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ABSTRACT Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart
buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT
devices and the nature of data generated by the IoT devices. Many international bodies have developed
metamodels for IoT-enabled ecosystems to allow knowledge sharing. However, these are often narrow in
focus and deal with only the IoT aspects without taking into account the management and analytics of big
data generated by the IoT devices. Hence, in this article we propose a metamodel for the Integrated Big Data
Management and Analytics (IBDMA) framework for IoT-enabled smart buildings. The IBDMAMetamodel
can be used to facilitate interoperability between existing big data management and analytics ecosystems
deployed in smart buildings or other smart environments. We import the metamodel into a knowledge graph
management tool and by considering a case study we validate the metamodel using this tool. The evaluation
results demonstrate that IBDMA Metamodel is indeed suitable for its intended purpose.

INDEX TERMS IoT, big data management, metamodel, smart buildings.

I. INTRODUCTION
Big data management and analytics for IoT-enabled smart
buildings involve a high level of complexity and rely on
different sources of knowledge distributed across time,
space and people. Hence, in this article, we advocate the
development of an integrated big data management and ana-
lytics (IBDMA) metamodel for IoT-enabled smart buildings.
This enables IoT and big data practitioners to address the
big data challenges in IoT enabled big data ecosystems. The
metamodel is part of the Integrated Big Data Management
and Analytics (IBDMA) framework. The IBDMA framework
has two parts: 1) Reference Architecture; 2) Metamodel.
The reference architecture has been submitted for publication
in another journal. The scope of this article is limited to
the metamodel development of the IBDMA framework.
The paper aims to use the generic representational layer
(the metamodel) to provide a unified view of common
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concepts and actions that apply in various IoT-enabled
ecosystems. The IBDMA metamodel developed will provide
a set of generic concepts useful to an IoT-enabled ecosystem,
while not necessarily providing all required details required
by every single specific facility within the ecosystem on hand.
Some details are hidden behind the general concept we use,
and we leave them to each individual user to extend based
on their specific problem within the IoT-enabled big data
ecosystem.

This research was initiated in [1], where we illustrated
the big data pipeline for IoT enabled smart building.
Metamodeling has been endorsed by the efforts of the
Object Management Group (OMG) [2]. We use it in our
work to integrate existing attempts to represent IoT and
big data knowledge in a reusable form and to provide an
integrated and unified point of access. We illustrate our
unification approach. We present the result and validation
of the metamodel which generalizes most of the concepts
used in existing IoT and big data practices as described in
existing relevant architectures and models. The rest of this
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article is organized as follows: Section II provides some
background and related works to this research. Section III
provides the details on the five key elements of the Integrated
Big Data Management and Analytics (IBDMA) Framework.
Section IV provides the reference architecture of the IBDMA
Framework using a smart building use case. Section V
provides the details on the metamodel development process
and enlists details on the validation of the IBDMAmetamodel
presenting three practical effective case studies for a smart
building. Section VI lists the major contributions and
limitations of the presented metamodel. Finally, Section VII
concludes this article with a discussion of possible future
extensions of this research. Due to the limitation on the
paper size, we reduced the size of some figures to fit the
margins. The high resolution figures are provided at the
GitHub repository [3].

II. RESEARCH BACKGROUND AND RELATED WORK
Ametamodeling process generally aims to create a collection
of classes to describe domain concepts to represent domain
entities, actions or states. This collection of concepts is the
metamodel. A metamodel also contains the specification of
modelling environment for certain domain and defines the
syntax and the semantics of the domain. It can be viewed
from three different perspectives: i) as a set of building blocks
and rules used to build new models, ii) as a model of a
domain of interest and iii) as an instance of another model.
In our context, a metamodel is a fundamental building block
that defines the concepts and the relationships between those
concepts in the IoT enabled big data ecosystem [4].

Various metamodels have been developed by researchers
so the stakeholders can better understand the IoT enabled
ecosystems. In [5], the authors present a metamodeling
framework for designing smart cyber-physical environ-
ments. Their framework provides a common vocabulary to
model applications by exploiting concepts and relationships
between concepts specific to the smart environment domains.
Moreover, a set of general guidelines was presented to drive
the analysis, the design and the implementation of smart
environments. This article, however, only provides a generic
high-level vocabulary of concepts without providing any
specific use cases for the smart buildings.

In [6], the authors present a meta-model that enables the
extraction of valuable knowledge and deep insights from
the Big Data. To achieve this, their paper proposes a meta-
model for two layers related to Big Data: Data Sources
and Ingestion. While, this work is important, however, this
highlights the need for a more comprehensive metamodel to
provide support across the Big Data lifecycle stages such
storage, analysis and visualization in the context of smart
buildings.

