The Verticillium wilt problem in Australian cotton

1	P Dadd-Daigle ^{1,2} , K Kirkby ³ , P Roy Chowdhury ² , M Labbate ² and T. A. Chapman ¹
2	¹ NSW Department of Primary Industries, Biosecurity and Food Safety, Elizabeth
3	Macarthur Agriculture Institute, Woodbridge Road, Menangle, NSW, 2568
4	² School of Life Sciences, The University of Technology Sydney, Harris Street,
5	Ultimo, NSW, 2007
6	³ NSW Department of Primary Industries, Biosecurity and Food Safety, Kamilaroi
7	Highway, Narrabri, NSW, 2390
8	
9	Corresponding author Dr Toni Chapman: toni.chapman@dpi.nsw.gov.au
10	
11	Abstract
12	Verticillium dahliae is a soil-borne phytopathogen and the causal agent of
13	Verticillium wilt. It affects many agriculturally important crops around the world,
14	including cotton. In Australia, the billion-dollar cotton industry is increasingly
15	impacted by Verticillium wilt. Internationally it has been reported that the defoliating
16	V. dahliae Vegetative Compatibility Group (VCG) 1A causes severe damage to
17	cotton. In Australia however, the non-defoliating VCG2A is causing more severe
18	damage to crops in fields than the defoliating VCG1A. This review examines the
19	current research to understand the Australian V. dahliae situation, including current
20	classification systems, genetic analyses and management strategies. It appears that
21	virulence cannot be defined solely by VCG in Australian Verticillium dahliae isolates
22	causing disease in cotton, and that the industry must continually adapt their practices
23	in order to keep the disease under control.

25 Key words

26 Verticillium; cotton; Gossypium hirsutum; V. dahliae

27

28 Introduction

29 In Australia, cotton is a growing billion-dollar industry. Cotton yields have increased 30 from 500 kg per hectare in the 1960's to 2000 kg per hectare in 2013 (Hamilton 31 2016). Cotton crops are largely furrow irrigated, grown on alkaline clay soils and tend 32 to be located near flood plains. There is often reduced or minimum tillage, tail-water 33 recirculated and in some areas permanent bed systems (Kirkby et al. 2013). 34 Sustainability and growth of the cotton industry is reliant on improved cotton 35 varieties, management of soil and water resources, and control of weeds, insect and 36 diseases (Constable 2004). Although Verticillium wilt in Australian cotton is 37 generally well managed, other countries have seen economic losses of 50% or more 38 (Wu and Subbarao 2014). The average incidence levels of Verticillium wilt caused by 39 V. dahliae in Australian cotton are relatively low but yield losses can vary between 10 40 and 62% in some fields (Holman et al. 2016). However, the recent discovery of the 41 defoliating VCG1A and the disease severity of the non-defoliating VCG2A present an 42 additional problem for management of Verticillium wilt as incidences rise (Chapman 43 et al. 2016; Dadd-Daigle et al. 2020; Jensen and Redfern 2017; Kirkby et al. 2013). 44 Hence, Verticillium wilt is becoming a major concern for the Australian cotton 45 industry.

46

47 Verticillium dahliae

48 *Verticillium* encompasses a group of soil-borne ascomycetes. As of 2011, ten

49 *Verticillium* species have been described (Inderbitzin et al. 2011), including V.

50 *dahliae*, the main causal agent of Verticillium wilt. *Verticillium dahliae* is responsible

51 for disease in over 400 plant species across the world. These include many

52 economically important crops such as olives, tomatoes, potatoes, lettuce and cotton

53 (Bhat and Subbarao 1999; Inderbitzin et al. 2011).

54

55 The life cycle of V. dahliae allows it to persist on farms for many years. It survives in 56 soil in highly melanised resistant structures, known as microsclerotia, for over 10 57 years (Davis et al. 1994; Klosterman et al. 2009). These microsclerotia germinate in 58 the presence of host plants, producing hyphae that penetrate the root cortex and reach 59 the xylem. As hyphae and conidia grow within the xylem, the plant host can express 60 symptoms of wilting, necrosis and leaf discolouration (Klimes et al. 2015). As 61 symptoms progress, V. dahliae enters a saprophytic phase where the infection 62 expands to other tissues, such as leaves, and a mass production of microsclerotia 63 occurs. The extent of symptoms can depend on the susceptibility of the host and the 64 infecting strain of V. dahliae. While some plants suffer severe wilting and necrosis, 65 other infections are less severe, allowing the plant to recover (Daayf 2015). 66

67 Historically, the characterisation and classification of V. dahliae has been based on 68 the symptoms exhibited by the host plant, or by the interaction of pathogen virulence 69 and host resistance genes. Consequently, this has led to the use of host-specific 70 terminology and classification, resulting in a number of different classification 71 systems. Verticillium dahliae strains infecting tomato and cotton are divided into 72 "races", classified by the presence or absence of the Avel gene (Hu et al. 2015; 73 Maruthachalam et al. 2010). Strains from cotton are also categorised into defoliating 74 (D) and non-defoliating (ND) pathotypes (Daayf et al. 1995). While the D and ND

75 pathotypes largely align to races 1 and 2, respectively, this is not true for all strains 76 and the systems are generally not used interchangeably (Hu et al. 2015). Host-specific 77 pathology groups also include "eggplant pathotype", "tomato pathotype", "mint 78 pathotype" and "sweet pepper pathotype" (Dung et al. 2012; Komatsu et al. 2001; 79 Papaioannou et al. 2013b). While these classifications are generally understood in 80 studies that focus on strains infecting a single host type, complexity arises when 81 investigating Verticillium strains independently of the plant host they infect. 82 Currently, there is only one system that classifies all V. dahliae strains into groups, 83 known as Vegetative Compatibility Groups (VCGs).

