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Abstract 11 

Verticillium dahliae is a soil-borne phytopathogen and the causal agent of 12 

Verticillium wilt. It affects many agriculturally important crops around the world, 13 

including cotton. In Australia, the billion-dollar cotton industry is increasingly 14 

impacted by Verticillium wilt. Internationally it has been reported that the defoliating 15 

V. dahliae Vegetative Compatibility Group (VCG) 1A causes severe damage to 16 

cotton. In Australia however, the non-defoliating VCG2A is causing more severe 17 

damage to crops in fields than the defoliating VCG1A. This review examines the 18 

current research to understand the Australian V. dahliae situation, including current 19 

classification systems, genetic analyses and management strategies. It appears that 20 

virulence cannot be defined solely by VCG in Australian Verticillium dahliae isolates 21 

causing disease in cotton, and that the industry must continually adapt their practices 22 

in order to keep the disease under control. 23 

 24 
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Introduction 28 

In Australia, cotton is a growing billion-dollar industry. Cotton yields have increased 29 

from 500 kg per hectare in the 1960’s to 2000 kg per hectare in 2013 (Hamilton 30 

2016). Cotton crops are largely furrow irrigated, grown on alkaline clay soils and tend 31 

to be located near flood plains. There is often reduced or minimum tillage, tail-water 32 

recirculated and in some areas permanent bed systems (Kirkby et al. 2013). 33 

Sustainability and growth of the cotton industry is reliant on improved cotton 34 

varieties, management of soil and water resources, and control of weeds, insect and 35 

diseases (Constable 2004). Although Verticillium wilt in Australian cotton is 36 

generally well managed, other countries have seen economic losses of 50% or more 37 

(Wu and Subbarao 2014). The average incidence levels of Verticillium wilt caused by 38 

V. dahliae in Australian cotton are relatively low but yield losses can vary between 10 39 

and 62% in some fields (Holman et al. 2016). However, the recent discovery of the 40 

defoliating VCG1A and the disease severity of the non-defoliating VCG2A present an 41 

additional problem for management of Verticillium wilt as incidences rise (Chapman 42 

et al. 2016; Dadd-Daigle et al. 2020; Jensen and Redfern 2017; Kirkby et al. 2013). 43 

Hence, Verticillium wilt is becoming a major concern for the Australian cotton 44 

industry. 45 

 46 

Verticillium dahliae 47 

Verticillium encompasses a group of soil-borne ascomycetes. As of 2011, ten 48 

Verticillium species have been described (Inderbitzin et al. 2011), including V. 49 
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dahliae, the main causal agent of Verticillium wilt. Verticillium dahliae is responsible 50 

for disease in over 400 plant species across the world. These include many 51 

economically important crops such as olives, tomatoes, potatoes, lettuce and cotton 52 

(Bhat and Subbarao 1999; Inderbitzin et al. 2011).  53 

 54 

The life cycle of V. dahliae allows it to persist on farms for many years. It survives in 55 

soil in highly melanised resistant structures, known as microsclerotia, for over 10 56 

years (Davis et al. 1994; Klosterman et al. 2009). These microsclerotia germinate in 57 

the presence of host plants, producing hyphae that penetrate the root cortex and reach 58 

the xylem. As hyphae and conidia grow within the xylem, the plant host can express 59 

symptoms of wilting, necrosis and leaf discolouration (Klimes et al. 2015). As 60 

symptoms progress, V. dahliae enters a saprophytic phase where the infection 61 

expands to other tissues, such as leaves, and a mass production of microsclerotia 62 

occurs. The extent of symptoms can depend on the susceptibility of the host and the 63 

infecting strain of V. dahliae. While some plants suffer severe wilting and necrosis, 64 

other infections are less severe, allowing the plant to recover (Daayf 2015). 65 

 66 

Historically, the characterisation and classification of V. dahliae has been based on 67 

the symptoms exhibited by the host plant, or by the interaction of pathogen virulence 68 

and host resistance genes. Consequently, this has led to the use of host-specific 69 

terminology and classification, resulting in a number of different classification 70 

systems. Verticillium dahliae strains infecting tomato and cotton are divided into 71 