In [7], the authors introduce a metamodel-based approach
for IoT systems development. They discuss three particular
levels linked to the analysis, design and implementation
phases of smart objects metamodel. Their stated purpose is
to provide a seamless support among the different phases

of smart objects development process. However, their paper
does not actually address the big data management and
analytics challenges for the effective management of the
smart buildings.

In [8], the authors present the data landscape metamodel,
which helps organizations express their challenges and solu-
tions with regards to gathering value out of data. However,
a detailed and comprehensive metamodel is missing that
covers the ‘‘data’’ and other elements of smart buildings and
their interactions.

In [9], the authors propose a new approach for software
design of a smart building system that involves design and
process metamodels. This approach provides a common
vocabulary for smart building concepts, attributes, and the
relationship between concepts. It also provides the ability to
formalize safety properties and functions of the components
in a smart building. This allows users an increase in the
effectiveness of software development by embedding a
domain knowledge in the metamodel. However, this article
lacks the big data management and analytics aspects of the
smart buildings.

In [10], the authors propose the use of UML (Unified
Modelling Language) standard for modelling the big data
extract process at a conceptual level with the use of new
specific stereotypes proposed by the UML deployment
diagrams and other using the approach of the ETL (Extract,
Transform, Load) process in data warehouses. The paper
presents case studies based on three tools used in the
extraction process, Sqoop, Flume and Data Click. However,
this article lacks the metamodel that addresses the data
management issues in the smart buildings.

In [11], the authors analyze IoT use into manufacturing,
its foundation principles, available elements and technologies
for the man-things-software communication already devel-
oped in this area. The paper proposes an architecture for
IoT applied to the industry, a metamodel of integration (IoT,
Social Networks, Cloud and Industry 4.0) for generation
of applications for the Industry 4.0, and the manufacturing
monitoring prototype implemented with the Raspberry Pi
microcomputer, a cloud storage server and a mobile device
for controlling an online production process. This article,
however, lacks the high-level architecture as well as the
metamodel for the data management and analysis of IoT data
in smart environments.

In [12], the authors propose an extension of the Smart Envi-
ronments Metamodel (SEM) framework for the development
of a smart office application devoted to recognize and predict
some simple workers’ activities. However, the applicability
of the presented metamodel is very limited and lacks the
necessary concepts and relationships that could be re-used or
scaled up for other smart environments. Moreover, aspects of
big data management and analytics are also missing from the
paper.

In [13], the authors introduce a general semi-structured
metamodel (GSMM) based on the use of a generic graph
that can be instantiated to a concrete data model. This is
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prescribed through providing values for a restricted set
of parameters and some high-level constraints, themselves
represented as graphs. The metamodel aims to evaluate,
integrate and access data models in a uniform way. Although
this article provides a foundation for the understanding of
the metamodel concepts, however, it is very generic in
its representation and lacks its effectiveness for the smart
building and big data domains.

In [14], the authors present a new approach which
leverages semantic models and rules to enable selective
data filtering to sending the cloud. They propose the use
of Platform Independent Model, based on semantic web
technologies to facilitate sharing and reusing semantic rules
in IoT gateways. They also propose a platform specific
model which encompasses a set of rules and concepts that
match the specific features and functionalities of sensor
nodes to perform data filtering. However, that paper lacks
the explanation on the complete end-to-end data processing
workflow from sensing of environment to controlling the
environment. It also does not focus on the big data
management and analytics challenges in the context of smart
buildings.

In [15], the authors describe a metamodel-based approach
that enables a data scientist to different data models to an
enterprise data model using UML class diagrams, the UML
Profile mechanism, OCL, and prescribed model transfor-
mations. An executable data mapper for Enterprise data
management transfers and consolidates data from operational
information systems into an enterprise database. However,
that paper does not present a metamodel which could be used
to address the big data management and analytics challenges
for smart buildings.

In [16], the authors provide a survey of IoT, Cloud
Computing, Big Data and Sensors with the aim to find
their common operations and integrating them. New data
collection methods are proposed for smart building which
could result in efficient energy management of smart
buildings. However, it fails to present the architecture and
metamodel for big data management and analytics of smart
buildings.

In [17], the authors presented the design and implemen-
tation of a low-cost occupancy detection system. To reduce
the energy consumption of the HVAC system. However, this
article focuses only on one aspect of the smart building and
lacks to provide the reference architecture and a metamodel
which can be used by the researchers and practitioners to
address the big data challenges in smart buildings.

