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Abstract 18 

Biodiesel is a fuel that has numerous benefits over traditional petrodiesel. The 19 

transesterification process is the most popular method for biodiesel production from various 20 

sources, categorised as first, second and third generation biodiesel depending on the source. 21 

The transesterification process is subject to a variety of factors that can be taken into account 22 

to improve biodiesel yield. One of the factors is catalyst type and concentration, which plays a 23 

significant role in the transesterification of biodiesel sources. At present, chemical and 24 

biological catalysts are being investigated and each catalyst has its advantages and 25 

disadvantages. Recently, nanocatalysts have drawn researchers’ attention to the efficient 26 

production of biodiesel. This article discusses recent work on the role of several nanocatalysts 27 

in the transesterification reaction of various sources in the development of biodiesel. A large 28 

number of literature from highly rated journals in scientific indexes is reviewed, including the 29 

most recent publications. Most of the authors reported that nanocatalysts show an important 30 

influence regarding activity and selectivity. This study highlights that in contrast to 31 

conventional catalysts, the highly variable surface area of nanostructure materials favours 32 

interaction between catalysts and substrates that efficiently boost the performance of products. 33 

Finally, this analysis provides useful information to researchers in developing and processing 34 

cost-effective biodiesel. 35 

36 

Keywords: Biofuel feedstock; biodiesel production technologies; alternative fuel; clean 37 

energy; nanocatalysts development; environmental sustainability. 38 
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List of abbreviation 43 

FFA  Free Fatty Acids   44 

FAME  Fatty Acid Methyl Ester 45 

NP  Nanoparticles 46 

MNPs  Magnetic nanoparticles  47 
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1. Introduction 49 

Biodiesel has been known as one of the most promising renewable fuels because of its 50 

biodegradability, sustainability, and role in the reduction of pollutant emissions in recent years 51 

(Naylor and Higgins 2017, Muhammad et al. 2021). Many countries around the world are 52 

producing biodiesel from different sources (Figure 1). In addition, biodiesel has become 53 

increasingly more affordable and is commonly used in many parts of the world because of the 54 

introduction of subsidies and tax exemptions. Biodiesel is the ester of a long chain (C14–C24), 55 

and is synthesized from several lipid content sources including vegetable oils, animal fats and 56 

waste oil (Khoobbakht et al. 2016, Mukhopadhyay et al. 2017). Glycerol is a by-product of the 57 

biodiesel production process and is estimated to enhance the financial benefits of the biodiesel 58 

industry further. It has been reported that about 10 wt.% glycerol can be obtained from the total 59 

production volume and it can be used as a combustion improver of diesel/biodiesel (Damanik 60 

et al. 2018). Biodiesel shows similar characteristics to the diesel fuel in terms of beneficial 61 

physical and chemical properties, including viscosity, flash point and cetane number (Fattah et 62 

al. 2014, Arbab et al. 2015, Ong et al. 2019).  63 

 64 
Figure 1: Global biodiesel production by country in 2018 (UNdata 2018). 65 
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 66 

Over 350 oil-bearing plants worldwide have been listed as possible sources of biodiesel, which 67 

can generally be graded into first, second, and third generation biodiesel (Ahmad et al. 2011). 68 

Figure 2 shows the main feedstocks of biodiesel in different countries.  69 

 70 
Figure 2. Source of biodiesel in different countries, adopted from (Gardy et al. 2019) with permission. 71 

Biodiesel is usually categorized as first, second and third generation based on its source (Ong 72 

et al. 2014, Coh et al. 2019, Silitonga et al. 2019, Lau et al. 2020, Silitonga et al. 2020). First 73 

generation biodiesel feedstocks are derived from food and edible oils. Commonly used 74 

feedstocks for first generation biodiesel include soybean, sunflower, oil palm, rapeseed, canola 75 

and cottonseed (Samani et al. 2021). However, it has been argued that the use of edible food 76 

crops for the production of first generation biofuels effectively reduces the amount of edible 77 

food for human consumption, thus increasing food prices in the global food market (Bhuiya et 78 

al. 2020). Although first generation biofuels help satisfy the human need for fuel, at the same 79 

time it depletes some resources intended for the even more important human need for 80 

nourishment. This provides an incentive for researchers to explore other sources of biofuels 81 

that do not disrupt the human food supply. 82 
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Second generation biodiesel is obtained from feedstocks from non-edible sources, e.g. crops, 83 

non-edible oil and other non-edible sources such as wood, husk, etc., which are then processed 84 

to produce biodiesel (Rahman et al. 2016, Rahman et al. 2017). These sources practically 85 

eliminate our dependency on edible food crops for the production of fuel, which sparked the 86 

“food vs fuel” debate in the first place. Feedstocks used for the production of second generation 87 

biodiesel include jatropha, mahua, jojoba oil, tobacco seed, Calophyllum, and sea mango (Ong 88 

et al. 2014, Lee et al. 2020). Commercial and residential waste is also included in this category. 89 