“races”, classified by the presence or absence of the Ave1 gene (Hu et al. 2015; 72 

Maruthachalam et al. 2010). Strains from cotton are also categorised into defoliating 73 

(D) and non-defoliating (ND) pathotypes (Daayf et al. 1995). While the D and ND 74 
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pathotypes largely align to races 1 and 2, respectively, this is not true for all strains 75 

and the systems are generally not used interchangeably (Hu et al. 2015). Host-specific 76 

pathology groups also include “eggplant pathotype”, “tomato pathotype”, “mint 77 

pathotype” and “sweet pepper pathotype” (Dung et al. 2012; Komatsu et al. 2001; 78 

Papaioannou et al. 2013b). While these classifications are generally understood in 79 

studies that focus on strains infecting a single host type, complexity arises when 80 

investigating Verticillium strains independently of the plant host they infect. 81 

Currently, there is only one system that classifies all V. dahliae strains into groups, 82 

known as Vegetative Compatibility Groups (VCGs).  83 

 84 

Vegetative Compatibility Groups (VCGs) in Verticillium dahliae 85 

VCGs are determined by strain interaction and describe the formation of prototrophic 86 

heterokaryons, a fusion of two genetically distinct cells that occurs when two hyphal 87 

cells meet (Puhalla and Mayfield 1974). While not molecularly characterised in V. 88 

dahliae, related fungal models have shown that two sets of gene loci, known as vic 89 

(vegetative incompatibility) and het (heterokaryon incompatibility) govern the 90 

process. For isolates to form a heterokaryon, the alleles at the het or vic loci must be 91 

identical (Jiménez-Gasco et al. 2013). In practice, the VCG determination process 92 

requires that V. dahliae strains are mutated to become nitrogen non-utilizing “nit 93 

mutants”. Mutants strains, one or two with known and the other with an unknown 94 

VCG, are placed on opposite sides of a minimal media agar plate and monitored for 95 

signs of prototrophic growth. If the mutant isolates are able to form heterokaryons, 96 

which allow growth on minimal media, the unknown isolate is assigned the same 97 

VCG as the known isolate (Joaquim and Rowe 1990). This method has led to the 98 

identification of five VCGs in V. dahliae, namely, VCG1 2, 3, 4 and 6, with VCG1 99 
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and VCG2 further characterised into A and B subgroups, and VCG4 into A, B and 100 

AB (Papaioannou and Typas 2015; Strausbaugh 1993). 101 

 102 

Vegetative Compatibility Groups have been used to track the evolution and 103 

movement of V. dahliae. Several groups found that isolates within VCGs are 104 

phylogenetically similar (Collado-Romero et al. 2006) or fit a clonal reproductive 105 

model (Dung et al. 2013; Milgroom et al. 2014). Others argued that although isolates 106 

of the same VCG may be genetically similar, they are often phylogenetically distant, 107 

with members of different subgroups being more closely related (Jiménez-Gasco et al. 108 

2013). In most instances VCGs are monophyletic, with some exceptions such as 109 

VCG2B (Collado-Romero et al. 2008). Following these studies, the origin of the V. 110 

dahliae species has been speculated to be in Europe (Short et al. 2015), while the 111 

virulent VCG1A has been traced back to North America (Milgroom et al. 2016).  112 

 113 

Different plant hosts are often associated with different V. dahliae VCGs. VCG2A is 114 

known to be highly pathogenic to tomato (Tsror et al. 2001), VCG2B is highly 115 

aggressive in mint (Dung et al. 2013), VCG4A is highly pathogenic to potato (El-116 

Bebany et al. 2013), and VCG1A is virulent in olives (Dervis et al. 2007). In cotton, it 117 

has generally been reported that VCG1A causes significant damage while VCG2A 118 

and VCG4B are less virulent, although there have been some reports of VCG2B 119 

causing damage (Dervis and Bicici 2005; Dervis et al. 2008; Elena 1999; Jiménez-120 