84

85 Vegetative Compatibility Groups (VCGs) in Verticillium dahliae

86 VCGs are determined by strain interaction and describe the formation of prototrophic 87 heterokaryons, a fusion of two genetically distinct cells that occurs when two hyphal 88 cells meet (Puhalla and Mayfield 1974). While not molecularly characterised in V. 89 dahliae, related fungal models have shown that two sets of gene loci, known as vic 90 (vegetative incompatibility) and het (heterokaryon incompatibility) govern the 91 process. For isolates to form a heterokaryon, the alleles at the het or vic loci must be 92 identical (Jiménez-Gasco et al. 2013). In practice, the VCG determination process 93 requires that V. dahliae strains are mutated to become nitrogen non-utilizing "nit 94 mutants". Mutants strains, one or two with known and the other with an unknown 95 VCG, are placed on opposite sides of a minimal media agar plate and monitored for 96 signs of prototrophic growth. If the mutant isolates are able to form heterokaryons, 97 which allow growth on minimal media, the unknown isolate is assigned the same 98 VCG as the known isolate (Joaquim and Rowe 1990). This method has led to the 99 identification of five VCGs in V. dahliae, namely, VCG1 2, 3, 4 and 6, with VCG1

 $100 \qquad \text{and VCG2 further characterised into A and B subgroups, and VCG4 into A, B and }$

101 AB (Papaioannou and Typas 2015; Strausbaugh 1993).

102

103	Vegetative Compatibility Groups have been used to track the evolution and
104	movement of V. dahliae. Several groups found that isolates within VCGs are
105	phylogenetically similar (Collado-Romero et al. 2006) or fit a clonal reproductive
106	model (Dung et al. 2013; Milgroom et al. 2014). Others argued that although isolates
107	of the same VCG may be genetically similar, they are often phylogenetically distant,
108	with members of different subgroups being more closely related (Jiménez-Gasco et al.
109	2013). In most instances VCGs are monophyletic, with some exceptions such as
110	VCG2B (Collado-Romero et al. 2008). Following these studies, the origin of the V .
111	dahliae species has been speculated to be in Europe (Short et al. 2015), while the
112	virulent VCG1A has been traced back to North America (Milgroom et al. 2016).
113	
114	Different plant hosts are often associated with different V. dahliae VCGs. VCG2A is
115	known to be highly pathogenic to tomato (Tsror et al. 2001), VCG2B is highly
116	aggressive in mint (Dung et al. 2013), VCG4A is highly pathogenic to potato (El-
117	Bebany et al. 2013), and VCG1A is virulent in olives (Dervis et al. 2007). In cotton, it
118	has generally been reported that VCG1A causes significant damage while VCG2A
119	and VCG4B are less virulent, although there have been some reports of VCG2B
120	causing damage (Dervis and Bicici 2005; Dervis et al. 2008; Elena 1999; Jiménez-
121	Gasco et al. 2013; Korolev et al. 2001).
122	
123	While VCGs are currently the most widespread method to describe V. dahliae

124 populations, the genetics behind VCGs in *V. dahliae* are not well understood. In their

125 attempt to create a high-throughput VCG screening method, Papaioannou and Typas 126 (2015) also sought to understand the genetic relationship between the two, "strong" 127 and "weak", heterokaryon reactions observed. These authors found that weak 128 interactions tend to be unstable, but there is still a transfer of genetic material, 129 suggesting that they may be vegetatively compatible. Although many other studies 130 acknowledge that weak reactions occur, most regard only strong interactions as 131 compatible (Strausbaugh 1993). This could impact the reliability of results examining 132 relatedness amongst VCGs and highlights a need for a narrower classification system 133 that does not suffer from these issues. Additionally, as the VCG determination process 134 is labour intensive and time-consuming, several groups have attempted to develop 135 alternative methods (Collado-Romero et al. 2009; El-Bebany et al. 2013; Papaioannou 136 et al. 2013a). However, currently, no molecular method is as reliable as the traditional 137 method.

138

139 Verticillium dahliae in Australian cotton

Since 1983, *Verticillium*-infected plant samples have been collected and *V. dahliae*isolates maintained and stored in the culture collection of the NSW Department of

142 Primary Industries (Kirkby et al. 2013). The average incidence of Verticillium wilt

has generally been low throughout NSW. The incidence rose from 5.5% in 2013/2014

144 to 7.1% in 2014/2015 and 6.3% in the 2015/2016 season (Chapman et al. 2016).

145 Disease symptoms are becoming more severe in some patches of Verticillium wilt,

146 with yield reductions reported to be greater than 6 bales/ha. There are concerns that

147 this increase in severity is related to the ND VCG2A strain reported in 2014 (Dadd-

148 Daigle et al. 2020; Smith et al. 2014).

150 It was previously thought that only one VCG type, ND VCG4B, was present in

151 Australia, but in 2014, ND VCG2A was identified (Smith et al. 2014). Following the

discovery of ND VCG2A, analysis of *V. dahliae* historical samples taken from the

153 NSW Department of Primary Industries culture collection revealed the presence of the

154 D VCG1A (Chapman et al. 2016). The D VCG1A has been the cause of severe

155 disease and crop loss overseas (Jiménez-Díaz et al. 2006). However, despite the

156 presence of VCG1A in the historical samples, typical VCG1A disease presentation,

157 including the typical crop losses and complete defoliation of infected plants, has not

158 been a widespread observation in Australia. It is not clear what is causing the

disparity between the severity of D VCG1A and ND VCG2A disease in Australia and

160 overseas. It is possible, given that VCG2A has been shown to infect weeds commonly

161 found on cotton fields (Yildiz et al. 2009), that VCG2A V. dahliae has simply become

162 the most prevalent strain on Australian cotton fields, amplified by the polyetic nature

163 of the pathogen, and has acquired the ability to defoliate cotton plants. However,

164 further analysis of the relationship of genetics to pathogenicity and disease severity in

165 Australian *V. dahliae* VCGs is required.

166

167 Insights from Verticillium dahliae genome sequencing

168 In 2011 the V. dahliae VdLs.17 and V. albo-atrum genomes were sequenced using the

169 whole genome shotgun approach via Sanger sequencing (Klosterman et al. 2011).