The use of these feedstocks to produce second generation biodiesel has been proven to be more 90 

efficient and more environmentally friendly compared to the feedstocks used for first 91 

generation biodiesel (Pinzi 2009). However, some problems remain. By its very nature, crops 92 

require fertile land to grow, and the cultivation of non-edible crops for second generation 93 

biodiesel requires an extensive amount of fertile land, which competes with land used for the 94 

cultivation of edible food crops. Third-generation biodiesel reduces both the food and land 95 

problems related to first and second generation biodiesel. Algae, specifically microalgae, are 96 

used as feedstocks for the production of third generation biodiesel (Chia et al. 2018, Mofijur et 97 

al. 2019). The use of microalgae for biodiesel production is considered a more feasible 98 

alternative compared to feedstocks used for first and second generation biodiesel (Saladini et 99 

al. 2016, Leong et al. 2018, Hossain et al. 2020), with microalgae having the potential to 100 

produce a yield of 15–300 times more than the yield from a traditional crop in relation to 101 

plantation area (Hossain et al. 2019, Hossain et al. 2019). Table 1 shows the advantages and 102 

challenges of first, second and third generation biodiesel sources.  103 

Table 1. Advantages and challenges of first, second and third generation biodiesel sources. (Mofijur et al. 104 

2013, Mofijur et al. 2013, Leong et al. 2018). 105 

Biodiesel types Sources Advantages Challenges 

First generation  

 

Edible oil 

feedstock   
 Renewable source 

 Environment-friendly 

 Easy conversion into biofuel 

 Competes with food crops (food-

energy conflict) 
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 Rising cost of food due to food 

competition 

 Land scarcity 

Second 

generation 

Non-edible oil 

feedstock 

  

 Renewable source 

 Environment-friendly 

 Does not compete with food 

crops 

 Effective land utilization (non-

arable lands) 

 Land and water use competition 

 Requires sophisticated downstream 

processing technologies 

 High production cost 

 Uncertain long-term supply of oil 

yield 

Third generation Oleaginous 

microbes 

  

 

 Renewable source 

 Environment-friendly 

 No conflict with food or land 

usage 

 Higher growth rate tendencies 

 High cell lipid accumulation 

 Insufficient biomass production for 

commercialization 

 High initial production and setup 

costs for economic viability (Large 

scale). 

 106 

Oils and fats can be used in different ways, including direct use, blending, micro-emulsions, 107 

pyrolysis and transesterification (Mofijur et al. 2012). Among these methods, 108 

transesterification is the most common method of converting oils and fats (Mofijur et al. 2016). 109 

As mentioned, one of the critical factors that affect the transesterification process is the type 110 

and concentration of catalysts (Mofijur et al. 2017). The use of catalysts in the 111 

transesterification process speeds up the reaction rate, thus increasing the biodiesel yield. 112 

Besides, the use of a catalyst in the production process contributes to a tangible response to the 113 

production rate. Different types of catalysts are used to produce biodiesel through the 114 

transesterification process from different sources. Nevertheless, these catalysts can be 115 

categorized into four major groups, i.e., homogenous catalysts, heterogeneous catalysts, 116 

biocatalysts, and nanocatalysts (Ruhul et al. 2015, Akubude et al. 2019). A number of recent 117 

advances in catalytic converting of oils and fats to biodiesel has been observed. Among them, 118 

the development of biodiesel using nanocatalysts offers some advantages over traditional 119 

acid/base catalysts. Nanocatalysts typically enhance reaction kinetics by enabling a reaction to 120 

occur at a lower temperature, reducing side reactions and increasing recycling levels and 121 

energy recovery (Ghanbari et al. 2017). The highly variable surface area and superficial energy 122 

of nanoscale catalysts contribute to high catalytic activity. Nanocatalysts offer promising 123 

Auth
or 

ve
rsi

on
 of

 ac
ce

pte
d m

an
us

cri
pt



9 

 

9 

 

alternatives for efficient biodiesel production from oil and fat as their higher surface areas and 124 

catalytic activity mitigate the particular problem related to traditional catalysts (Hoseini et al. 125 

2018). Whilst there is more and more literature on the effects of nanocatalysts on biodiesel 126 

transesterification in recent decades, fewer researchers have reviewed and analysed them. 127 

There are limited reviews in scientific databases on the impact of nanocatalysts on first, second 128 

and third generation biodiesel production processes. This paper therefore critically analyses in 129 

detail the influence of various nanocatalysts on first, second, and third generation biodiesel 130 

production processes, which is very important for ongoing research into the development and 131 

processing of cost-effective biodiesel production. 132 

2. Biodiesel production technologies 133 

As mentioned before, biodiesel can be produced using two different approaches, the physical 134 

approach and the chemical approach. Physical approaches include direct use, blending and 135 

microemulsion, which allows the oils to be used directly in their neat form. Chemical 136 

approaches include the pyrolysis and transesterification process, which result in a chemically 137 

modified form of natural oils (Shahabuddin et al. 2013, Uddin et al. 2018). Table 2 shows the 138 

benefits and drawbacks of various biodiesel production technologies. The thermal degradation 139 

of biodiversity with the help of a catalyst with no oxygen present is known as pyrolysis (Ong 140 

et al. 2019). Vegetable oil, animal fats, and natural fatty acids are examples of pyrolyzed 141 

materials. Many investigators have studied the pyrolysis of triglycerides to obtain suitable fuels 142 

for the diesel engine (Ashok et al. 2019). Transesterification is the popular chemical method 143 

for transforming natural oils and fats into biodiesel fuel using a process where three moles of 144 

alcohol such as methanol stoichiometrically react with one mole of triglyceride (Fattah et al. 145 