In summary, it can be observed from the literature review
and related work analysis that there is growing interest among
community in the topic of IoT, Big Data, Smart Building and
their metamodel. Although the prior studies provide a good
foundation for the understanding of a generic metamodel
development process and usage. However, none present a
consolidated and comprehensive framework which provides
both a reference architecture and a metamodel to address the
challenges associated with the big management and analytics

FIGURE 1. IBDMA framework.

in the context of smart buildings. A number of very high level
and generic metamodels exist. But before nay can be tailored
to a specific use case, the metamodel needs to be well tested
and validated before it is deemed fit. This work bypasses that
need by providing a comprehensive metamodel specifically
targeted for the big data management and analytics of smart
buildings. We earlier developed the reference architecture
as part of the IBDMA framework and submitted it for
publication in another journal, but that research did not
include the development of the IBDMA Metamodel. This is
the focus of this article. Hence to set the context, we first
present the contextual elements of the IBDMA framework
and its reference architecture before discussing the IBDMA
metamodel.

III. IBDMA FRAMEWORK
The IBDMA framework is composed of two parts. The first
is the reference architecture and the second is the metamodel
as shown in Figure 1. The reference architecture has been
developed prior to this article and has been submitted for
publication. In this article, we present the metamodel as
encircled in Figure 1. The context for the IBDMAFramework
is Smart Building with a view to improve residents’ comfort
and safety. The IBDMA framework enables researchers,
big data architects, IoT professionals and data engineers to
manage and analyze big data generated from IoT devices.

The IBDMA Framework (as discussed here [18], [19])
has five key contextual elements named; People, Process,
Technology, Information and Facility as shown in Figure 2.

As shown in Figure 2, the core element of the IBDMA
framework is ‘‘People’’ which includes both, ‘policy makers
and developers’ of the IoT ecosystem and ‘residents’ of the
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FIGURE 2. IBDMA framework – contextual elements.

smart buildings on the other hand. The ‘residents’ are the
beneficiaries of the IoT enabled smart buildings ecosystem
developed in accordance with the policies and requirements
defined by the ‘policy makers and developers’. Based
on the policies and requirements compiled by ‘‘People’’,
‘‘Processes’’ are identified. These ‘‘Processes’’ govern the
‘‘Technology’’ stack to be used for the implementation. The
amalgamation of ‘‘People’’, ‘‘Processes’’ and ‘‘Technology’’
results in useful ‘‘Information’’ which ultimately enables
us to autonomously manage the smart ‘‘Facility’’. All the
elements of the IBDMA framework are linked together by the
‘‘Process’’ element of the framework. These five elements of
the IBDMA framework and how they interact with each other
are next discussed in detail.

FIGURE 3. First element of IBDMA framework - people.

A. PEOPLE
‘‘People’’ forms the first element of the IBDMA framework.
This element includes the ‘policy makers and developers’ on
one hand of the IoT-enabled smart buildings ecosystem, and
the ‘residents’ of the smart building on the other hand as
demonstrated in Figure 3. This is essentially similar to the
concept of ‘human in the loop’ [20]. ‘‘People’’ in the IBDMA
framework are involved broadly during two phases of the IoT
enabled smart building ecosystem:

• During the initial phase of policy making and require-
ments compilation (policy makers and developers).

• As beneficiaries of the IoT enabled smart building
ecosystem (residents).

During the initial phase, ‘‘People’’ start developing poli-
cies and requirements for the design and development of the
smart buildings. They highlight the key requirements of the
stakeholders and propose and devise an optimized solution
meeting the requirements of the beneficiaries as well as the
stakeholders. They decide how various aspects of the smart
building will work together to make smart buildings more
secure and comfortable for the residents of the buildings.

On the beneficiary end, ‘people’ include the residents
of the smart buildings which take advantage of all the
efforts of the policy makers, designers and developers of the
IoT-enabled smart buildings.

In case of smart buildings, the IBDMA proposes that
people define requirements such as what features do, they
want to implement in the smart building in order to improve
the comfortability of the residents of the building. This may
include improved garbagemanagement, improved luminosity
levels management, improved parking space management,
improved security of the building and so on. Based on
these requirements, the ‘‘processes’’ are identified which are
used for the successful implementation of the requirements.
These ‘‘processes’’ in turn govern the ‘‘technology’’ stack
which includes tools and software packages required from the
implementation of the ‘‘processes’’ e.g. Apache Flume [21]
for data ingestion, Apache Spark [22], [23] for data
analysis, Tableau [24] or Microsoft Power BI [25] for data
visualization etc. The ‘‘process’’ and ‘‘technology’’ elements
of the IBDMA framework are explained in more detail in the
next sections.

