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ABSTRACT We present a novel implementation of a Rock-Paper-Scissors (RPS) game interaction with
a social robot. The framework is tailored to be computationally lightweight, as well as entertaining and
visually appealing through collaboration with designers and animators. The fundamental gesture recognition
pipeline employs a Leapmotion device and two separatemachine learning architectures to evaluate kinematic
hand data on-the-fly. The first architecture is used to recognize and segment human motion activity in
order to initialize the RPS play, and the second architecture is used to classify hand gestures into rock,
paper or scissors. The employed tabletop robot interacts in the RPS play through unique animated gestural
movements and vocalizations designed by animators which communicate the robot’s choices as well as
cognitive reflection on winning, losing and draw states. Performance of both learning architectures is
carefully evaluated with respect to accuracy, reliability and run time performance under different feature
and classifier types. Moreover, we assess our system during an interactive RPS play between robot and
human. Experimental results show that the proposed system is robust to user variations and play style in real
environment conditions. As such, it offers a powerful application for the subsequent exploration of social
human-machine interaction.

INDEX TERMS Animation, gesture recognition, human-robot interaction, intelligent robots, motion seg-
mentation, social robotics.

I. INTRODUCTION
The classic Rock-Paper-Scissors (RPS) game constitutes a
simple action and effect interaction with long-standing fasci-
nation for various research domains. For example, RPS-like
patterns are used by sociology to explain the dynamics of
collective efforts [1], and by biology to investigate the evolu-
tion of ecosystems [2]. For psychology, analysis of the basic
gestural play can be interesting to identify patterns or strate-
gies in human decision-making process [3]. In engineering
and robotics, RPS game interactions between a human and a
robot player build the base for two main research questions:
basic technological development [4], [5] on the one hand,
and its deployment in Human-Machine-Interaction studies
[6]–[9] on the other. Here, we seek to combine both aspects,
with the primary goal to create a machine learning-driven
RPS playmate whose smoothness and procedure of play
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interaction is highly appealing to the human opponent. Most
importantly, we target a system that is flexible towards indi-
vidual variations in movement and game timing without pre-
defined game constraints. Under a high level of flexibility and
robustness, our system should then subsequently be expanded
to include intent prediction and game control via reasoning or
reinforced learning, as well as be employed for various social
exploratory studies.

Kanda et al. [10] were the first to discuss a RPS inter-
action between a human and a robot. They included a RPS
(here in Japanese: Janken) game module in their proposed
robot control architecture. Subsequently, most works that
introduced RPS robot designs focused on the creation of
an interactive human robot hand which can form the three
RPS hand shapes. Examples are the robot presented by
Hasuda et al. [11], the robot of Ahn et al. [12] and the model
by Lin et al. [13]. The most recent prototype is the ’Janken
robot’ developed by the Ishikawa Watanabe laboratory [14].
Equipped with a high-speed camera setup, its sensing system
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FIGURE 1. Illustration of the envisioned Rock-Paper-Scissors game interaction with the employed social tabletop robot Haru.

can recognize and react to human play within fractions of a
second, enabling the robot to achieve a winning rate of 100%.
While the system is highly impressive from a technical side,
interactivity is largely restricted to predefined play conditions
such as the number of upper-lower hand movements before
play. Moreover, fixed technological settings of predefined
camera and mirror arrangements make the overall system
difficult and costly to deploy outside a laboratory. Overall,
the RPS games mentioned above are very hardware-focused
and lacking of design considerations in terms of movements,
sounds and interactivity. For example, the representation of
the robot opponent via a human-like hand might hinder the
exploration of social and emotive aspects of a two-player
interaction. For these reasons, we present a distinct technical
solution that we combine with input from designers and
animators to add creativity to the system implementation
process. We furthermore perform a rigorous analysis of the
employed learning processes, in order to create a smooth
and reliable environment for real-time human-robot play
interaction.

First of all, we propose a lightweight and portable RPS
framework. To achieve mobility, all of the necessary motion
perception is handled by a single Leap Motion device [15],
which we connect to the basic robot hardware. In contrast
to full-body pose tracking camera sensors, the Leap Motion
specializes in the tracking of hand and finger movements,
making it the best sensing device for our targeted ubiqui-
tous RPS play scenario. Within the area of hand movement
analysis, the sensor has previously been utilized to explore
the recognition of gestural movements [16] and isolated sign
language expressions [17]. Moreover, it has been employed
for gesture based control of robots [18]–[20] and evaluated
for use in close-distance non-verbal human-robot commu-
nication [21]. In addition, we integrate our RPS interaction
pipeline into an emotive robot platform designed for social
robot research. For this, we utilize the exploratory tabletop
robot Haru [22] as depicted in Fig. 1. Haru is equipped with
a set of pre-defined animated behavior routines created in

line with the robot’s unique actuators and design [23]. This
allows for the the implementation of a completely novel
human-robot RPS game experience.