170 Although the two \sim 33 Mb genomes were highly similar, there were four 300 kb

171 regions in *V. dahliae* which had no synteny with *V. albo-atrum*. These regions were

172 denoted "Lineage Specific" (LS) regions. The LS regions were found to be highly

173 repetitive and represented over 50% of all identifiable transposable elements

174 contained in *V. dahliae*. Faino et al. (2015) used PacBio long read sequences to create

a "gapless" genome and have since suggested that there are problems with the initial *V. dahliae* VdLs.17 sequence. These authors argue that their method of genome
assembly helps to prevent problems associated with repetitive regions that cause
issues when assembling shorter contigs. Using PacBio sequencing, the VdLs.17
genome was re-assembled. The newly constructed genome indicates that 12% is
composed of repetitive regions, four times higher than was previously thought.

181

182 With the availability of a V. dahliae reference genome, there is an increasing 183 understanding of what makes V. dahliae such an adaptable pathogen with a broad host 184 range. There are suggestions that transposons could be a major reason for the genomic 185 diversity observed and that they contribute to the V. dahliae "plastic genome" driving 186 adaption to new plant hosts (Amyotte et al. 2012; Faino et al. 2016). This is supported 187 by de Jonge et al. (2013) who compared the VdLs.17 reference strain with 10 V. 188 *dahliae* genomes taken from geographically separate regions and hosts. The study 189 revealed that despite the genomes being highly similar, chromosome rearrangements 190 had occurred between all strains. Using RNA-seq data and deletion studies, they 191 showed that effector genes present in the LS regions were important to the 192 development of disease (de Jonge et al. 2013; de Jonge et al. 2012), suggesting that 193 chromosome rearrangements and these LS regions could contribute to V. dahliae's 194 adaptation to new hosts. Jin et al. (2017) explored the organism's use of alternative 195 splicing and developed their own algorithms, alongside previously available software, 196 to analyse V. dahliae cDNA sequences for common splicing events. They found that 197 V. dahliae has one of the most sophisticated splicing systems in eukaryotes, outside of 198 animals, and believe that this alternative splicing could explain some of V. dahliae's 199 plasticity.

200

201	There are an increasing number of studies suggesting that horizontal gene transfer
202	plays an important role in <i>V. dahliae's</i> success as a pathogen. An analysis of <i>V</i> .
203	dahliae isolated from cotton in China, revealed the presence of a virulence gene
204	believed to have originated in Fusarium oxysporum, a related fungal pathogen often
205	found infecting cotton on the same farm (Chen et al. 2017). Their deletion
206	experiments found that removal of this gene affected the ability of the V. dahliae
207	strain to infect cotton, but not lettuce or tomato, highlighting it's ability to acquire
208	new virulence genes as it expands to different hosts. There has also been evidence of
209	V. dahliae acquiring genes from the host plant and from bacteria (de Jonge et al.
210	2012; van Kooten et al. 2019). These studies used phylogenetic analysis to look for
211	candidate genes that are found outside the Verticillium spp. They found numerous
212	candidate genes of bacterial and plant origin, many of which could potentially aid V .
213	dahliae in getting past the host plant's defences.

214

220

215 Management strategies for the control of Verticillium wilt

216 The nature of *V. dahliae* infection makes elimination of the pathogen difficult,

217 however, multiple management strategies have been applied over the years. As the V.

218 *dahliae* life cycle is dependent on microsclerotia present in crop soil, currently the

two main strategies target either the soil itself, for example by soil fumigation, or the

plants through development of resistant varieties (Short et al. 2015). Soil fumigation

- aims to eliminate microsclerotia in crop soil. Traditionally, methyl bromide was used
- to control pathogen populations, but was classified as a Class 1 stratospheric, ozone-
- 223 depleting substance and international regulations dictated by the Montreal Protocol
- now restrict the use of this chemical (Martin 2003). Multiple studies have explored

225	alternatives, including green manures, anaerobic soil disinfection and anaerobic
226	digestion. Green manure is a method utilising volatile components from plant waste to
227	reduce the number of microsclerotia (Yohalem and Passey 2011). Anaerobic soil
228	disinfection uses microbial activity from agricultural or horticultural waste products,
229	combined with mulched plastics, to deplete available oxygen in soil, creating
230	anaerobic conditions to prevent fungal growth (Goud et al. 2004). Anaerobic
231	digestion uses liquid digestate, a by-product from biogas production, as a bio-fertiliser
232	to control microsclerotia levels (Wei et al. 2016). However, the suitability of these
233	methods in commercial processes is still questionable. While, green manures and
234	anaerobic digestion are still relatively new and understudied, the well-studied
235	variants, such as Brassica sp., are deemed insufficient (Neubauer et al. 2014) and
236	anaerobic soil disinfection is not currently economically viable (Wei et al. 2016).
237	
238	Production of resistant cotton varieties is a key strategy in the prevention of
239	Verticillium wilt. The development of resistant varieties in Australia has been
240	ongoing for more than 30 years, with the release of Sicala V-1 in 1990, and Sicala V-
241	2 in 1994 (Liu et al. 2013). Despite successes with Sicala V-2 and subsequent
242	varieties derived from it, the incidence of Verticillium wilt has continued to rise in
243	recent years (Kirkby et al. 2013). This could be linked to the temperature tolerance, as
244	currently the V. dahliae resistance in available cotton varieties breaks down when
245	
	temperatures drop below 22°C (Quinn et al. 2018). Although there is ongoing research
246	into Verticillium resistance (Li et al. 2018; Li et al. 2019; Zhang et al. 2018), the
246 247	temperatures drop below 22°C (Quinn et al. 2018). Although there is ongoing research into Verticillium resistance (Li et al. 2018; Li et al. 2019; Zhang et al. 2018), the development of new cotton varieties that provide adequate yield is slow, and the
246 247 248	temperatures drop below 22°C (Quinn et al. 2018). Although there is ongoing research into Verticillium resistance (Li et al. 2018; Li et al. 2019; Zhang et al. 2018), the development of new cotton varieties that provide adequate yield is slow, and the current varieties do not provide a substantial increase in resistance (Dadd-Daigle et al.