2013, Fattah et al. 2014, Rashed et al. 2016). In general, the transesterification process takes 146 

place at 60–70 ºC with a catalyst resulting in a mono-alkyl ester (biodiesel) as the main product 147 

and glycerol as a co-product. The conversion of triglycerides into monoglyceride occurs in 148 
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three successive reversible reactions, as shown in Figure 3 (Mofijur et al. 2013). Firstly, 149 

methanol reacts with triglyceride, producing diglycerides. Then diglycerides react with 150 

methanol producing monoglyceride. Finally, monoglyceride reacts with methanol  that results 151 

in glycerol (Atabani et al. 2014).   152 

 153 

Figure 3. The chemical reaction of the biodiesel production process. 154 

Different parameters influence the transesterification process, which relies on the reaction 155 

conditions (Mofijur et al. 2014, Anwar et al. 2018). If the conditions are not optimized, the 156 

process is either ineffective or the performance significantly reduced. Thus, every parameter is 157 

equally critical to accomplishing a high level of efficiency in producing biodiesel that complies 158 

with regulatory requirements. The most significant factors that influence the transesterification 159 

reaction are free fatty acids, water content, types of alcohol and molar ratio used, catalytic types 160 

and concentrations, reactivity temperature and duration, stirring rate and method, final product 161 

purification, mixing speed, organic co-solvent effect and specific gravity (Tan et al. 2019).  162 

Table 2. Benefits and drawbacks of various  biodiesel production technologies, reprinted with permission from 163 

(Tabatabaei et al. 2019). 164 

Method Advantage Disadvantage 

Direct use and 

blending 

- Low capital and production costs - Solidification of blend at cold 

temperatures 

 - Simple production - Impractical and inappropriate for direct 

use in diesel engines 

  - High viscosity 

  - Gum formation 
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  - Lubricating oil thickening 

  - Incomplete fuel combustion 

  - Oil deterioration 

  - High level of free fatty acid   

  - Low volatility 

  - Unsaturated hydrocarbon chains reactivity 

  - Injector nozzles clogging 

  - Poor atomization 

  - Engine durability reduction, 

  - Higher air pollution emission 

  - Higher engine maintenance costs 

  - Higher engine wear 

Microemulsion - Biodiesel formation with lower 

viscosity and higher liquidity 

- Heavy deposition of carbon residue 

 - Lower nitrogen oxide emissions - Inadequate combustion 

 - No by-product or waste formation - Lubricating oil thickening 

 - Clear, single phase, and 

thermodynamically stable colloidal 

equilibrium dispersion of biodiesel 

fluid 

- Random injector needle sticking 

Pyrolysis - Suitable for areas with well-established 

hydro-processing industry 

- High production cost 

 - Generation of value-added by-products 

like syngas 

- Complex equipment requirement 

 - Biofuel with satisfactory physical and 

chemical properties 

- Biofuel has no oxygenated value 

  - Producing short chain molecules with 

more similarities to gasoline than diesel 

fuel 

Transesterification - The most common method for 

production of biodiesel 

- Unreacted feedstock can be recycled 

- The by-product (i.e., glycerol) can be 

converted into value-added products 

- Dry alcohol and oil must be used to 

increase biodiesel yield by avoiding 

saponification 

- Glycerol must be efficiently separated to 

avoid generation of hazardous gases 

(i.e., acetaldehyde, formaldehyde) 

- Expertise requirement 

- Complex equipment requirement 

 165 

3. Nanocatalysts for the biodiesel production process 166 

Catalytic technologies are essential in the production of different petrochemical products. A 167 

state-of-the-art catalyst relies on producing fewer investment products. In terms of energy, 168 

environment, and nanomedication, nanocatalysts play a crucial role as the use of nanoparticles 169 

has become evident in many chemical and electrochemical reactions as efficient catalysts. 170 

Recently, due to their specific benefits, nanocatalysts have received significant attention for 171 

the development of biodiesel.  172 
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3.1 Types and characteristics of nanocatalysts 173 

Nanocatalysts are mesoporous, magnetic, carbon-based or metal oxide-based. Carbon-based 174 

nanocatalysts include graphite, carbon black, buckyball, fullerene, and inorganic nanotubes 175 

while metal oxides nanocatalysts include aluminium, iron, silver, titanium oxide, cobalt, iron 176 

oxide, cerium oxide, calcium oxide and zinc oxide (Thangaraj et al. 2019). Other nanocatalysts 177 

also exist, including clays and quantum dots. Among various types of nanocatalysts, metal 178 

oxide nanocatalysts are regarded as the most promising and have been therefore widely studied 179 

for the development of biodiesels from a range of feedstocks. The use of carbon-based 180 

materials as solid acid catalysts for biodiesel production using various feedstocks has increased. 181 