To evaluate our framework, we investigate both the
data processing functionalities to attain robustness, and the
real-time interaction process to facilitate a smooth and natural
game interaction. Most importantly, results show that we
succeed to implement a system of high recognition accuracy
which does not rely on pre-defined play and hand movement
actions. Moreover, the system appears robust and practical
within the collaborative game setting. Here, its real-time
set up shows that a human-like game interaction can be
attained with a playmate of non-human actuation and modal-
ity, supporting future directions in social robotics research
and embodied communication.

II. PROBLEM DEFINITION
We strive to align our framework to the classical sequence
of a two-player RPS interaction, whereas the main cognitive
processes of the robotic opponent should be invariant towards
different types of RPS plays. This is particularly important
to successfully handle different user styles, game situations
and cultural backgrounds. For example, whereas in Central
Europe a RPS round always ends after the third up-down
movement (verbal cue:’tic-tac-toe’ or ’schnick-schnack-
schnuck’), in Japan a first RPS round lasts four up-down
movements (verbal cue: ’saisho-gu-janken-pon’), and a round
following an initial tie (verbal cue: ’aiko-deshou’) two
up-downmovements. Inconsistencies in a player’s movement
are prominent in the basic movement characteristics of the
hand, as e.g. the palm acceleration shown in Fig. 2, and
influence system quality. To establish a universal play intel-
ligence, it is therefore necessary to determine a strategy that
specifically addresses this data variability.

Based on the fundamental hand dynamics, we define a
single RPS round to constitute of five distinct motion phases
P1-P5 as illustrated in Fig. 3. P1 is the static rest phase at the
beginning of the play without movement of the hand. P2 is the
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FIGURE 2. Smoothed absolute palm acceleration during a free RPS play
composed of 6 rounds (gray zones). The length of one round – as defined
by up-down swings of the hand – is variable, whereas every upwards
swing (red marks) results in a local curve maximum.

FIGURE 3. The human player’s movement is split into five major
movement phases P1-P5 within one single RPS round. These phases
outline the overall system’s perception process (Step 0 to Step 5). The
dynamic phases P2-P4 are most relevant for the robot perception and
interaction functionalities.

dynamic preparatory phase during which the hand (usually in
closed fist) is swung multiple times in upwards-downwards
direction. P3 is a highly dynamic formation phase during
which the fingers are brought into position to form any of
the three RPS shapes. P4 is a reduced dynamic deceleration
phase which brings the hand (with fingers formed to the
played shape) into a final static position. Lastly, P5 defines
the static ending phase used to evaluate the winner of the play
interaction.

The sensing and processing of the human movement
actions then undergo the following stages:
Step 0 Start the system, process all incoming frames
Step 1 Establish stand-by (zero) state for P1
Step 2 Identify the beginning of P2, switch to active state
Step 3 Recognize the initiation of P3, issue ’go’ signal
Step 4 Recognize hand shape during P4, distribute

’shape’ information
Step 5 Return to zero state by the end of P5

As discussed in this section, it is evident that the simple
RPS play is mired with variability issues that need to be recti-
fied prior to deployment in an actual human-robot interaction
application.

III. RECOGNITION SYSTEM
In this section we will discuss the schemes in developing a
RPS gesture recognition system using hand movement fea-
tures such as finger joint positions, finger and palm directions
and velocities.We split the recognition process into two tasks,
namely task (1): movement segmentation of P2 in order
to identify the initiation of P3, and task (2): hand shape
classification into RPS throughout P4 to P5.

A. MACHINE LEARNING DATA
We recorded RPS movements of 15 volunteers (11 male,
4 female) in an open space of an office environment with
semi-constant light conditions. To address general individual
differences in movement style, but also cultural differences
in play as discussed under Section II, we strived to collect as
variant data as possible. As such, our volunteers had diverse
age (average 36.2 years with a variance of 8.30 years) and
multiple cultural backgrounds (6 Japanese, 2 Germans, 2 Chi-
nese, 1 Spanish, 1 French, 1 Danish, 1 Filipino, 1 American).
Every actor was asked to perform 5 takes with a minimum
of 5 repetitions for all three RPS shapes. The actors were
free to choose their positioning (seated, standing) and could
execute their movement with any of the left or right hand in
their own unique style of playing. This led to 1258 action
segments that were used as training set T for the learning
of a player-independent perception module. For system vali-
dation, we additionally collected independent sequences of
5 to 10 RPS rounds under real, free play conditions. The
resulting 214 action segments build our evaluation data set V .
All data was annotated with respect to their necessary label
information, the beginning and end of movement phase P2 for
task (1), and the first and last frames of the hand being held
in any of the three shapes for task (2).