250 meaningful for Australian cotton, it is difficult to develop targeted and effective251 strategies.

252

253 Currently, crop rotation is one of the methods used to help manage Verticillium wilt 254 on cotton farms in Australia. Crop rotation is the practice of varying the successive 255 crops in a particular field to assist in the control of disease and weed management. 256 Each crop varies in its susceptibility to certain pathogens. The success of crop rotation 257 relies on initial inoculum levels in the soil, the number of rotations with non-host 258 crops and the wetting and drying cycles that assist in the breakdown of inoculum in 259 the soil (Wheeler et al. 2019). For example, most cotton farmers rotate with barley or 260 sorghum as they are not listed as host crops for V. dahliae. While commodity prices 261 are the short-term driving force, farms with high disease levels are looking at rotation 262 to ensure cotton remains sustainable in the long term (K. Kirby, personal 263 communication, September 2016). The current recommendations to growers are long 264 rotations with moderate irrigation to reduce overall pathogen levels and prevent 265 widespread movement of the microsclerotia (Holman et al. 2016; Scheikowski et al. 266 2019). 267 268 The development of real-time PCR protocols to determine microsclerotial load from 269 soil samples should assist with managing crop rotation practices (Banno et al. 2011; 270 Gharbi et al. 2016). Removal of the rotational crop plant debris has also been shown

to reduce the number of microsclerotia in the soil, but does sacrifice soil health

272 (Chawla et al. 2012). However, the known host range of *V. dahliae*, both symptomatic

and asymptomatic, is expanding as the pathogen comes into contact with new plant

274 species. There have been instances where a symptomless host has exhibited extensive

vascular colonization and so contributes to the microsclerotial load despite the lack of
symptoms (Wheeler and Johnson 2016). This makes selection of a suitable rotation
crop more complex and highlights the need for a better understanding of the genomics
of *V. dahliae*. In some instances, after multiple years of crop rotation followed by a
cotton crop, the incidence of Verticillium wilt rises to match those found on farms
that have had continuous cotton growth (Wheeler et al. 2019).

281

282 Given that the current attempts to mitigate Verticillium wilt on cotton farms is 283 becoming increasingly ineffective, new strategies need to be explored for use in 284 Australia. One area that hasn't been well examined in Australian cotton is the use of 285 endophytes as a biological control. The idea behind this strategy is to pre-infect the 286 plants with a microbe that will inhabit the same niche as V. dahliae, preventing 287 infection by the pathogen. This has been explored with both bacterial and fungal 288 endophytes (Li et al. 2012). Vagelas and Leontopoulos (2015) used the less virulent 289 V. nigrescens to take up the niche usually filled by V. dahliae, preventing the 290 infiltration of conidia by the more virulent species, while Yuan et al. (2017) looked at 291 using unrelated fungal species as seed treatments. Although both studies saw a 292 reduction in V. dahliae caused Verticillium wilt, the use of Penicillium 293 simplicissimum and Leptosphaeria sp. also saw an increase in cotton seed production 294 as the number of cotton bolls increased (Yuan et al. 2017). As endophytes have been 295 shown to be beneficial in other areas of crop sustainability, such as protection from 296 insect pests and abiotic stress (Lugtenberg et al. 2016), this area could be hugely 297 beneficial to the Australian cotton industry which is often heavily impacted by water 298 availability.

299

300

301 Improving future understanding of the Verticillium wilt problem in Australia 302 The nature of Verticillium wilt in Australian cotton is an interesting problem. Large 303 patches of severe Verticillium wilt have been found to be caused by the ND VCG2A 304 (Dadd-Daigle et al. 2020; Jensen and Redfern 2017), which is contrary to reporting on 305 other cotton farms around the world. This could be dependent on factors other than 306 the isolate, such as the Australian environment, or the farming conditions, and is an 307 area that warrants further exploration. While studies to further examine the Australian 308 V. dahliae population are currently being conducted, no study to date has indicated 309 what causes the difference in disease potential between Australian and international 310 cotton crops. In addition, the genetic analyses are revealing an increasing number of 311 methods by which V. dahliae can adapt. It is no wonder that strategies that work some 312 of the time, such as crop rotation or the use of resistant varieties, are becoming less 313 effective (Kirkby et al. 2013; Wheeler et al. 2019). 314 315 There is an increasing need for new mitigation strategies or the development of new 316 cotton varieties resistant to Verticillium wilt. However, in order to create and 317 implement these strategies, the current classification system needs to be improved to 318 better represent the V. dahliae present on Australian cotton farms. Characterisation of 319 the genetics controlling virulence has improved the classification of VCGs within 320 related *Fusarium* sp. by increasing molecular clarity between isolates and developing 321 new classification systems (Carvalhais et al. 2019). Although there is still some 322 debate surrounding the best tools to diagnostically identify virulent Fusarium

323 *oxysporum* strains (Magdama et al. 2019), a similar molecular understanding could

324 improve the VCG classification system within *V. dahliae* by establishing narrower

325 classifications or by implementing a new system based on virulence genes unrelated326 to VCGs.