Gasco et al. 2013; Korolev et al. 2001). 121 

 122 

While VCGs are currently the most widespread method to describe V. dahliae 123 

populations, the genetics behind VCGs in V. dahliae are not well understood. In their 124 
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attempt to create a high-throughput VCG screening method, Papaioannou and Typas 125 

(2015) also sought to understand the genetic relationship between the two, “strong” 126 

and “weak”, heterokaryon reactions observed. These authors found that weak 127 

interactions tend to be unstable, but there is still a transfer of genetic material, 128 

suggesting that they may be vegetatively compatible. Although many other studies 129 

acknowledge that weak reactions occur, most regard only strong interactions as 130 

compatible (Strausbaugh 1993). This could impact the reliability of results examining 131 

relatedness amongst VCGs and highlights a need for a narrower classification system 132 

that does not suffer from these issues. Additionally, as the VCG determination process 133 

is labour intensive and time-consuming, several groups have attempted to develop 134 

alternative methods (Collado-Romero et al. 2009; El-Bebany et al. 2013; Papaioannou 135 

et al. 2013a). However, currently, no molecular method is as reliable as the traditional 136 

method. 137 

 138 

Verticillium dahliae in Australian cotton 139 

Since 1983, Verticillium-infected plant samples have been collected and V. dahliae 140 

isolates maintained and stored in the culture collection of the NSW Department of 141 

Primary Industries (Kirkby et al. 2013). The average incidence of Verticillium wilt 142 

has generally been low throughout NSW. The incidence rose from 5.5% in 2013/2014 143 

to 7.1% in 2014/2015 and 6.3% in the 2015/2016 season (Chapman et al. 2016). 144 

Disease symptoms are becoming more severe in some patches of Verticillium wilt, 145 

with yield reductions reported to be greater than 6 bales/ha. There are concerns that 146 

this increase in severity is related to the ND VCG2A strain reported in 2014 (Dadd-147 

Daigle et al. 2020; Smith et al. 2014).  148 

 149 
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It was previously thought that only one VCG type, ND VCG4B, was present in 150 

Australia, but in 2014, ND VCG2A was identified (Smith et al. 2014). Following the 151 

discovery of ND VCG2A, analysis of V. dahliae historical samples taken from the 152 

NSW Department of Primary Industries culture collection revealed the presence of the 153 

D VCG1A (Chapman et al. 2016). The D VCG1A has been the cause of severe 154 

disease and crop loss overseas (Jiménez-Díaz et al. 2006). However, despite the 155 

presence of VCG1A in the historical samples, typical VCG1A disease presentation, 156 

including the typical crop losses and complete defoliation of infected plants, has not 157 

been a widespread observation in Australia. It is not clear what is causing the 158 

disparity between the severity of D VCG1A and ND VCG2A disease in Australia and 159 

overseas. It is possible, given that VCG2A has been shown to infect weeds commonly 160 

found on cotton fields (Yildiz et al. 2009), that VCG2A V. dahliae has simply become 161 

the most prevalent strain on Australian cotton fields, amplified by the polyetic nature 162 

of the pathogen, and has acquired the ability to defoliate cotton plants. However, 163 

further analysis of the relationship of genetics to pathogenicity and disease severity in 164 

Australian V. dahliae VCGs is required. 165 

 166 

Insights from Verticillium dahliae genome sequencing  167 

In 2011 the V. dahliae VdLs.17 and V. albo-atrum genomes were sequenced using the 168 

whole genome shotgun approach via Sanger sequencing (Klosterman et al. 2011). 169 

Although the two ~ 33 Mb genomes were highly similar, there were four 300 kb 170 

regions in V. dahliae which had no synteny with V. albo-atrum. These regions were 171 

denoted “Lineage Specific” (LS) regions. The LS regions were found to be highly 172 

repetitive and represented over 50% of all identifiable transposable elements 173 

contained in V. dahliae. Faino et al. (2015) used PacBio long read sequences to create 174 
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a “gapless” genome and have since suggested that there are problems with the initial 175 