B. FEATURE TRACKING AND PROCESSING
We utilize basic motion information provided by the Leap
SDK [15] to build distinct feature representations for both
tasks (1) and (2), respectively. Features should be simple
and robust towards sensing and tracking errors present in the
SDK’s provided hand information. We engineer the features
to be extracted easily and fast in order to reduce computa-
tional overload and avoid delay in the overall signal process-
ing. Moreover, to avoid dependence on the SDK’s internal
feature computation processes, all features base on the hand
joint positions only. As such, our proposed game pipeline
could also be implemented similarly without a Leap device
in the future, e.g. by utilizing video-based systems with hand
tracking options such as OpenPose [24] or MediaPipe [25].

1) MOVEMENT SEGMENTATION FEATURES
According to the characteristics of the different RPS phases,
P2 is distinguishable from its preceding and succeeding
phases by changes in the hand and finger velocities and
motion trajectories. We reflect this to form the set of feature
representationsFSeg utilizing the basic velocity and direction
vectors of a player’s hand. These are −→vj representing the
velocity in 3D space of any joint j ∈ J as

−→vj =

vjxvjy
vjz

 , (1)

whereas J constitutes the set of palm and finger tip joints, and
−→ud representing relative changes of the vectors d ∈ D as

−→ud =

udx ,i−1udy,i−1
udz,i−1

−
udx ,iudy,i
udz,i

 , (2)
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FIGURE 4. Schematic illustration of the human hand and the chosen
angular features computed from the joint positions 0, 1, 2, 3 and 4 per
finger. Please note that the thumb has no 0 (metacarpal) joint, and hence
no metacarpal-proximal bone angle αmp.

whereas D constitutes the set of normal and direction vectors
of the palm and i ∈ [2, . . . , n] with n denoting the length of
a motion sequence. The final feature set is then defined as
FSeg = {

−→vj ,
−→ud } for all j and d respectively.

2) SHAPE RECOGNITION FEATURES
Utilizing the positions of finger joints in 3-dimensional space,
the classes ’Rock’, ’Paper’ and ’Scissors’ can be uniquely
described by their angular and distal relations. The set of
feature representations FShape therefore constitutes the nor-
malized inter-joint angles computed from a hand’s raw joint
positions. For all neighboring finger bones, we compute the
angle α of the length-normalized inner product of the two
vectors

−−→
bJ1J2 and

−−→
bJ3J4 representing the respective bones

(J1, J2) and (J3, J4) as

α = arccos
−−→
bJ1J2 ·

−−→
bJ3J4

||
−−→
bJ1J2 || · ||

−−→
bJ3J4 ||

. (3)

This provides us with the angles αmm between metacarpal
finger bones (respectively between proximal and metacarpal
bone for the thumb and index finger), as well as the
angles αmp between metacarpal and proximal bone, αpi
between proximal and intermediate bone and αid between
intermediate and distal bone of every finger (Fig. 4).
We combine the angles to the final feature set

FShape1 = {αmm, αmp, αpi, αid }. For subsequent com-
parison, we furthermore build a second set FShape2 =

{αpp[thumb-index], αmp, αpi} with reduced morphological
information.

C. MACHINE LEARNING ARCHITECTURES
We create two different machine learning architectures for
task (1) and (2) of the required gesture understanding capa-
bilities. For both tasks, we first define a basic recognition
strategy. To find the best balance between accuracy and reli-
ability and computational lightweight and overload, we then
train several machine learning classifiers that are commonly
employed in similar learning tasks [26]. In concrete, these are

a Random Forest (RF) with bootstrapping and 300 decision
trees, a Gaussian Naive Bayes (GNB) classifier, a decision
tree with Adaptive Boosting (ADA), and a Support Vector
Machine (SVM) with RBF kernel. For the segmentation
task, we furthermore learn a Convolutional Neural Network
(CNN). Here, the idea is to examine whether the intrinsic
feature learning abilities of a CNN are superior in describing
the phase transitioning between P2 to P3. The CNN is built of
two stacks of convolution and pooling layers and two dense
layers. The first stack consists of three convolution layers
with a kernel of size (3×1) evaluating data along the temporal
dimension only, followed by a pooling layer with kernel size
(2×2). The second stack consists of three convolution layers
with a kernel of size (3 × 3) and a (2 × 2) pooling layer.
We apply ELU activation to all convolution layers and the first
dense layer. The second dense layer has a sigmoid activation
for classification.