327

328	Future research to improve Verticillium wilt on Australian cotton farms needs to
329	largely build on current research efforts. An improved system for quantification of
330	inoculum in soils and a better understanding of the inoculum to disease thresholds for
331	different VCGs can clarify the effectiveness of crop rotation (Wheeler et al. 2019).
332	While an improved understanding of the environmental conditions and how current
333	farming methods impact Verticillium wilt on Australian farms can help inform best
334	farming practices (Kirkby et al. 2013). It is only through continued development of
335	new tools and a better understanding of V. dahliae genetics to rapidly analyse
336	Verticillium wilt samples that growers may be able to stay ahead of the pathogen,
337	preventing a situation where yield loss due to disease outweighs potential yield.

338

339 Acknowledgements

340 This project is supported by funding from the Australian Government Department of

341 Agriculture as part of its Rural R&D for Profit programme and the Cotton Research

342 and Development Corporation. Rosalie Daniel and John Webster reviewed and

343 improved an earlier version of this manuscript.

344

345 **References**

346	Amyotte SG, Tan X, Pennerman K, del Mar Jimenez-Gasco M, Klosterman SJ, Ma L-
347	J, Dobinson KF, Veronese P (2012) Transposable elements in
348	phytopathogenic Verticillium spp.: insights into genome evolution and
349	inter- and intra-specific diversification BMC Genomics 13:1-20
350	doi:10.1186/1471-2164-13-314
351	Banno S, Saito H, Sakai H, Urushibara T, Ikeda K, Kabe T, Kemmochi I, Fujimura M
352	(2011) Quantitative nested real-time PCR detection of Verticillium

353	longisporum and V. dahliae in the soil of cabbage fields Journal of General
354	Plant Pathology 77:282-291 doi:10.1007/s10327-011-0335-9
355	Bhat RG, Subbarao KV (1999) Host Range Specificity in <i>Verticillium dahliae</i>
356	Phytopathology 89:1218-1225 doi:10.1094/PHYT0.1999.89.12.1218
357	Carvalhais LC, Henderson J, Rincon-Florez VA, O'Dwyer C, Czislowski E, Aitken
358	EAB, Drenth A (2019) Molecular Diagnostics of Banana Fusarium Wilt
359	Targeting Secreted-in-Xylem Genes Frontiers in Plant Science 10
360	doi:10.3389/fpls.2019.00547
361	Chapman TA, Chambers GA, Kirkby K, Jiménez-Díaz RM (2016) First report of the
362	presence of <i>Verticillium dahlide</i> VCG1A in Australia Australasian Plant
363	
364	Chawla S, Woodward JE, Wheeler TA (2012) Influence of <i>Verticillium dahliae</i>
365	Infested Peanut Residue on Wilt Development in Subsequent Cotton
366	International Journal of Agronomy 2012:1-5 doi:10.1155/2012/212075
367	Chen JY, Liu C, Gui YJ, Si KW, Zhang DD, Wang J, Short Dylan PG, Huang JQ, Li NY,
368	Liang Y, Zhang WQ, Yang L, Ma XF, Li TG, Zhou L, Wang BL, Bao YM,
369	Subbarao Krishna V, Zhang GY, Dai XF (2017) Comparative genomics
370	reveals cotton-specific virulence factors in flexible genomic regions in
371	Verticillium dahliae and evidence of horizontal gene transfer from
372	<i>Fusarium</i> New Phytologist 217:756-770 doi:10.1111/nph.14861
373	Collado-Romero M, Berbegal M, Jiménez-Díaz RM, Armengol J, Mercado-Blanco J
374	(2009) A PCR-based 'molecular tool box' for in planta differential
375	detection of Verticillium dahliae vegetative compatibility groups infecting
376	artichoke Plant Pathology 58:515-526 doi:10.1111/j.1365-
377	3059.2008.01981.x
378	Collado-Romero M, Mercado-Blanco J, Olivares-García C, Jiménez-Díaz RM (2008)
379	Phylogenetic Analysis of Verticillium dahliae Vegetative Compatibility
380	Groups Phytopathology® 98:1019-1028 doi:10.1094/PHYTO-98-9-1019
381	Collado-Romero M, Mercado-Blanco J, Olivares-García C, Valverde-Corredor A,
382	Jiménez-Díaz RM (2006) Molecular Variability Within and Among
383	Verticillium dahliae Vegetative Compatibility Groups Determined by
384	Fluorescent Amplified Fragment Length Polymorphism and Polymerase
385	Chain Reaction Markers Phytopathology 96:485-495
386	doi:10.1094/PHYTO-96-0485
387	Constable G (2004) Research's contribution to the evolution of the Australian
388	cotton industry Proceedings of the 4th International Crop Science
389	Congress Brisbane, Australia
390	Daayf F (2015) Verticillium wilts in crop plants: Pathogen invasion and host
391	defence responses Can J Plant Pathol 37:8-20
392	doi:10.1080/07060661.2014.989908
393	
	Daayf F, Nicole M, Geiger J-P (1995) Differentiation of Verticillium dahliae
394	Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on
394 395	Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on cotton European Journal of Plant Pathology 101:69-79
394 395 396	Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on cotton European Journal of Plant Pathology 101:69-79 doi:10.1007/BF01876095
394 395 396 397	 Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on cotton European Journal of Plant Pathology 101:69-79 doi:10.1007/BF01876095 Dadd-Daigle P, Kirkby K, Collins D, Cuddy W, Lonergan P, Roser S, Chowdhury
394 395 396 397 398	 Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on cotton European Journal of Plant Pathology 101:69-79 doi:10.1007/BF01876095 Dadd-Daigle P, Kirkby K, Collins D, Cuddy W, Lonergan P, Roser S, Chowdhury PR, Labbate M, Chapman TA (2020) Virulence not linked with vegetative
394 395 396 397 398 399	 Daayf F, Nicole M, Geiger J-P (1995) Differentiation of <i>Verticillium dahliae</i> populations on the basis of vegetative compatibility and pathogenicity on cotton European Journal of Plant Pathology 101:69-79 doi:10.1007/BF01876095 Dadd-Daigle P, Kirkby K, Collins D, Cuddy W, Lonergan P, Roser S, Chowdhury PR, Labbate M, Chapman TA (2020) Virulence not linked with vegetative compatibility groups in Australian cotton <i>Verticillium dahliae</i> isolates