V. dahliae VdLs.17 sequence. These authors argue that their method of genome 176 

assembly helps to prevent problems associated with repetitive regions that cause 177 

issues when assembling shorter contigs. Using PacBio sequencing, the VdLs.17 178 

genome was re-assembled. The newly constructed genome indicates that 12% is 179 

composed of repetitive regions, four times higher than was previously thought. 180 

 181 

With the availability of a V. dahliae reference genome, there is an increasing 182 

understanding of what makes V. dahliae such an adaptable pathogen with a broad host 183 

range. There are suggestions that transposons could be a major reason for the genomic 184 

diversity observed and that they contribute to the V. dahliae “plastic genome” driving 185 

adaption to new plant hosts (Amyotte et al. 2012; Faino et al. 2016). This is supported 186 

by de Jonge et al. (2013) who compared the VdLs.17 reference strain with 10 V. 187 

dahliae genomes taken from geographically separate regions and hosts. The study 188 

revealed that despite the genomes being highly similar, chromosome rearrangements 189 

had occurred between all strains. Using RNA-seq data and deletion studies, they 190 

showed that effector genes present in the LS regions were important to the 191 

development of disease (de Jonge et al. 2013; de Jonge et al. 2012), suggesting that 192 

chromosome rearrangements and these LS regions could contribute to V. dahliae’s 193 

adaptation to new hosts. Jin et al. (2017) explored the organism’s use of alternative 194 

splicing and developed their own algorithms, alongside previously available software, 195 

to analyse V. dahliae cDNA sequences for common splicing events. They found that 196 

V. dahliae has one of the most sophisticated splicing systems in eukaryotes, outside of 197 

animals, and believe that this alternative splicing could explain some of V. dahliae’s 198 

plasticity. 199 
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 200 

There are an increasing number of studies suggesting that horizontal gene transfer 201 

plays an important role in V. dahliae’s success as a pathogen. An analysis of V. 202 

dahliae isolated from cotton in China, revealed the presence of a virulence gene 203 

believed to have originated in Fusarium oxysporum, a related fungal pathogen often 204 

found infecting cotton on the same farm (Chen et al. 2017). Their deletion 205 

experiments found that removal of this gene affected the ability of the V. dahliae 206 

strain to infect cotton, but not lettuce or tomato, highlighting it’s ability to acquire 207 

new virulence genes as it expands to different hosts. There has also been evidence of 208 

V. dahliae acquiring genes from the host plant and from bacteria (de Jonge et al. 209 

2012; van Kooten et al. 2019). These studies used phylogenetic analysis to look for 210 

candidate genes that are found outside the Verticillium spp. They found numerous 211 

candidate genes of bacterial and plant origin, many of which could potentially aid V. 212 

dahliae in getting past the host plant’s defences.  213 

 214 

Management strategies for the control of Verticillium wilt 215 

The nature of V. dahliae infection makes elimination of the pathogen difficult, 216 

however, multiple management strategies have been applied over the years. As the V. 217 

dahliae life cycle is dependent on microsclerotia present in crop soil, currently the 218 

two main strategies target either the soil itself, for example by soil fumigation, or the 219 

plants through development of resistant varieties (Short et al. 2015). Soil fumigation 220 

aims to eliminate microsclerotia in crop soil. Traditionally, methyl bromide was used 221 

to control pathogen populations, but was classified as a Class 1 stratospheric, ozone-222 

depleting substance and international regulations dictated by the Montreal Protocol 223 

now restrict the use of this chemical (Martin 2003). Multiple studies have explored 224 
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alternatives, including green manures, anaerobic soil disinfection and anaerobic 225 

digestion. Green manure is a method utilising volatile components from plant waste to 226 