1) MOVEMENT SEGMENTATION
We choose to adapt and modify the binary strategy for
movement segmentation that we previously introduced in
the context of continuous sign language recognition [27].
This strategy is learning temporal context information based
on the accumulated information within windows of neigh-
boring feature vectors. The idea here is that this contextual
frame-wise classification should enable both an immediate
and flexible robot reaction to the different time duration in
a free RPS play. Precisely, we observe a subtle change of
velocity, direction and movement flow before the final play’s
downward movement (characterizing P3 and P4) within all of
our data. This movement pattern can serve to characterize the
transition between P2 and P3. To define this phase transition
and to learn the temporal characteristics of the swinging hand
movement during P2, we consider a window of neighboring
feature vectors. As proposed in the original work, all frames
that are not annotated as part of P2 are treated as class 0,
and all frames that are annotated as part of P2 are treated
as class 1. The input to all classifiers then constitutes a con-
catenation of vectors as given by FSeg and their respective
frame-wise labels.

The trained classifier returns the probability of an incom-
ing feature vector to belong to class 1 on the base of its
smoothness in movement flow. To make the output esti-
mate more robust towards outliers (e.g. stutters and changes
of direction in a player’s hand trajectory), we smooth the
sequence of frame-wise predictions with a Gaussian filter
of kernel deviation σ = 3. Every frame with a smoothed
confidence ≥ 0.5 is then labeled as 1, and all remaining
frames are labeled as 0. The first frame labeled as 1 marks the
beginning of P2 and the next occurrence of a 0 labeled frame
marks its end (and elicits the issuing of the ’go’ prompt for
control of the robot play action).

2) SHAPE RECOGNITION
The shape recognition constitutes of a standard multi-class
classifier trained with frame-wise feature vectors taken from
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FIGURE 5. Still images taken from the custom-made 3D animations
displayed in the robot’s two LCD eye panels. Top row: robot choices.
Bottom row: game results.

FShape1 or FShape2 and their three assigned RPS labels. The
learned classifier returns the probability of an incoming fea-
ture vector as belonging to any of the classes. A hand shape is
considered as officially classified (and the appropriate ’shape’
message for control of the robot’s game result responses
distributed) as soon as the confidence for one class reaches
a value ≥ 0.8 for more than 15 consecutive frames.

IV. ROBOT PLAY DESIGN
The employed Haru platform allows the composition of
open-loop macro-actions to control the robot’s game and
play behavior [23]. These animation-like performances –
so-called animation routines – make use of the robot’s motion
and audio-visual actuation modalities. Namely, these are:
motor-controlled motion (body rotation, neck lean, eyes tilt
and roll), sounds, a 3-inch stereo colour LCD screen func-
tioning as the robot eyes, the eye movement within the LCD
panel, and addressable LED strips wrapped around the bor-
ders of the eye.

Different routines have been designed to express the
actions and decisions in the game (i.e. when the robot selects
either ’Rock’, ’Paper’, or ’Scissors’), the robot’s awareness
of the played game result (i.e. winning, losing, or drawing),
as well as the reactions of the robot to the final outcome of
the play interaction (i.e. sadness, happiness, or neutrality).
Due to the unique morphology of the robot, especially the
former two aspects are very important. They ensure to provide
a familiar and intuitive setting to the human player, and
hence deliver a convincing game experience that encourages
a natural RPS play environment. We choose to communicate
the robot choices utilizing the prominent LED eye panels.
Every selection is displayed via a moving still image of a
rock, (a sheet of) paper, and a scissor as illustrated in Fig. 5.
Similarly, we convey the subsequent robot’s mental states
reflecting the game result with a 3D animation displaying
either rock beating scissors, paper beating rock, scissors
beating paper, or a tie – respectively draw – result. Lastly,
the robot’s reactions on final game results are chosen from an
existing pool of animations available in the robot platform

to convey emotional expressions and create an illusion of
the robot’s emotive behavior. Bottomline, all of the robot’s
interactivity – starting from choreography through animation
routines, icon displays, sounds, etc. – were all custom made
through partnership with designers and animators.

V. BASIC GAME PIPELINE
The implementation of the whole RPS game pipeline com-
prises of a series of steps that fold around the previously
described recognition architectures and animated behavior
routines. These steps are organized by a behavior tree that
structures the flow of all tasks and controls the robot drivers
via Robot Operation System (ROS) commands. Fig. 6 illus-
trates the flow between basic states of the game as it is also
described in detail in the following. Variations and adapta-
tions of the interaction flow to specific game interactions
can then be incorporated in a flexible way thanks to the
modularity of the behavior tree.