Nevertheless, this form of catalyst has disadvantages such as, primarily, deactivation, thermal 182 

instability, higher methanol-to-oils requirements, side reactions and higher reaction times. In 183 

transesterification of different biodiesel sources, mesoporous nanocatalysts are attracted by 184 

high surfaces, broad pore widths, and better accessibility, which promote the diffusion of 185 

reactants into the active sites of the catalyst's acid. In the early 1990s, after the discovery of 186 

porous materials, different approaches have been used to develop and design materials with 187 

enhanced structural properties, such as pores, strength and active sites, to enhance their 188 

efficiency in different reactions. The size of the pore may vary between 15 and 300 Å 189 

depending upon the method of development and the interaction between precursor and template 190 

particles (Melero et al. 2006). However, catalyst designs based on magnet nanoparticles have 191 

gained significant attention and become a key feature in the development of biodiesel from 192 

low-cost sources. This can be explained by the magnetic properties that allow the isolation of 193 

the nanocatalyst from the reacting medium, which can eliminate centrifugal and ultrafiltration 194 

techniques in industrial applications. A wide variety of magnetic nanocatalysts have been 195 

synthesized recently and used to produce biodiesel from low-cost feedstock. The characteristics 196 

of different types of nanocatalysts include a high surface area and catalytic activity, being 197 
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adsorbent, being prone to agglomeration, having a range of possible chemistries (natural and 198 

synthetic) and useful in a wide range of applications (Rao 2010).  199 

3.2 Advantages and disadvantages of nanocatalysts in the transesterification process 200 

There are some advantages of using nanocatalysts in the transesterification process, including 201 

high catalytic efficiency compared to other catalysts (Rao 2010, Fattah et al. 2020). The surface 202 

areas of nanocatalysts are small, resulting in increased activity over conventional catalysts. 203 

Further, they are highly stable, possess superior saponification resistance, and have an effective 204 

surface/volume ratio and high reusability (Rahmani Vahid et al. 2017). Nanocatalysts can be 205 

synthesized by a range of techniques, including high-temperature, microwave burning, 206 

traditional hydrothermal, hydrothermal, solvothermal, and solo-gel techniques, co-207 

precipitation, impregnation, condensation, chemical vapour and electrochemical techniques, 208 

vacuum coating, vapour, etc. (Quirino et al. 2016, Ambat et al. 2018). The disadvantages of 209 

nanocatalysts are that their synthesis comes at a high cost and more alcohol is needed for the 210 

efficient transesterification process. Table 3 summarizes the comparative advantages and 211 

disadvantages of different catalysts.   212 

Table 3. Comparative advantages and disadvantages of different types of catalysts. 213 

Catalyst types Advantages Disadvantages Reference 

Homogeneous acid 

catalyst 
 High biodiesel yield 

 Suitable for low-quality feedstock, 

hence insensitive to FFA content  

 Simultaneous occurrence of 

esterification and transesterification 

 Less energy consumption than 

homogeneous base catalysis 

 Chances of damaging equipment due to 

acid corrosiveness  

 Higher yield of free glycerol  

 Higher temperature requirement but 

less than that of supercritical method 

 Separation of catalyst is difficult from 

product. 

 Takes longer time to complete than 

base catalysed reaction 

(Mahanta and 

Shrivastava 2004, 

Marchetti et al. 

2008, Guan et al. 

2009, Lam et al. 

2010, Farag et al. 

2011, 

Gebremariam and 

Marchetti 2017) 

Homogeneous base 

catalyst 
 Reaches completion faster than acid 

catalysed reaction 

 Mild reaction condition and less 

energy intensive  

 Catalysts are cheap and widely 

available 

 Less corrosive than acid catalysts 

 Production depends on FFA content in 

the oil 

 Low quality feedstock poses the issue 

of saponification of oil  

 Glycerol recovery is difficult 

 Wastewater generated in washing steps 

is alkaline and requires post-treatment 

 

(Dias et al. 2008, 

Marchetti et al. 

2008, Demirbas 

2009, Lam et al. 

2010, Leung et al. 

2010, Parawira 

2010, 

Gebremariam and 

Marchetti 2017) 
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Heterogeneous base 

catalysis 
 Superior selectivity 

 Catalysts are easy to separate from the 

reaction mixture 

 Reduced wastes 

 Catalysts can be regenerated and 

reused 

 Mild reaction conditions and less 

energy intensive 

 Poisoning of the catalyst occurs when 

exposed to ambient air 

 Production depends on FFA content in 

the oil  

 High FFA content in oil results in 

saponification which in turn reduces 

yield and complicates purification 

 Leaching of active sites in the catalyst 

may result in product contamination 

(Furuta et al. 2006, 

Lam et al. 2010, 

Parawira 2010, 

Borges and Díaz 

2012, Jagadale and 

Jugulkar 2012, 

Gebremariam and 

Marchetti 2017) 

Heterogeneous acid 

catalysis 
 Catalysts can be separated from 

reaction mixture easily 

 Reduces the process stages and waste 

 Insensitive to FFA content in oil 

 Preferred for transesterification of 

low- grade oil 

 Catalyst can be easily removed and 

recycled 

 Complicated catalyst synthesis 

procedures lead to higher cost 

 Requires high reaction temperature, 

high molar ratio of alcohol to oil and 

long reaction time. 

 Relatively energy intensive 

(Peng et al. 2008, 

Melero et al. 2009, 

Lam et al. 2010, 

Borges and Díaz 

2012, 

Gebremariam and 

Marchetti 2017) 

Lipase catalysts  Suitable for low quality feedstock as 

the process is insensitive to FFA and 

water content in the oil 

 Generally carried out at low reaction 

temperature 

 Easy separation of glycerol and other 

by-products simplifying the 

purification step 

 Yields high purity product (esters) 

 Immobilized enzymes can be 

reused 

 Enzymes are expensive 

 Yield is relatively low  

 Very long reaction time 

 Lipase deactivation caused by 

methanol and glycerol 

(Mahanta 

and 

Shrivastava 

2004, 

Devanesan et 

al. 2007, 

Marchetti et 

al. 2007, 

Ranganathan 

et al. 2008, 

Bajaj et al. 