401	Davis JR, Pavek JJ, Corsini DL, Sorensen LH, Schneider AT, Everson DO,
402	Westermann DT, Huisman OC (1994) Influence of continuous cropping of
403	several potato clones on the epidemiology of Verticillium wilt of potato
404	Phytopathology 84:207-214 doi:10.1094/Phyto-84-207
405	de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma
406	BPHJ (2013) Extensive chromosomal reshuffling drives evolution of
407	virulence in an asexual pathogen Genome Research 23:1271-1282
408	doi:10.1101/gr.152660.112
409	de Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber
410	MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012)
411	Tomato immune receptor <i>Ve1</i> recognizes effector of multiple fungal
412	pathogens uncovered by genome and RNA sequencing Proceedings of the
413	National Academy of Sciences 109:5110-5115
414	doi:10.1073/pnas.1119623109
415	Dervis S, Bicici M (2005) Vegetative compatibility groups in <i>Verticillium dahliae</i>
416	isolates from cotton in Turkey Phytoparasitica 33:157-168
417	doi:10.1007/BF03029975
418	Dervis S, Erten L, Soylu S, Tok FM, Kurt S, Yıldız M, Soylu EM (2007) Vegetative
419	compatibility groups in Verticillium dahliae isolates from olive in western
420	Turkey European Journal of Plant Pathology 119:437-447
421	doi:10.1007/s10658-007-9183-z
422	Dervis S, Kurt S, Soylu S, Erten L, Mine Soylu E, Yıldız M, Tok FM (2008)
423	Vegetative compatibility groups of Verticillium dahliae from cotton in the
424	southeastern anatolia region of Turkey Phytoparasitica 36:74-83
425	doi:10.1007/BF02980750
426	Dung JKS, Peever TL, Johnson DA (2012) Verticillium dahliae Populations from
427	Mint and Potato Are Genetically Divergent with Predominant Haplotypes
428	Phytopathology® 103:445-459 doi:10.1094/PHYTO-06-12-0133-R
429	Dung JKS, Peever TL, Johnson DA (2013) Verticillium dahliae Populations from
430	Mint and Potato Are Genetically Divergent with Predominant Haplotypes
431	Phytopathology 103:445-459 doi:10.1094/PHYTO-06-12-0133-R
432	El-Bebany AF, Alkher H, Adam LR, Daayf F (2013) Vegetative compatibility of
433	Verticillium dahliae isolates from potato and sunflower using nitrate non-
434	utilizing (<i>nit</i>) mutants and PCR-based approaches Can J Plant Pathol 35:1-
435	9 doi:10.1080/07060661.2012.702128
436	Elena K (1999) Genetic Relationships Among <i>Verticillium dahliae</i> Isolates from
437	Cotton in Greece Based on Vegetative Compatibility European Journal of
438	Plant Pathology 105:609-616 doi:10.1023/A:1008771112068
439	Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A, Wittenberg AH,
440	Thomma BP (2015) Single-Molecule Real-Time Sequencing Combined
441	with Optical Mapping Yields Completely Finished Fungal Genome MBio
442	6:e00936-00915 doi:10.1128/mBio.00936-15
443	Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ,
444	Thomma BPHJ (2016) Transposons passively and actively contribute to
445	evolution of the two-speed genome of a fungal pathogen Genome
446	Research 26:1091-1100 doi:10.1101/gr.204974.116
447	Gharbi Y, Barkallah M, Bouazizi E, Chetti M, Krid S, Triki MA, Gdoura R (2016)
448	Development and validation of a new real-time assay for the
449	quantification of <i>Verticillium dahliae</i> in the soil: a comparison with

450	conventional soil plating Mycological Progress 15:1-13
451	doi:10.1007/s11557-016-1196-6
452	Goud J-KC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-Term
453	Effect of Biological Soil Disinfestation on Verticillium Wilt Plant Disease
454	88:688-694 doi:10.1094/PDIS.2004.88.7.688
455	Hamilton D (2016) Reaping the benefits of innovation - the Australian cotton
456	story Agricultural Science 28:18-24
457	Holman S, Kirkby K, Smith L, Hartnett H (2016) Vert update: The latest in vert
458	research CottonInfo fact sheet September 2016
459	Hu X-P, Gurung S, Short DPG, Sandoya GV, Shang W-J, Hayes RJ, Davis RM,
460	Subbarao KV (2015) Nondefoliating and Defoliating Strains from Cotton
461	Correlate with Races 1 and 2 of Verticillium dahliae Plant Disease
462	99:1713-1720 doi:10.1094/PDIS-03-15-0261-RE
463	Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV (2011)
464	Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen
465	Verticillium, with the Descriptions of Five New Species PLoS ONE
466	6:e28341 doi:10.1371/journal.pone.0028341
467	Jensen M, Redfern R (2017) Breaking the Verticillium cycle vol Winter 2017.
468	Cotton Research and Development Corporation,
469	Jiménez-Díaz RM, Mercado-Blanco J, Olivares-García C, Collado-Romero M,
470	Bejarano-Alcázar J, Rodríguez-Jurado D, Giménez-Jaime A, García-Jiménez
471	J, Armengol J (2006) Genetic and Virulence Diversity in Verticillium
472	dahliae Populations Infecting Artichoke in Eastern-Central Spain
473	Phytopathology 96:288-298 doi:10.1094/PHYTO-96-0288
474	Jiménez-Gasco MdM, Malcolm GM, Berbegal M, Armengol J, Jiménez-Díaz RM
475	(2013) Complex Molecular Relationship Between Vegetative
476	Compatibility Groups (VCGs) in <i>Verticillium dahliae</i> : VCGs Do Not Always
477	Align with Clonal Lineages Phytopathology 104:650-659
478	doi:10.1094/PHYTO-07-13-0180-R
479	Jin L, Li G, Yu D, Huang W, Cheng C, Liao S, Wu Q, Zhang Y (2017) Transcriptome
480	analysis reveals the complexity of alternative splicing regulation in the
481	fungus Verticillium dahliae BMC Genomics 18:130 doi:10.1186/s12864-
482	017-3507-у
483	Joaquim TR, Rowe RC (1990) Reassessment of Vegetative Compatibility
484	relationships among strains of Verticillium dahliae using nitrate-
485	nonutilizing mutants Phytopathology 80:1160-1166 doi: 10.1094/Phyto-
486	80-1160
487	Kirkby KA, Lonergan PA, Allen SJ (2013) Three decades of cotton disease surveys
488	in NSW, Australia Crop and Pasture Science 64:774-779
489	doi:10.1071/CP13143
490	Klimes A, Dobinson KF, Thomma BPHJ, Klosterman SJ (2015) Genomics Spurs
491	Rapid Advances in Our Understanding of the Biology of Vascular Wilt
492	Pathogens in the Genus <i>Verticillium</i> Annual Review of Phytopathology
493	53:181-198 doi:10.1146/annurev-phyto-080614-120224
494	Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity,
495	pathogenicity, and management of <i>Verticillium</i> species Annu Rev
496	Phytopathol 47:39-62 doi:10.1146/annurev-phyto-080508-081748
497	Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z,
498	Henrissat B, Lee Y-H, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A,