reduce the number of microsclerotia (Yohalem and Passey 2011). Anaerobic soil 227 

disinfection uses microbial activity from agricultural or horticultural waste products, 228 

combined with mulched plastics, to deplete available oxygen in soil, creating 229 

anaerobic conditions to prevent fungal growth (Goud et al. 2004). Anaerobic 230 

digestion uses liquid digestate, a by-product from biogas production, as a bio-fertiliser 231 

to control microsclerotia levels (Wei et al. 2016). However, the suitability of these 232 

methods in commercial processes is still questionable. While, green manures and 233 

anaerobic digestion are still relatively new and understudied, the well-studied 234 

variants, such as Brassica sp., are deemed insufficient (Neubauer et al. 2014) and 235 

anaerobic soil disinfection is not currently economically viable (Wei et al. 2016).   236 

 237 

Production of resistant cotton varieties is a key strategy in the prevention of 238 

Verticillium wilt. The development of resistant varieties in Australia has been 239 

ongoing for more than 30 years, with the release of Sicala V-1 in 1990, and Sicala V-240 

2 in 1994 (Liu et al. 2013). Despite successes with Sicala V-2 and subsequent 241 

varieties derived from it, the incidence of Verticillium wilt has continued to rise in 242 

recent years (Kirkby et al. 2013). This could be linked to the temperature tolerance, as 243 

currently the V. dahliae resistance in available cotton varieties breaks down when 244 

temperatures drop below 22˚C (Quinn et al. 2018). Although there is ongoing research 245 

into Verticillium resistance (Li et al. 2018; Li et al. 2019; Zhang et al. 2018), the 246 

development of new cotton varieties that provide adequate yield is slow, and the 247 

current varieties do not provide a substantial increase in resistance (Dadd-Daigle et al. 248 

2020). Also, without a rapid diagnostic system that classifies V. dahliae into groups 249 
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meaningful for Australian cotton, it is difficult to develop targeted and effective 250 

strategies. 251 

 252 

Currently, crop rotation is one of the methods used to help manage Verticillium wilt 253 

on cotton farms in Australia. Crop rotation is the practice of varying the successive 254 

crops in a particular field to assist in the control of disease and weed management. 255 

Each crop varies in its susceptibility to certain pathogens. The success of crop rotation 256 

relies on initial inoculum levels in the soil, the number of rotations with non-host 257 

crops and the wetting and drying cycles that assist in the breakdown of inoculum in 258 

the soil (Wheeler et al. 2019). For example, most cotton farmers rotate with barley or 259 

sorghum as they are not listed as host crops for V. dahliae. While commodity prices 260 

are the short-term driving force, farms with high disease levels are looking at rotation 261 

to ensure cotton remains sustainable in the long term (K. Kirby, personal 262 

communication, September 2016). The current recommendations to growers are long 263 

rotations with moderate irrigation to reduce overall pathogen levels and prevent 264 

widespread movement of the microsclerotia (Holman et al. 2016; Scheikowski et al. 265 

2019). 266 

 267 

The development of real-time PCR protocols to determine microsclerotial load from 268 

soil samples should assist with managing crop rotation practices (Banno et al. 2011; 269 

Gharbi et al. 2016). Removal of the rotational crop plant debris has also been shown 270 

to reduce the number of microsclerotia in the soil, but does sacrifice soil health 271 

(Chawla et al. 2012). However, the known host range of V. dahliae, both symptomatic 272 

and asymptomatic, is expanding as the pathogen comes into contact with new plant 273 

species. There have been instances where a symptomless host has exhibited extensive 274 
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vascular colonization and so contributes to the microsclerotial load despite the lack of 275 

symptoms (Wheeler and Johnson 2016). This makes selection of a suitable rotation 276 

crop more complex and highlights the need for a better understanding of the genomics 277 

of V. dahliae. In some instances, after multiple years of crop rotation followed by a 278 

cotton crop, the incidence of Verticillium wilt rises to match those found on farms 279 

that have had continuous cotton growth (Wheeler et al. 2019). 280 

 281 

Given that the current attempts to mitigate Verticillium wilt on cotton farms is 282 

becoming increasingly ineffective, new strategies need to be explored for use in 283 