2010, Lam et 

al. 2010, 

Leung et al. 

2010, Amini 

et al. 2017, 

Gebremariam 

and 

Marchetti 

2017) 

 

Nanocatalysts    Relatively short reaction time 

 High specific surface area of catalyst 

requiring less amount of catalyst  

 Catalyst can be reused many times 

 Wide range of catalyst choice 

 More alcohol is required than other 

processes for effective yield 

 Preparation of appropriate catalysts 

costs more in some cases 

(Wen et al. 

2010, 

Chaturvedi et 

al. 2012, 

Sivakumar et 

al. 2013, 

Rengasamy 

et al. 2014, 

Rengasamy 

et al. 2014, 

Sharma et al. 

2015, 

Hashmi et al. 

2016, 

Gebremariam 

and 

Marchetti 

2017) 
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Ionic liquid catalysts  Ease of separation of final products 

due to the formation of biphasic 

mixture 

 Process is time efficient 

 Tailor made catalysts to suit a 

particular need 

 Ease of separation of catalyst and can 

be reused many times 

 High catalytic activity with excellent 

stability 

 Ionic liquid production is expensive 

 More alcohol is required than other 

processes for an effective yield 

(Gamba et al. 

2008, Dupont 

et al. 2009, 

Earle et al. 

2009, 

Andreani and 

Rocha 2012, 

Guo et al. 

2013, Ren et 

al. 2014, 

Gebremariam 

and 

Marchetti 

2017) 

 

Supercritical 

transesterification 
 Faster completion 

 Insensitive to the water content of the 

feedstocks 

 No catalyst is used hence no washing 

is required 

 Easier to design as a continuous 

process 

 Higher temperature and pressure 

required 

 High operating cost due to high 

pressures and temperatures 

 Very high methanol consumption 

(Kusdiana 

and Saka 

2001, 

Bunyakiat et 

al. 2006, 

Marchetti et 

al. 2008, 

Song et al. 

2008, Shahid 

and Jamal 

2011, 

Santana et al. 

2012, Kiss et 

al. 2014, 

Micic et al. 

2014, 

Gebremariam 

and 

Marchetti 

2017) 

 

 214 

3.3. Application of nanocatalysts in first, second and third generation biodiesel production 215 

processes 216 

The utilization of nanocatalysts in the production process for different types of biodiesel has 217 

been investigated by many researchers around the world, e.g., for first generation, second 218 

generation and third generation biodiesel production. Figure 6 shows the mechanism of the 219 

transesterification reaction using nanocatalysts. Nanocatalysts can accomplish high production 220 

yield with very moderate reaction conditions and lower reaction periods. The reusability of 221 

these catalysts is also superb because they maintain good performance even after 11 cycles.   222 
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 223 

Figure 4. Mechanism of transesterification reaction using nanocatalysts (Carlucci et al. 2019).  224 

 225 

As discussed previously, nanocatalysts have attained special attention because of their high 226 

specific surface area and high catalytic efficiency. These characteristics can solve the issues 227 

associated with heterogeneous catalysts such as resistance to mass transfer, longer reaction 228 

time, and fast deactivation (Ambat et al. 2018, Fattah et al. 2020). Nanocatalysts can be used 229 

either in the supported form with the help of solids such as zeolites, carbon, and oxides, or 230 

without any support (Akia et al. 2014). Numerous nanocatalysts have been used for the 231 
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transesterification of first, second, and third generation feedstocks. Depending on the 232 

nanocatalysts used, the reaction time and yield were found to vary for all three generations of 233 

biodiesel. For example, canola oil (a first generation biodiesel feedstock) was used in various 234 

studies to produce biodiesel using different nanocatalyst combinations, which showed a wide 235 

variation in biodiesel yield. Kazemifard et al. (2018) studied potassium hydroxide reinforced 236 

Fe3O4@Al2O3 core-shell nanocatalysts in the production of biodiesel from canola oil. They 237 

found that 25 wt.% of Fe3O4 to Al2O3 (K/FeAl-0.25) showed appropriate magnetic properties 238 

and catalytic activity to use as a suitable nanocatalyst for biodiesel production. They were able 239 

to convert 98.8% of canola oil to biodiesel under 12:1 methanol/oil, 4 wt.% of catalyst in 6 h. 240 

On the other hand, Alsharifi et al. (2017) produced nanocatalyst by implanting lithium onto 241 

TiO2 to enhance the surface properties TiO2 with 30 wt.% of Li which showed the highest 242 

activity for FAME formation. The obtained catalyst exhibited 98% FAME conversion under 243 

the optimum conditions of 24:1 M methanol to oil ratio, 5 wt.% catalyst dosage in just 3h. 244 

However, when the same nanocatalyst was used for transesterification of waste cooking oil (a 245 

second generation feedstock), a 91.73% FAME conversion was observed for the same reaction 246 

conditions. Another prominent first generation biodiesel feedstock, palm oil, was used by 247 