499	de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z,
500	Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J,
501	Cuomo CA, Dobinson KF, Ma L-J (2011) Comparative Genomics Yields
502	Insights into Niche Adaptation of Plant Vascular Wilt Pathogens PLoS
503	pathogens 7:e1002137 doi:10.1371/journal.ppat.1002137
504	Komatsu T, Sumino A, Kagevama K (2001) Characterization of <i>Verticillium</i>
505	dahliae Isolates from Potato on Hokkaido by Random Amplified
506	Polymorphic DNA (RAPD) and REP-PCR Analyses Journal of General Plant
507	Pathology 67:23-27 doi:10.1007/PL00012982
508	Korolev N, Pérez-Artés E, Bejarano-Alcázar J, Rodríguez-Jurado D, Katan J, Katan
509	T. Jiménez-Díaz RM (2001) Comparative Study of Genetic Diversity and
510	Pathogenicity Among Populations of <i>Verticillium Dahliae</i> from Cotton in
511	Spain and Israel European Journal of Plant Pathology 107:443-456
512	doi:10.1023/A:1011212426447
513	Li CH, Shi L, Han O, Hu HL, Zhao MW, Tang CM, Li SP (2012) Biocontrol of
514	verticillium wilt and colonization of cotton plants by an endophytic
515	bacterial isolate I Appl Microbiol 113:641-651 doi:10.1111/i.1365-
516	2672.2012.05371.x
517	Li NY, Ma XF, Short DPG, Li TG, Zhou L, Gui YI, Kong ZO, Zhang DD, Zhang WO, Li
518	II. Subbarao KV. Chen IY. Dai XF (2018) The island cotton NBS-LRR gene
519	GbaNA1 confers resistance to the non-race 1 <i>Verticillium dahliae</i> isolate
520	Vd991 Molecular Plant Pathology 19:1466-1479 doi:10.1111/mpp.12630
521	Li ZK, Chen B, Li XX, Wang IP, Zhang Y, Wang XF, Yan YY, Ke HF, Yang I, Wu IH,
522	Wang GN, Zhang GY, Wu LO, Wang XY, Ma ZY (2019) A newly identified
523	cluster of glutathione S-transferase genes provides Verticillium wilt
524	resistance in cotton Plant I 98:213-227 doi:10.1111/tpi.14206
525	Liu S, Reid P, Stiller W, Constable G (2013) The contribution of new varieties to
526	cotton vield improvement. CSIRO Plant Industry, Narrabri
527	Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable
528	crop production FEMS Microbiol Ecol 92 doi:10.1093/femsec/fiw194
529	Magdama F, Monserrate-Maggi L, Serrano L, Sosa D, Geiser DM, Jiménez-Gasco
530	MdM (2019) Comparative analysis uncovers the limitations of current
531	molecular detection methods for Fusarium oxysporum f. sp. cubense race
532	4 strains PLOS ONE 14:e0222727 doi:10.1371/journal.pone.0222727
533	Martin FN (2003) Development of alternative strategies for management of
534	soilborne pathogens currently controlled with methyl bromide Annu Rev
535	Phytopathol 41:325-350 doi:10.1146/annurev.phyto.41.052002.095514
536	Maruthachalam K, Atallah ZK, Vallad GE, Klosterman SJ, Hayes RJ, Davis RM,
537	Subbarao KV (2010) Molecular Variation Among Isolates of Verticillium
538	dahliae and Polymerase Chain Reaction-Based Differentiation of Races
539	Phytopathology 100:1222-1230 doi:10.1094/PHYTO-04-10-0122
540	Milgroom MG, del Mar Jiménez-Gasco M, Olivares-García C, Jiménez-Díaz RM
541	(2016) Clonal Expansion and Migration of a Highly Virulent, Defoliating
542	Lineage of Verticillium dahliae Phytopathology 106:1038-1046
543	doi:10.1094/PHYTO-11-15-0300-R
544	Milgroom MG, Jiménez-Gasco MdM, Olivares García C, Drott MT, Jiménez-Díaz RM
545	(2014) Recombination between Clonal Lineages of the Asexual Fungus
546	Verticillium dahliae Detected by Genotyping by Sequencing PLoS ONE
547	9:e106740 doi:10.1371/journal.pone.0106740

