± 0.71% 74.23% ± 1.63% 85.94% ± 0.80% 87.03% ± 2.26%
1 A±B: A is the ten-run mean recognition accuracy and B denotes the standard deviation.

4.2.2 The number of filters

In each convolutional layer, the number of filters can be
adjusted. In this part, we change the number of filters of
first layer L1 from 4 to 12 and fixed the second layer
L2 = 8, and then tune L2 by fixing L1 = 8. All other
parameters are kept to their default settings. Particularly,
the numbers of training images are restored to 1000 and
8000 for RSSCN7 and SAT-6 database, respectively. For
each parameter setting, we repeat the experiments for 10
times and divide the training set and testing set randomly
in each time. For PCANet, CCANet and MS-CCANet, we
report their average recognition results of different feature
combinations to make the result easy reading.

Figure 8 shows the experimental results with different
values of L1. Figure 8(a) gives the results on RSSCN7
database. From Figure 8(a), we can see that both TCCANet
and MS-TCCANet acquire remarkable improvement com-
pared with all other counterparts. Generally speaking, TC-
CANet and MS-TCCANet are more robust to the variation
of filter numbers than the previous works on the RSSCN7
dataset. Figure 8(b) reveals the results on SAT-6 database.
It can be observed from Figure 8(b) that all methods carry
out a better performance with the increase of L1, owing
to the fact that more filters produce a more comprehensive
local feature. Besides, MS-TCCANet attains the top result all
along. A notable difference between Figure 8(a) and Figure
8(b) is that the proposed algorithms achieve high accuracy
even with small number of filters on the RSSCN7 dataset.
The reason is that the image size of RSSCN7 (64 × 64) is
larger than SAT-6 (28×28), which encodes much more pixel
local information into the sample matrices. After decompos-
ing the high-order covariance tensor, the first few filters can
capture enough discriminant information for classification.
Figure 9 exhibits the impact of L2 on RSSCN7 dataset in Fig-
ure 9(a) and SAT-6 dataset in Figure 9(b). As shown in Figure
9(a), the proposed TCCANet and MS-TCCANet outperform
other comparison algorithms in most scenarios. From Figure
9(b), we can see that both MS-TCCANet and MS-CCANet
accomplish a brilliant outcome, which confirms the efficacy
of multi-scale feature once again.

4.2.3 The filter size

In this part, we examine the effectiveness of different feature
learning models by changing the filter size. The filter size

(a) RSSCN7

(b) SAT-6

Fig. 8. The experimental result of MS-TCCANet, TCCANet, MCCANet,
MS-CCANet, CCANet and PCANet on (a) RSSCN7 database and (b)
SAT-6 database under different number of filters L1 with fixed L2 = 8.

of each convolutional layer actually depends on the patch
size when we construct multi-view sample matrices k1×k2.
In this experiment, the filter size is tunned in the range of
{3× 3, 5× 5, 7× 7, 9× 9, 11× 11}. For each change of filter
size, all the algorithms are tested for 10 times. The ten-run
average classification accuracy and the standard deviation
are illustrated in Figure 10. Precisely, the Figure 10(a) and
Figure 10(b) shows the results on RSSCN7 database and
SAT-6 database, respectively. In each subfigure, the x-axis
represents the filter size and y-axis represents the classifica-
tion accuracy.

From Figure 10, we can see that with the increase of
filter size, the recognition accuracy of all the feature learning
models tend to decline. The reason is that large filters ignore
the important local features for RS images with small size
(28 × 28 or 64 × 64). With the increase of image sizes (e.g.,
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(a) RSSCN7

(b) SAT-6

Fig. 9. The experimental results of MS-TCCANet, TCCANet, MCCANet,
MS-CCANet, CCANet and PCANet on (a) RSSCN7 database and (b)
SAT-6 database under different numbers of filters L2 with fixed L1 = 8.

10, 000×10, 000) or the decrease of image Ground Sampling
Distance (GSD), larger filters may gradually take the advan-
tage. Additionally, Figure 10(a) suggests that the proposed
MS-TCCANet is consistently superior to the comparison
methods for all filter sizes. Figure 10(b) demonstrates that
the MS-TCCANet achieves the highest accuracy on SAT-6
dataset at most cases except when the filter size is 3 × 3.
However, the differences among top-performing methods
are very trivial on the filter size of 3×3, which then become
more significant after the filter size increases.

4.2.4 The block size

In the output layer, the final feature is learned based on
the block-wise histogram strategy. In this part, we explore
the influence of the block size. Specifically, the block size is
changed from 3 × 3 to 35 × 35 for the RSSCN7 database
and from 3× 3 to 27× 27 for the SAT-6 database. Similarly,
with each parameter change, we run the experiment for 10
times. The mean recognition results and the corresponding
standard deviations are given in Figure 11.

Figure 11(a) reveals the influence of block size on
RSSCN7 database. From Figure 11(a), we can see that the
recognition rates of all the algorithms are enhanced with
the increase of block size. The proposed TCCANet and MS-
TCCANet have prominent performance when b1 × b2 ≥
19 × 19. This superiority may not be as conspicuous as it
does due to the range of y-axis.