(Zhang et al. 2020) to produce biodiesel using nanocatalysts. They focused on optimizing the 248 

transesterification reaction parameters using response surface methodology when mesoporous 249 

NaAlO2/γ-Al2O3 with a 30% mass ratio of NaAlO2 to γ-Al2O3 nanocatalyst was used to 250 

catalyse the reaction. The maximum FAME yield of 97.65% was obtained at the optimum 251 

reaction conditions of 20.79:1 M methanol to oil, 10.89 wt.% catalyst, and a 64.72 °C reaction 252 

temperature. The efficacy study of SiO2/ZrO2 nanocatalyst in the transesterification process of 253 

soybean oil by (Faria et al. 2009) indicated that nanocatalyst offers an improved biodiesel 254 

conversion yield (96.2 ± 1.4%) after 3 h of reaction. They also identified that after recovery, 255 

the catalyst can be reused for at least six more cycles with a small penalty (12% less) in its 256 
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catalytic efficiency. Qiu et al. (2011) studied the performance of C4H4O6HK nanocatalyst in 257 

the transesterification of soybean oil and revealed that the use of 6% nanocatalyst at a molar 258 

ratio of 16:1 and temperature of 60°C offers a maximum biodiesel yield of 98.03%. Saeedi et 259 

al. (2016) reported that the use of KNa/ZIF-8 nanocatalyst in the transesterification of soybean 260 

oil also enhances the catalytic performance.  The maximum conversion efficiency (>98%) was 261 

found at the molar ratio of 10:1 after 3.5 h of reaction time. Nevertheless, they also reported 262 

that this nanocatalyst could be recycled and reused for at least three additional cycles.   263 

The use of second generation biodiesel feedstock, such as waste cooking oil, for biodiesel 264 

production using nanocatalysts has been extensively studied (Milano et al. 2018). For example, 265 

Borah et al. (2018) studied biodiesel production from waste cooking oil using in-situ 266 

TiO2/RGO nanocomposite as a nanocatalyst. Results show that 98% biodiesel conversion was 267 

achieved with an optimized oil to methanol molar ratio of 1:12 at 65 °C with 1.5 wt.% catalyst 268 

loading and reaction time of 3 h. On the other hand, Kaur et al. (2018) studied the production 269 

of biodiesel from waste cooking oil using 20 wt.% tungsten (W) supported TiO2/SiO2 270 

nanocatalyst. The complete transesterification of waste cooking oil was observed with an 271 

optimum reaction condition of 1:30 M oil to methanol ratio, at 65 °C in 4 h. Manivannan and 272 

Karthikeyan (2013) studied the efficacy of Mg-Al nanohydrotalcite in the transesterification of 273 

neem oil and reported that the reaction temperature played an important role in the 274 

improvement of biodiesel yield. They found that the Mg-Al nanohydrotalcite offers the highest 275 

yield of 84% at 65 °C and a further increase in temperature declined the yield of FAME. Wang 276 

et al. (2015) reported that Fe/Fe3O4 nanocatalyst is an efficient recoverable catalyst and it offers 277 

superb performance during the biodiesel production from waste cooking oil. The catalysts were 278 

tested in the transesterification of glyceryl trioleate and in the esterification of oleic acid in 279 

methanol. While the sulfonic acid functionalized MNPs showed low reusability, with a 280 

conversion drop to 62% at the fifth run, sulfamic acid functionalized MNPs maintained 95% 281 
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conversion throughout five reaction cycles. Amalia et al. (2019) observed a promising 282 

transesterification using 70% KOH/zeolite catalyst for the transesterification of castor oil at 55 283 

°C and 7 h of reaction time. Venkat Reddy et al. (2006) found that the use of a CaO-based 284 

nanocatalyst in the transesterification of poultry fat at room temperature and 10:3 molar ratio 285 

offers100% biodiesel yield.    286 

Minimal research has been carried out on the production of third generation biodiesel utilizing 287 

nanocatalysts. For example, Teo et al. (2016) studied biodiesel production from algae 288 

(Nannochloropsis sp.) using nano Ca(OCH3)2 (calcium methoxide) as a catalyst. They 289 

obtained a maximum FAME yield of 99% for 30:1 M methanol to oil, over 3 wt.% of catalyst 290 

loading at 80 °C in 3 h.  291 

Based on different studies of nanocatalyst applications for biodiesel production, it is evident 292 

that the utilization of different generation feedstock oils for transesterification reactions using 293 

nanocatalysts shows the important influence of nanocatalysts on activity and selectivity. The 294 

presented results reveal that the high specific surface area of nanostructure materials in 295 

comparison with bulk catalysts is favourable for the contact between catalyst and substrates, 296 

which effectively improves product yield. A summary of the research findings on the 297 

application of nanocatalysts in first, second, and third generation biodiesel production is 298 

presented in Table 4.  299 
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Table 4. Summary of the research findings on the application of nanocatalysts in first, second and third generation biodiesel production. 