548	Neubauer C, Heitmann B, Müller C (2014) Biofumigation potential of
549	Brassicaceae cultivars to Verticillium dahliae European Journal of Plant
550	Pathology 140:341-352 doi:10.1007/s10658-014-0467-9
551	Papaioannou IA, Dimopoulou CD, Typas MA (2013a) Structural and phylogenetic
552	analysis of the rDNA intergenic spacer region of <i>Verticillium dahliae</i> FEMS
553	microbiology letters 347:23-32 doi:10.1111/1574-6968.12215
554	Papaioannou IA, Ligoxigakis EK, Vakalounakis DJ, Markakis EA, Typas MA
555	(2013b) Phytopathogenic, morphological, genetic and molecular
556	characterization of a <i>Verticillium dahliae</i> population from Crete, Greece
557	European Journal of Plant Pathology 136:577-596 doi:10.1007/s10658-
558	013-0189-4
559	Papaioannou IA, Typas MA (2015) High-Throughput Assessment and Genetic
560	Investigation of Vegetative Compatibility in <i>Verticillium dahliae</i> Journal of
561	Phytopathology 163:475-485 doi:10.1111/jph.12345
562	Puhalla JE, Mayfield JE (1974) The Mechanism of Heterokaryotic Growth in
563	Verticillium dahliae Genetics 76:411-422
564	Quinn J, Eveleigh R, Ford B, Millyard J, Teague C, Barry C, Lee S, Devlin A,
565	McDonald C (2018) Verticillium Wilt. Facts on Friday vol October. Cotton
566	Seed Distributors, Wee Waa, Australia
567	Scheikowski L, Smith L, Vadakattu G, Shuey T, Kafle D (2019) Longer rotations
568	are required to reduce Verticillium where disease levels are high vol
569	December18-January19.
570	Short DPG, Sandoya G, Vallad GE, Koike ST, Xiao C-L, Wu B-M, Gurung S, Hayes RJ,
571	Subbarao KV (2015) Dynamics of Verticillium Species Microsclerotia in
572	Field Soils in Response to Fumigation, Cropping Patterns, and Flooding
573	Phytopathology 105:638-645 doi:10.1094/PHYTO-09-14-0259-R
574	Smith L, Scheikowski L, Bauer B, Lehane J, Allen S (2014) Detection of New
575	Pathogens in Australian Cotton Cotton Research and Development
576	Corporationon behalf of the 17th Australian Cotton Conference
577	Strausbaugh CA (1993) Assessment of Vegetative Compatibility and Virulence of
578	Verticillium dahliae Isolates from Idaho Potatoes and Tester Strains
579	Phytopathology 83:1253-1258
580	Tsror L, Hazanovsky M, Mordechi-Lebiush S, Sivan S (2001) Aggressiveness of
581	Verticillium dahliae isolates from different vegetative compatibility
582	groups to potato and tomato Plant Pathology 50:477-482
583	doi:10.1046/j.1365-3059.2001.00587.x
584	Vagelas I, Leontopoulos S (2015) Cross-protection of cotton against Verticillium
585	wilt by Verticillium nigrescens Emirates Journal of Food and Agriculture
586	27:687-691 doi:10.9755/ejfa.2015-04-047
587	van Kooten M, Shi-Kunne X, Thomma BPHJ, Depotter JRL, Seidl MF (2019) The
588	Genome of the Fungal Pathogen Verticillium dahliae Reveals Extensive
589	Bacterial to Fungal Gene Transfer Genome Biology and Evolution 11:855-
590	868 doi:10.1093/gbe/evz040
591	Wei F, Passey T, Xu X (2016) Effects of individual and combined use of bio-
592	fumigation-derived products on the viability of Verticillium dahliae
593	microsclerotia in soil Crop Protection 79:170-176
594	doi: <u>http://dx.doi.org/10.1016/j.cropro.2015.09.008</u>

595	Wheeler DL, Johnson DA (2016) Verticillium dahliae Infects, Alters Plant
596	Biomass, and Produces Inoculum on Rotation Crops Phytopathology®
597	106:602-613 doi:10.1094/PHYTO-07-15-0174-R
598	Wheeler TA, Bordovsky JP, Keeling JW (2019) The effectiveness of crop rotation
599	on management of Verticillium wilt over time Crop Protection 121:157-
600	162 doi: <u>https://doi.org/10.1016/j.cropro.2019.03.021</u>
601	Wu BM, Subbarao KV (2014) A Model for Multiseasonal Spread of Verticillium
602	Wilt of Lettuce Phytopathology 104:908-917 doi:10.1094/PHYTO-12-13-
603	0333-R
604	Yildiz A, Dogan M, Boz Ö, Benlioglu S (2009) Weed hosts of Verticillium dahliae
605	in cotton fields in Turkey and characterization of V. dahliae isolates from
606	weeds Phytoparasitica 37:171-178 doi:10.1007/s12600-009-0027-6
607	Yohalem D, Passey T (2011) Amendment of soils with fresh and post-extraction
608	lavender (<i>Lavandula angustifolia</i>) and lavandin (<i>Lavandula × intermedia</i>)
609	reduce inoculum of Verticillium dahliae and inhibit wilt in strawberry
610	Applied Soil Ecology 49:187-196
611	doi: <u>http://dx.doi.org/10.1016/j.apsoil.2011.05.006</u>
612	Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of
613	Endophytic Fungi Isolated from Cotton Roots for Biological Control
614	against Verticillium Wilt Disease PLoS ONE 12:e0170557
615	doi:10.1371/journal.pone.0170557
616	Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J, Liu S, Hu
617	Q, Miao Y, Lindsey K, Tu L, Zhu L, Zhang X (2018) Long noncoding RNAs
618	involve in resistance to Verticillium dahliae, a fungal disease in cotton
619	Plant Biotechnology Journal 16:1172-1185 doi:10.1111/pbi.12861
620	