A. START GAME STATE
Directly after system start, the start game state initializes
two game counters that are used to keep track of the robot’s
number of losing and wining rounds. At the start of every
RPS round, Haru furthermore shows a countdown using its
eye screens. During this state, the robot selects its next RPS
play option (either ’Rock’, ’Paper’ or ’Scissors’). Currently
this is done randomly, but the strategy could be modified
in the future. For example, Haru’s choice might change in
dependency of the previously seen options of the player to
model a more human-like interaction.

B. LISTENING AND SHOW STATES
In these states, the phase segmentation and recognition archi-
tectures described above come into play. First, during the lis-
tening state, the robot awaits to detect the end of the P2 phase
as indicated by the ’go’ signal. As soon as the ’go’ signal is
issued, the robot switches to the show state and displays the
animation routine that conveys its current RPS selection. This
immediacy ensures to synchronize the selection of the robot
with that of the player, and to avoid delays that may give the
impression that the robot is selecting its option after seeing
the player’s selection.

After displaying its play selection, the robot awaits the RPS
’shape’ information, which is commonly retrieved before
phase P4 of the RPS recognition module ends. The system
then moves to the next states, depending on the result of the
round.

C. DRAW, WINNING AND LOSING STATES
The draw, winning and losing states show an animation rou-
tine reflecting the result of the current round (draw, win or
lose), and update the game counters accordingly. If one of
the counters is above a defined threshold (meaning either the
player or the robot has won a specified number of times),
the system evolves to the end game state. If not, or if there
is a draw, the system goes back to the state game state for a
new RPS round.
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FIGURE 6. Illustration of the game implementation. The ellipses show the main states. In italic, the main transition triggers are shown. The
main actions performed in each state are also shown.

D. END GAME STATE
In this state, the robot will select an adequate animation
routine expressing the robot’s emotion, such as happiness or
sadness, depending on the overall result of the game. The
counter threshold to reach the final pipeline state can be
configured before system use.

VI. EXPERIMENTS
We evaluate our framework’s perception components
utilizing the common metrics accuracy, precision, recall
and F1 score. Decision trees were shown to achieve good
results in similar learning tasks [28], so that we treat the
RF classifiers as base classifier architectures. This means
we first analyze variations in feature window size and
feature set composition under the RF, and then relate the
respective best performing combinations to the remaining
classifiers for comparison. Moreover, we determine the
lengths of single predictions and plays on a consumer PC
(CPU: Intel i7-7700) to draw conclusions on the computa-
tional load and lightweight during run time for real-time
interaction with the robot.

A. MODEL EVALUATION
The models of the recognition module are analyzed as a func-
tion of variation in styles, timing and positions during RPS
play. For best support with both common machine learning
libraries and ROS, we utilize the Leap Python SDK version
2.3. All classifiers are trained utilizing the scikit-learn library,
respectively Keras for the CNN. The Leap Motion perceives
and processes the play of the human with a sampling rate of
120Hz.

1) MOVEMENT SEGMENTATION
To begin, we train three RFs that utilize a different window
size of neighboring frame observations. RFSeg1 evaluates a

window of size w1 = ±4 frames around the current frame
of interest, respectively 9 frames in total. This equals the
movement information occurring within 75 ms. The window
size of RFSeg2 is chosen as w2 = ±7 frames, respectively
15 frames in total, or a movement span of 125 ms. Lastly,
RFSeg3 handles feature vectors built from a window size
w3 = ±10, meaning 21 frames in total and 175 ms of hand
movement information. As could be expected, the average
quality of the binary predictions increases with the number
of neighboring movement features observed, see Table 1. For
RFSeg1, we note early segmentation errors before the com-
pletion of P2. These are caused by short frame-wise misclas-
sification during irregular movement executions. Opposedly,
misclassifications of RFSeg2 and RFSeg3 mostly occur around
the segment boundaries and the immediate transition frames
between movement phases. They hardly affect intra-phase
frame predictions and the segment estimates appear robust
and reliable. Comparison between the latter two RFs – and
particularly their precision scores – furthermore suggests that
a larger window size is primarily helpful to better distinguish
between class 1 and class 0 frames, therewith reducing the
number of false positives. On the deployed hardware, a single
frame prediction was of similar average run time for all
the RFs. Since FSeg utilizes data directly provided by the
SDK, computational overload for feature extraction is also
neglectable. Consequently, it appears meaningful to utilize a
RF trained with longer feature vectors.