Figure 11(b) shows the experimental results on SAT-
6 database with different block sizes. From Figure 11(b),
we can see that the MS-CCANet with the combination of
gray and WT feature, achieves a outstanding result when
b1 × b2 < 19 × 19. After that, our MS-TCCANet gradually

TABLE 3
RUNNING TIME (SECONDS) COMPARISON

Methods Training time Average testing time
RSSCN7 SAT-6 RSSCN7 SAT-6

PCANet 106.01 693.84 0.17 0.16
CCANet 39.75 125.43 0.03 0.01

MS-CCANet 35.28 140.62 0.03 0.01
MCCANet 77.90 142.89 0.05 0.01
TCCANet 127.20 172.77 0.06 0.01

MS-TCCANet 150.83 175.82 0.09 0.01

gains advantage. Besides, the performance of all the algo-
rithms is even poor when b1 × b2 = 19 × 19. The reason
may be that this block size with the overlapping ratio (0.5)
exactly ignores some important local information, e.g., the
area around the center of an image, by considering that the
image size of SAT-6 database is 28× 28.

4.2.5 Running time
We report the code running time of different methods in
Table 3 under the default parameter settings (see Table 1).
All methods are implemented on Red Hat Enterprise Linux
Workstatioin 7.7 (Maipo) with 2.7GHz CPU frequency and
176GB memory. Table 3 illustrates that the proposed TC-
CANet and MS-TCCANet consume more training time than
low-order multi-view methods, i.e., CCANet, MS-CCANet
and MCCANet on both RSSCN7 and SAT-6 datasets. This is
because the high-order-correlation construction and tensor
decomposition are computationally expensive than matrix
operations. It is worth mentioning that we employ the CPU
parallel computation to accelerate the TCCANet and MS-
TCCANet in calculating the covariance tensor, i.e., Eq. (10).
In comparison with the single view PCANet, our TCCANet
needs comparable or even less running time in terms of
both training and testing. In addition, the TCCANet and
MS-TCCANet show a slight time cost growth towards the
increase of training samples from 1000 (RSSCN7) to 8000
(SAT-6), comparing with all the previous methods. This may
indicate that our TCCANet and MS-TCCANet are more
feasible for large-scale RS recognition problems.

4.3 Comparison with deep CNN methods

In this section, we compare our TCCANet and MS-
TCCANet with several deep CNN models, including VG-
GNet (VGG16 and VGG19) [51], ResNet (ResNet50 and
ResNet101) [61] and SENet (SE-DenseNet) [62]. We use
ADAM [63] as the parameter optimizer and implement all
these networks using Keras1. The ADAM learning rate is set
to 10−3, and all the rest parameters are set as default. For
fair comparison, we randomly select 1000 and 8000 training
samples from RSSCN7 and SAT-6 datasets, respectively. The
rest images are used for testing. We resize all images into
224 × 224 before feeding them into CNNs models. During
the network training, we fix the “patience” parameter as
10. This means we will stop the training phrase if the
recognition accuracy is not improved for ten consecutive
epochs. Table 4 shows the classification results on gray and
WT features of the two RS scene datasets.

1. https://keras.io/
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(a) RSSCN7

(b) SAT-6

Fig. 10. The experimental results of MS-TCCANet, TCCANet, MCCANet, MS-CCANet, CCANet and PCANet on (a) RSSCN7 database and (b)
SAT-6 database under different filter sizes.

(a) RSSCN7

(b) SAT-6

Fig. 11. The experimental result of MS-TCCANet, TCCANet, MCCANet,
MS-CCANet, CCANet and PCANet on (a) RSSCN7 database and (b)
SAT-6 database under different block size.

From Table 4 we can see that our MS-TCCANet achieves
the highest recognition accuracy on both RSSCN7 and SAT-6
datasets when the gray feature is used. For the WT feature,
our TCCANet and MS-TCCANet can also perform on par
with most of the very deep CNN methods. The important
thing to note is that the network structure of both TCCANet

TABLE 4
COMPARISON WITH DEEP CNN METHODS (OUR TCCANET AND

MS-TCCANET USE GRAY, WT AND EDGE FEATURES). OUR
METHODS CAN ACHIEVE BETTER OR ON PAR CLASSIFICATION

RESULTS COMPARED WITH MOST DEEP CNN MODELS BY USING
MUCH LESS TRAINING TIME.

Methods RSSCN7 SAT-6
gray WT gray WT

VGG16 53.91% 54.69% 85.55% 91.41%
VGG19 55.86% 73.83% 83.59% 87.89%

ResNet50 56.25% 67.97% 79.69% 86.33%
ResNet101 57.42% 63.67% 83.98% 81.64%

SE-DenseNet121 71.88% 71.48% 82.81% 89.06%
TCCANet 71.80% 85.23%

MS-TCCANet 72.03% 85.94%

and MS-TCCANet are super lightweight, i.e., with only two
convolutional layers. A natural benefit is that the training
time is greatly reduced compared with VGGNet, ResNet
and SENet. For example, it takes more than a day and a
half to train ResNet101 on SAT-6 gray (42.54 hours) and
WT (44.85 hours). While training our TCCANet on SAT-6
needs only 172.77 seconds as shown in Table 3. The efficient
network training and high classification performance are
two main strengths of our TCCANet and MS-TCCANet
for RS images scene recognition than those popular CNN
models with very deep structures.