Feedstock (Type) Catalyst type Concentration 

(wt. %) 

Oil to alcohol 

ratio 

Temperature 

 (°C) 
Time 

(min) 

Yield 

(%) 

Reference 

Canola oil 

(First generation) 

KOH/Ca12Al14O33  3.5 1:12 65 240 96.70 (Nayebzadeh et al. 2016) 

KOH/Fe3O4@Al2O3 4 1:12 65 360 88.40 (Kazemifard et al. 2018) 

Li/TiO2 5 1:24 65  180 98 (Alsharifi et al. 2017)  

Calcined dolomite 5.3  1:7.6 60  150 96.60 (Korkut and Bayramoglu 

2018)  

Castor oil 

(Second generation) 

Si-MMT- pH-SO3H 5  1:12 60  300  89.80 (Negm et al. 2017)  

Ni doped ZnO nanocatalysts 11  1:8 55   60  95.20 (Baskar et al. 2018)  

TiO2/RGO  1.5  1:12 65 180 98 (Baskar et al. 2018)  

Corn oil  

(First generation) 

Ca/γ-Al2O3 6 1:12 65 300 34.64 (Moradi et al. 2015) 

Cottonseed oil 

(Second generation) 

Ti/SiO2   5  1:30 65   204 ˃98 (Kaur et al. 2018)  

CeO2/Li/SBA-15 10 1:40 65 240 >98 (Malhotra and Ali 2018)  

Date seed oil 

(Second generation) 

Eggshell derived catalyst 5  1:12 65  90  93.50 (Farooq et al. 2018)  

Euphorbia lathyris oil 

(Second generation) 

Acid-based HPA catalyst 

(C6H15O2N2)2 HPW12O40 (ly2HPW)  

9  374.4 mmol 65 720 91.20 (Zhang et al. 2018)  

Jatropha oil 

(Second generation) 

CaO  0.02:1 1:5.15 65 133.1 95.80 (ANR et al. 2016) 

Karanja oils 

(Second- generation) 

Li–CaO  5 1:12 65 120 >99 (Kaur and Ali 2011)  

Madhuca indica oil 

(Second generation) 

Heteropoly acid (HPW)–coated ZnO  2 g 30 ml 55 300 98 (Thangaraj and Piraman 

2016)   

Mahua oil 

(Second generation) 

Mn-doped ZnO  8% 1.7% (v/v) 50 50 97 (Baskar et al. 2017)  

Microalgae 

(Third generation) 

Ca(OCH3)2 3 1:30 80 180 99 (Teo et al. 2016) 

CaO 0.5-2 1:9 55 - 96.3 (Siva and Marimuthu 

2015) 

CaO 1.5 1:9 60 - 96.3 (Manikandan and 

Rajasekaran 2013) 

Olive oil 

(First generation) 

Zinc dodecatungstophosphate 

(Zn1.2H0.6PW12O40; ZnPW)   

2.3 1:28 65  720 97.2 (Woodford et al. 2014)  

Oleic acid 

(Second generation) 

25%MoO3/B-ZSM-5 3 1:20 160 360 93 (Mohebbi et al. 2020) 

Soybean oil 

(First generation) 

Cs-Na2ZrO3 Basic heterogeneous 1  1:30  65  15 98.8 (Torres-Rodríguez et al. 
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Fe3O4@SiO2@CPTMS@amine 6  1:36 160  180 96 (Farzaneh et al. 2018)  

Calcined marble slurry and 

hydroxyapatite 

6  1:9 65  180  94 (Gupta et al. 2018)  

 CaO-K2O 15 1:4.6 70  240  99 (Fernandes et al. 2016)  

Calcinated form of waste tucuma peels 1 1:15 80   240 97.30 (Mendonça et al. 2019)  

Magnetic LiFe5O8-LiFeO2 8  1:36 65  120  96.50 (Dai et al. 2018)  

CaO (Nanocrystalline-1)  1 mmol; 10 ml 25 360 100 (Venkat Reddy et al. 2006)  

CaO/CaN, CaO/ss  8  1:12 65 360 93 (CaO/CaN)  

96 (CaO/ss) 

(Gupta and Agarwal 

2016)  

ZrO2–C4H4O6HK(Zirconia-loaded 

potassium bitartrate)  

6 16:1 60 120 98.03 (Qiu et al. 2011) 

Mixed iron/tin oxide (ISnO)  1 g 6 g 200 180 90 (Alves et al. 2014)  

Sunflower oil 

(First generation) 

MgO/MgAl2O4 3 1:12 110 180 91.10 (Rahmani Vahid et al. 

2017) 

CaO-based/Au nanoparticles 3  1:9 65   180  94–97 (Bet-Moushoul et al. 2016)  

CaO/Fe3O4@SiO2  6 1:15 65 300 97 (Feyzi and Norouzi 2016) 

Aluminum dodecatungstophosphate 

(Al0.9H0.3PW12O40) (AIPW)  

3 1:34 65 840 96 (Vahid and Haghighi 

2017)  

Cs–MgO  2.8  1:30 90 1440 93 (Alaei et al. 2018)  

Ca(30%)/Al-MCM-41  10 1:12 70 480 84.20 (Vardast et al. 2019)  

MgO/MgFe2O4 4 1:12 110 240 82.40 (Alaei et al. 2018) 

Cs/Al/Fe3O4 6 1:14 58 120 88 (Feyzi et al. 2013) 

Palm oil 

(First generation) 

γ-Al2O3/KI 4 1:14 60 240 79 (Islam et al. 2015) 

CaO functionalized with strontium 5  1:9 65   30 98.31 (Li et al. 2016)  