We next compare the performance of RFSeg2 to the perfor-
mance of the remaining shallow classifiers with same feature
window size w2 = ±7 frames. We note that the GNB is
faster than the RF, but the model fails to predict frames with
reliable accuracy. Moreover, ADA augments both accuracy
and run time, but cannot provide better predictions than the
RF. Lastly, the SVM requires considerable more computation
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TABLE 1. Performances of the tested classifiers for phase segmentation
(averaged across test actors).

.

time to achieve an equal level of accuracy as the RF. This
makes RFSeg2 or RFSeg3 the preferred classifier.
Lastly, we determine the performance of the CNN. For this,

we undertake minor changes in the classifier feature input:
whereas it was necessary to flatten all neighboring feature
vectors into one one-dimensional vector for the shallow clas-
sifiers, we can now maintain the original two-dimensional
data structure with time (frames) being represented along one
axis and the number of features along the second. Following
the observations that longer features vectors provide better
results, and to provide sufficient neighboring information to
the convolution kernels, we start our analysis with feature
images build from a window of w2 neighboring frames.
We train a CNNwith batch normalization (batch size 128) and
dropout of 0.5 with the Adam optimizer for 25 epochs. As one
can see from the low accuracy and precision and perfect
recall values, the classifier CNNSeg2 fails to learn relevant
information for segmentation. The same holds for CNNSeg3
with longer feature window w3. We suspect this problem to
be a cause of the variant and differently sized features within
each frame’s feature vector. For this reason, we experiment
with different feature arrangements until we find a suitable
feature composition. The revised feature set FSeg* then only

constitutes of the pruned velocity vectors
−→
v′j along the Leap

sensor’s relative y (left-right) and z (up-down) axis of any
joint j ∈ J. Training of the CNN with the revised feature set
yields CNNSeg2* forw2 and CNNSeg3* forw3 with similar run
time than the RF, but ≈ 3% smaller performance values.
To assess the effect of potentially irrelevant features,

we perform a final evaluation. For this, we train RFSeg2* on
the reduced feature set and window w2. As opposed to the
CNN, the novel RF cannot surpass the performance of the
initial RF. This suggests that the two classifier methods learn
to identify different information within the movement data.

2) HAND SHAPE RECOGNITION
We are interested to determine whether and how the size
and selection of shape features influences the overall clas-
sifier performance. For this reason, we first train RFShape1
and RFShape2 based on FShape1 and FShape2. As shown
in Table 2, the choice of feature transformation does not
impact the performance of the shape classification. Data visu-
alization reveals that the few occurring misclassifications are
mostly caused by tracking errors within the underlying finger

TABLE 2. Performances of the tested classifiers for shape recognition
(averaged across test actors).

.

joint positions. This suggests that a reduced set of hand shape
descriptors is sufficient for the given task. Every feature
vector is evaluated in 0.015 ms, whereas run time differences
of a single frame prediction between the feature sets average
to 0.00001 ms. However, we observe that FShape2 requires
less computation time than FShape1. This makes FShape2 the
better choice for subsequent system deployment.

As before, we compare the performance of the best
performing RF to the performances of the remaining shal-
low classifiers with equal parameter setting, meaning under
FShape2. Again, the RF achieves the highest prediction accu-
racy within reasonable duration. Since our chosen shape
classifier furthermore consists of frame-wise hand shape
evaluations, we do not train any spatial content-aware CNN
classifier. Among all evaluated shape classifiers, we there-
fore consider the RF architecture to offer the best balance
between computational lightweight and accuracy for the
given scenario.

B. RPS PIPELINE EVALUATION
We evaluate the effect of our approach by running a complete
RPS game pipeline from segmentation to hand recognition
under RPSRF2,S2 (RFSeg2 and RFShape2), RPSRF3,S2 (RFSeg3
and RFShape2), RPSCNN2,S2 (CNNSeg2* and RFShape2), and
RPSCNN3,S2 (CNNSeg3* and RFShape2). For every run, we set
the results in relation to a ground truth GT given by
manual sequence annotation. We also evaluate a baseline
method in which the phase segmentation is obtained by sim-
ple threshold-based decision-making utilizing the smoothed
absolute palm accelerations shown in Fig. 2. We then com-
bine the proposed phase segments (Vel) with our shape
classifier to RPSVel,S2 (Vel and RFShape2).