Australia. One area that hasn’t been well examined in Australian cotton is the use of 284 

endophytes as a biological control. The idea behind this strategy is to pre-infect the 285 

plants with a microbe that will inhabit the same niche as V. dahliae, preventing 286 

infection by the pathogen. This has been explored with both bacterial and fungal 287 

endophytes (Li et al. 2012). Vagelas and Leontopoulos (2015) used the less virulent 288 

V. nigrescens to take up the niche usually filled by V. dahliae, preventing the 289 

infiltration of conidia by the more virulent species, while Yuan et al. (2017) looked at 290 

using unrelated fungal species as seed treatments. Although both studies saw a 291 

reduction in V. dahliae caused Verticillium wilt, the use of Penicillium 292 

simplicissimum and Leptosphaeria sp. also saw an increase in cotton seed production 293 

as the number of cotton bolls increased (Yuan et al. 2017). As endophytes have been 294 

shown to be beneficial in other areas of crop sustainability, such as protection from 295 

insect pests and abiotic stress (Lugtenberg et al. 2016), this area could be hugely 296 

beneficial to the Australian cotton industry which is often heavily impacted by water 297 

availability.  298 

 299 
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 300 

Improving future understanding of the Verticillium wilt problem in Australia  301 

The nature of Verticillium wilt in Australian cotton is an interesting problem. Large 302 

patches of severe Verticillium wilt have been found to be caused by the ND VCG2A 303 

(Dadd-Daigle et al. 2020; Jensen and Redfern 2017), which is contrary to reporting on 304 

other cotton farms around the world. This could be dependent on factors other than 305 

the isolate, such as the Australian environment, or the farming conditions, and is an 306 

area that warrants further exploration. While studies to further examine the Australian 307 

V. dahliae population are currently being conducted, no study to date has indicated 308 

what causes the difference in disease potential between Australian and international 309 

cotton crops. In addition, the genetic analyses are revealing an increasing number of 310 

methods by which V. dahliae can adapt. It is no wonder that strategies that work some 311 

of the time, such as crop rotation or the use of resistant varieties, are becoming less 312 

effective (Kirkby et al. 2013; Wheeler et al. 2019).  313 

 314 

There is an increasing need for new mitigation strategies or the development of new 315 

cotton varieties resistant to Verticillium wilt. However, in order to create and 316 

implement these strategies, the current classification system needs to be improved to 317 

better represent the V. dahliae present on Australian cotton farms. Characterisation of 318 

the genetics controlling virulence has improved the classification of VCGs within 319 

related Fusarium sp. by increasing molecular clarity between isolates and developing 320 

new classification systems (Carvalhais et al. 2019). Although there is still some 321 

debate surrounding the best tools to diagnostically identify virulent Fusarium 322 

oxysporum strains (Magdama et al. 2019), a similar molecular understanding could 323 

improve the VCG classification system within V. dahliae by establishing narrower 324 



 14 

classifications or by implementing a new system based on virulence genes unrelated 325 

to VCGs.  326 

 327 

Future research to improve Verticillium wilt on Australian cotton farms needs to 328 

largely build on current research efforts. An improved system for quantification of 329 

inoculum in soils and a better understanding of the inoculum to disease thresholds for 330 

different VCGs can clarify the effectiveness of crop rotation (Wheeler et al. 2019). 331 

While an improved understanding of the environmental conditions and how current 332 

farming methods impact Verticillium wilt on Australian farms can help inform best 333 

farming practices (Kirkby et al. 2013). It is only through continued development of 334 

new tools and a better understanding of V. dahliae genetics to rapidly analyse 335 

Verticillium wilt samples that growers may be able to stay ahead of the pathogen, 336 

preventing a situation where yield loss due to disease outweighs potential yield. 337 

 338 
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