5 CONCLUSION

Convolutional neural network (CNN) has been proven a
successful model for hierarchical feature learning in both
theoretical principle and real world applications. In re-
cent years, many variants of CNN were proposed, such
as PCANet, CCANet, MS-CCANet and MCCANet. The
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PCANet seeks the filter bank by maximizing the sample sep-
aration and achieves great success in image classification.
However, PCANet is only suitable for the single view data,
so it is limited when the RS information stemming from
diverse sources. Despite the fact that CCANet, MS-CCANet
and MCCANet can be applied to two or more view cases,
they take only pair-wise correlations into consideration and
ignores the high-order-correlations among multi-view data.
In this paper, we have presented tensor canonical correla-
tion analysis networks (TCCANet) to solve this problem
for multi-view RS scene recognition. Particularly, TCCANet
discovers the high-order-correlation by directly maximizing
all views’ canonical correlation and seeks the optimal filter
banks by analyzing a covariance tensor. In the output layer,
the binarization and histogram are introduced as the non-
linear processing and feature pooling. Furthermore, we also
put forward a multiple scale development of TCCANet, i.e.,
MS-TCCANet. Finally, we carefully conducted the experi-
ments on two real world datasets: RSSCN7 and SAT-6 data.
Extensive experimental results showed that the proposed
TCCANet and MS-TCCANet are statistically superior to
PCANet, CCANet, MS-CCANet and MCCANet for multi-
view RS scene recognition.

In the future, we will research on more efficient tensor
decomposition methods to accelerate the ALS and reduce
the TCCANet time consuming. In addition, validating our
algorithms on RS images with multiple view angles and
scales are also promising work directions as they are the
two main variables when satellite passes. This future work
shall be performed on datasets that not only organize data
by their class label but also by the multi-view properties,
such as view angle and scale features.

APPENDIX A
PROOF OF THEOREM 1

Proof. By exploring the element-wise product, we have the
following decomposition for the left side.

ρ12···V = (z1 � z2 � · · · � zV )Te =
Nwh∑
i=1

z1(i)z2(i) · · · zV (i)

=
Nwh∑
i=1

V∏
υ=1

zυ(i) =
Nwh∑
i=1

V∏
υ=1

(
k1k2∑
jυ=1

xυi (jυ)αυ(jυ)

)
,

(34)

where zυ(i) represents the ith element of zυ , and this rep-
resentation is also applied to xυi and αυ . According to the
definition of tensor (outer) product, we have

C12···V (j1, j2, · · · , jV ) =
Nwh∑
i=1

x1
i (j1)x2

i (j2) · · ·xVi (jV )

=
Nwh∑
i=1

V∏
υ=1

xυi (jυ)

(35)

Additionally, according to the υ-mode tensor-vector product
defined in (6), we have(

C12···V ×̄υαTυ
)
(j1, · · · , jυ−1, jυ+1, · · · , jV )

=
k1k2∑
jυ=1

C12···V (j1, j2, · · · , jV )α(jυ)

=
Nwh∑
i=1

k1k2∑
jυ=1

(
V∏
υ=1

xυi (jυ)

)
α(jυ)

(36)

Accordingly, the right-hand side of (12) equals to

C12···V ×̄1α
T
1 ×̄2α

T
2 · · · ×̄V αTV

=
Nwh∑
i=1

V∏
υ=1

(
k1k2∑
jυ=1

xυi (jυ)α(jυ)

)
(37)

Proof completed.

APPENDIX B
PROOF OF PROBLEM (13) AND (14) ARE EQUIVA-
LENT

Proof. It is obvious that the constraints are equivalent. We
then proof the objectives of problem (13) and (14) are equiv-
alent.

C12···V ×̄1α
T
1 ×̄2α

T
2 · · · ×̄V αTV

= αTV C(V )(αV−1 ⊗ · · · ⊗ α2 ⊗ α1)

= hTV S̃
− 1

2

V V C(V )

(
(S̃
− 1

2

V−1,V−1hV−1)⊗ · · · ⊗ (S̃
− 1

2
1,1 h1)

)
= hTV

(
S̃
− 1

2

V V C(V )(S̃
− 1

2

V−1,V−1 ⊗ · · · ⊗ S̃
− 1

2
1,1 )(hV−1 ⊗ · · · ⊗ h1)

)
= hTVK(hV−1 ⊗ · · · ⊗ h2 ⊗ h1)

= K×̄1h
T
1 ×̄2h

T
2 · · · ×̄V hTV

This accomplishes the proof. Some properties, such as,
sequence of tensor-matrices product in (8) and Kronecker
product in (9) are used in this proof.
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