Although the RF achieved best performances in the
frame-wise segmentation evaluation, the full pipeline results
averaged over all actors do not follow this observation as
shown in Table 3. Instead, the smoothed CNN predictions
obtain even marginally better precision, recall and F1 val-
ues on average. From the detailed actor-wise results given
in Fig. 7, we can see that the performances of all four RF
and CNN pipelines are close to GT with base value 1.0. They
furthermore hardly differ among each other. Lastly, all 4 clas-
sifier combinations are considerably better than the ones that
could be obtained with the minimal system implementation
of RPSVel,Shape2.

C. INTERACTION ANALYSIS
We perform a simple preliminary study to assess user impres-
sion of the proposed framework utilizing the Haru platform
depicted in Fig. 8. The Leap motion is directly connected to a
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TABLE 3. RPS pipeline performances (averaged across test actors) as
compared to the ground truth defined by manual annotation with value
1.0. .

FIGURE 7. Actor-specific prediction accuracies of the full RPS
classifications relative to the ground truth GT with value 1.0.

FIGURE 8. The mobile play setup with a single Leap sensor connected to
the micro-processor of the robot platform executing all real-time
interactions.

LattePandaAlpha 864s single board computer as found inside
the robot’s body. All motion understanding functionalities
with phase segmentation and shape recognition are run on
the LattePanda. All ’go’ and ’shape’ messages are then sent
to a behavior tree with repetitive flow for control of the
robot action and reaction. The flow follows the game pipeline
described in SectionV,whereas the threshold for themaximal
number of won or lost games is set to 3. After reaching the
End Game State, the overall system is restarted from the
beginning.

The previous pipeline evaluation could not clearly reveal
a best performing RPS system. Therefore, we evaluate both

the RF and the CNN-based system set up. For this, we ask
ten volunteers (six male, four female, mean age: 41 years
with standard deviation 9.81) to freely play RPS for five
minutes each under both RPSRF3,S2 and RPSCNN3,S2. Both
configurations served as first play option for five of the
ten participants in order to reduce order-induced bias. After
completion of both play interactions, we then obtain user
feedback via an anonymous questionnaire. The questionnaire
constitutes of three short and simple assessments that can be
answered within less than five minutes in total.

The first poll consists of one to three questions to determine
whether the users show a preference towards any of the
system implementations. In concrete, we ask the follow-
ing questions with their respective set of possible answer
selections:
• Did you feel a difference between the two games?
Choices: Yes/No

• If yes, which of the two games did you prefer?
Choices: Game 1/Game 2

• If yes, what kind of difference did you experience?Multi
selection is possible.
Choices: Robot response time/Robot response accu-
racy/Fun of interaction/Other (please specify)

50% of the participants, i.e. five persons, confirm to have
experienced a difference in the play interaction, whereas all
of them prefer RPSCNN3,S2 over RPSRF3,S2. Additionally, one
participant commented to slightly tend towards RPSCNN3,S2
without being sure enough to firm a concrete decision. Out of
the potential reasons for preference, robot response time was
chosen four times, response accuracy three times, increased
fun of the interaction two times and other reasons zero times.

The second poll is composed of four quantitative ques-
tions thought to reveal the general user attitude towards the
proposed game pipeline. We collect user sentiment on the
following aspects of game interaction:
Q1 I think the overall game is fun.
Q2 I think the flow of the interaction is smooth.
Q3 I like the design of the robot reactions.
Q4 If I had a robot, I could imagine to play rock-paper-

scissors with it in my free time.
The four statements have to be put into context to personal
impression following a 5-point Likert scheme, with 1 denot-
ing disagreement, 2 denoting slight disagreement, 3 denot-
ing neutrality, 4 denoting slight agreement and 5 denoting
agreement. Overall user rating is very positive towards the
proposed game set up as shown in Fig. 9. The fun factor of
the interaction achieves highest ratings with 4.2 points (stan-
dard deviation 0.6 points) on average, and the smoothness of
interaction achieves lowest ratings with 3.0 points (standard
deviation 1.0 points) on average.

The evaluation closes with a short multi-selection field
querying the user’s opinion on potential points of improve-
ment. This provides us with feedback for future enhancement
of the RPS framework, and might suggest reasons for the pre-
vious selection. Issues that can be chosen by the participants
are the robot response time, the robot response accuracy,
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FIGURE 9. Averaged user responses and their standard deviation to the
four overall evaluation aspects Q1, Q2, Q3 and Q4.

the length of animation (choice 1: make it shorter, choice 2:
make it longer), and other issues (to be specified by the par-
ticipant in written form). Most frequently chosen issues are
response time and length of animation, with eight occurrences
each. Regarding the latter, seven participants prefer shorter
animations, and one participant prefers longer animations.
Improved accuracy was selected by five participants, and
other reasons four times. Here, the most frequently men-
tioned issue with three occurrences is the provision of clearer
feedback on the information detected by the system. Further
issues mentioned by one participant each are an overall too
long interaction and too repetitive robot behavior.