CaO 9 1:12 60  120  90 (Uprety et al. 2016)  

30Ca/APB-700 5  1:8 65   150 93.40 (Wang et al. 2019)  

Strontium and Nickel 2  1:9 65   300 97 (Abreu et al. 2017)  

NaAlO2/γ-Al2O3 10.89 1:20.79 64.72 180 93.29 (Zhang et al. 2020) 

Rapeseed oil 

(First generation) 

K2O/γ–Al2O3)  3 12:1 70 180 94 (Han and Guan 2009)  

Rubber seed oil 

(Second generation) 

Sodium metasilicate 9  1:9 65   40 97 (Roschat et al. 2017)  

Waste kernel oil 

(Second generation) 

Mn@MgO-ZrO2 3  1:15 90  240 96.40 (Jamil et al. 2018)  

Waste cooking oil 

(Second generation) 

Cr/Ca/γ-Al2O3 6 1:18 65 180 78.29 (Sulaiman et al. 2017) 

SO4/Fe-Al-TiO2 solid acid 3  1:10 90   150 96 (Gardy et al. 2018)  

Zinc-doped CaO 5  1:12 65  132 >98 (Kataria et al. 2017)  

FeCl3 -modified resin 8  1:10 90  120 92 (Guldhe et al. 2017)  

Tungsten supported TiO2/SiO2 5  1:30 65   240 >98 (Kaur et al. 2018)  Auth
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CaO–MgO  1.2 g (CaO, 0.7 

g; MgO, 0.5 g) 

1:7 75 360 98.95 (Tahvildari et al. 2015)  

KF/CaO  4 1:12 65 150 96.80 (Zheng et al. 2006) 

 MgO  300 mg 1:4 70 40 99 (Li et al. 2009)  

Iron (II)-doped ZnO  14 1:12 55 50 91 (Wang et al. 2009) 

Sulfonated graphene  10  1:20 100 840 98 (Borah et al. 2018)  
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4. Challenges in using nanocatalysts in biodiesel production 

There are some issues with catalytic biodiesel production, such as excessive processing time, delay 

in reaction time, and the need to isolate the catalyst and saponified contaminants from the biodiesel 

(Mahlia et al. 2020). These issues are not present in the non-catalytic process of transesterification. 

For example, the supercritical process uses less energy and is completed in a very short period (2-4 

minutes). Moreover, since no catalyst is required, biodiesel filtration and glycerol recovery are much 

simpler, hassle-free and are less harmful to the environment. However, reactor and maintenance costs 

are high and methanol consumption is high (Atabani et al. 2012).  

The utilization of nanocatalysts in the catalytic transesterification process offers some advantages 

over other catalysts (Wen et al. 2010, Chaturvedi et al. 2012, Sivakumar et al. 2013, Rengasamy et 

al. 2014, Rengasamy et al. 2014, Sharma et al. 2015, Hashmi et al. 2016). Despite many advantages, 

nanocatalysts have some issues in responding to the transesterification process (Ajala et al. 2020). 

Nanoparticles sintering is the principal downside of nanocatalysts. Metal atoms are unstable at high 

temperatures in the reactive atmosphere in various catalytic processes, which leads to major changes 

in the metal nanoparticles’ size and shape. Such structural changes lead to unwanted effects such as 

non-uniformity, selectivity loss or reversal, and catalytic discontinuation (Zuliani et al. 2018). Thus, 

sintering in nanocatalysts may also restrict their use to low temperature and short-term applications, 

unless preventive measures are taken. The best approach to avoid agglomeration in nanoparticles is 

by using ligand or coating materials such as carbon and inorganic components. Beside the above 

challenge, some metal-based nanocatalysts display some challenges during the recovery stage. In fact, 

lattice oxygen species form hydrogen bonds to methanol and glycerine in the transesterification 

reaction, increase the viscosity of glycerine, and form solids in a suspended form with some 

nanocatalyst types, which is then difficult to recover. 
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5. Conclusions  

While biodiesel offers a competitive alternate to diesel fuel in different areas, efficient output is often 

jeopardized due to high feedstock costs and the absence of sustainable technology. Various 

investigators have suggested different biodiesel production techniques, which are typically based on 

feedstock properties. Transesterification, which relies mostly on the catalytic mechanism, is among 

the methods used to burn fat and oil into biodiesel. Many technologies are used for the 

transesterification of biodiesel, each of which requires a different raw material property and ideal 

operating conditions for efficient processing. From this study, it can be summarised that nanocatalysts 

can be used in lower temperature approaches and their utilization in transesterification reactions 

speeds up the reaction process. Further, nanocatalysts are not affected by the free fatty acids and water 

content of feedstocks. Nanocatalysts are also reusable, which offers cost advantages compared to 

other catalysts. Nevertheless, more alcohol is required for a successful yield and it can be costly to 

prepare suitable catalysts. Developing efficient and economic  catalysts in an environmentally 

sustainable approach is critical to solving current challenges. Therefore, a catalyst with these 

characteristics developed for successful transesterification would represent a landmark in the fuel 

industry. Furthermore, to address the existing challenges of the energy-efficient production of 

biodiesel, efforts should concentrate on gaining a thorough understanding of surface catalytic reaction 

mechanisms, which is crucial for developing rational ideas for advanced catalysts with predetermined 

improved catalytic efficiency for target reactions. 
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