VII. DISCUSSION AND FUTURE WORK
Our proposed RPS framework bases onmultiple technologies
previously developed for related tasks, such as the movement
segmentation by Farag and Brock [27]. These were shown
to achieve reliable results within their specific sub-domains
and suggest the overall reliability of our combined system.
To draw a conclusion about the usability and significance
of the full framework, we evaluated the game interaction
within the natural interaction environment constrained by the
available robotic hardware.

Most importantly, we investigated the accuracy and run
time of multiple conventional machine learning methods to
identify the best setting for subsequent system deployment.
On the whole, our evaluations shows that the proposed frame-
work is not only lightweight and mobile, but also reliable and
fast for real-time play interaction with a social robot. The
hand movement features extracted for both the segmentation
and the classification task are universal and can be used
with different hand tracking modalities, as well as for the
implementation of different hand gesture recognition sys-
tems. This makes our proposed system extendable to similar
human-robot application scenarios (as e.g. the hand gestural
communication discussed in [21]).

Our analysis furthermore suggests that in order to achieve
best performance, the chosen classifier should be a RF or a
CNN. In between the two classifier, significant differences
could not be determined. Whereas the RF classifier appears
to be of superior performance with respect to basic data anal-
ysis and run time, overall game evaluation indicates higher
performance of the CNN classifier. However, more extensive
examination, in particular with the support of human players,

would be necessary to confirm this observation. With respect
to run time aspects, it should furthermore be noted that
the reported metrics of the CNN constitute run time mea-
surements obtained from a non-compressed model. Novel
extensions of deep learning environments, such as Tensorflow
light for mobile devices, considerably speed up the prediction
process and might further enhance performance of the system
with CNN-based segmentation.

Our preliminary study reveals that users like the game
experience of the present framework. However, results should
be verified in more extensive studies in the following. In con-
crete, we plan to conduct studies with a larger number of par-
ticipants that include clearly defined descriptors of subjective
aspects such as robot likeability, and that provide compari-
son with baseline RPS playmates. Collected user responses
indicate that further improvements can be made to make the
system more attractive for actual play interactions. For exam-
ple, the majority of our participants experiences the length
of the animated robot behavior routines as too long. Long
animations result in unnatural waiting times between games,
and also reflect in the comparatively low user scores of Q2.
As such, shortening the animations could easily enhance the
overall perception of the game flow and its fun factor. The
same holds for the addition of information on the detected
human action, or similar robot response design aspect.

Enhancement of the RPS play interaction is an itera-
tive process between user evaluation and system adjustment
which has just been initiated with the presented first pre-
liminary user assessment. As a next step, we plan to further
explore the dynamics behind the proposed RPS play interac-
tion, both in itself, as well as among various types of users,
in detailed evaluations. Here, it is important to investigate
how robot actions and reactions should be designed and
modeled to allow for themost entertaining social interactions.
This includes the addition of automatic decision-making
within the robot play, as defined by procedural reasoning
or reinforced learning for social interaction. Solutions to the
previous questions shall then be investigated within exten-
sive Human-Robot-Interaction case studies and qualitative
user-based play assessments. We furthermore plan to include
psychological research on human RPS play and other aspects
of human-robot interaction to maintain interest within the
interaction over an extended period of time.

VIII. CONCLUSION
In this paper, we presented a novel framework for a social
and entertaining RPS play interaction between a robot and a
human player. As opposed to previous systems, the overall
design is computationally lightweight and ubiquitous and
only relies on a single Leap Motion controller. Data from
the Leap controller is used to track kinematic information
of the human hand that is then further processed for eval-
uation by a pre-trained machine knowledge. By separate
handling of two different functions, namely the recognition
of the initialization of play and the recognition of a played
hand shape, the trained machine knowledge can be flexibly
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applied to different variations of play and user movement.
This makes the play pipeline available to various future inter-
action scenarios. The perception module is fully integrated
to be run on tabletop robot Haru, a non-humanoid robot with
high emotive expressivity. Detailed analysis and evaluation of
multiple machine learning architectures enabled the set up of
an accurate, reliable and actor-invariant perception pipeline.
The framework can be run in real-time without obvious
delay and provide a basic interactive play experience. First
user evaluation shows that the collaborative game setting is
well perceived. User feedback furthermore indicates points
of improvement regarding the flow of interaction and robot
behavior design. In the following, the framework should now
be refined accordingly, and then be evaluated in more detail
with respect to its social interaction potential.
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