Once the policy makers and developers (people) have
successfully established the goals and requirements of the
IoT enabled smart building, ‘processes’ are identified and
implemented to start ingesting IoT data and to perform data
analysis on the received data, and that is why ‘process’ is
the second element of the IBDMA framework.

B. PROCESS
The second element of the IBDMA framework is the
‘‘Process’’ which plays a vital role in the overall big
data management and analytics strategy. Processes define
functionalities and how different functionalities should be
integrated to deliver a practical and comprehensive solution.
To address big data management and analytics challenges,
processes should be transparent and streamlined to have an
effective and practical solution.

Based on the policies, requirements and goals defined
and identified by the ‘people’, ‘processes’ are implemented.
Hence, ‘people’ element serves as the input to the ‘process’
element as the processes are identified, defined and chosen
by ‘people’ (policy makers and developers). Since we aim
for the IoT smart building sensors data for this research,
the IBDMA framework proposes the following processes
to be part of IoT enabled smart buildings ecosystem which
include; monitoring the environment where IoT sensors are
deployed, sourcing data from the IoT sensors, ingesting data
into a central database, storing the data at a centralized
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FIGURE 4. Second element of IBDMA framework - process.

location, near-real-time data analytics, decision making,
near-real-time visualization and near-real-time autonomous
control of the smart facility within the smart building as
shown in Figure 4. These facilities may include oxygen levels
management, disaster management, garbage management,
parking management etc.

Any IoT ecosystem initiates with monitoring the environ-
ment, which is achieved by the IoT sensors. There could
be a wide variety of IoT sensors that could be deployed
in a smart environment depending on the requirements
of the users and stakeholders. These sensors ‘monitor’
various parameters within the environment depending on
their specific type. On monitoring the environment, these
sensors ‘generate/source’ digital data. This data is then
‘ingested’ into a centralized location, so data can be ‘stored’
and analyzed. The ‘analysis’ of the data can be useful in
many ways. It can be used to obtain useful insights about
the smart environment where these sensors are deployed.
It can also be used to manage disastrous situations, maintain
a comfortable environment for the users, to figure out any
faults within the smart environment and to autonomously
control various parameters within the smart environment.
IBDMA captures and encompasses all these processes under
the second element of the IBDMA framework known is the
‘process’. Elements in the IBDMA framework are linked
by ‘Process’ as shown in Figure 2. This will become more
evident later in Figure 8 where the reference architecture of
the framework is presented.

Once the ‘people’ have identified the ‘processes’,
the underlying ‘technology’ stack is defined based on
the identified ‘processes. Successful implementation of
processes relies on the selection of appropriate tools and
software packages. These tools and software packages fall
under ‘‘technology’’ and that is why it is the third element of
the IBDMA framework.

C. TECHNOLOGY
The third element of the IBDMA framework is ‘‘technology’’.
Defining and choosing the optimal technology is critical to
the successful implementation of a big data management
and analytics strategy. Based on the ‘‘processes’’ identified
by the ‘‘people’’, the ‘‘technology’’ stack is chosen for the
successful implementation of the ‘‘processes’’. ‘Technology’
in IBDMA comprises of the tools and software packages used
in the implementation of the IBDMA. Some of the tools we

FIGURE 5. Third element of IBDMA framework - technology.

FIGURE 6. Fourth element of IBDMA framework - information.

FIGURE 7. Fifth element of IBDMA framework - facility.

used in the implementation of the IBDMA framework for the
smart building data are presented in Figure 5.

For presenting the reference architecture and its implemen-
tation, we developed a virtual sensor application. This appli-
cation was developed in Python using PyCharm [26]; which
is a Python IDE for professional developers by JetBrains.
This data is then stored in HDFS (Hadoop Distributed
File System). HDFS is the primary data storage system used
by Hadoop application. It employs a NameNode [27] and
DataNode [27] architecture to implement a distributed file
system that provides high-performance access to data across
highly scalable Hadoop clusters.

Data pipelines for ingesting the virtual sensor data to
HDFS are developed and deployed using Apache Flume.
Flume is a highly distributed, reliable and configurable tool
used to collect, aggregate and transports large amounts of
streaming data like log files, events, IoT data etc. from a
number of different sources to a centralized data store. It is
robust and fault tolerant with tunable reliability mechanisms
and many failover and recovery mechanisms. It uses a
simple extensible data model that allows for online analytical
application.

The sensor data stored in HDFS is analyzed using
Apache Spark. Apache Spark is a fast, in-memory data
processing engine with elegant and expressive development
APIs to allow data workers to efficiently execute streaming,
machine learning or SQL workloads that require fast iterative
access to datasets [28]. It has Resilient Distributed Dataset
(RDD) as its architectural foundation. RDD is a read-only
multiset of data items distributed over a cluster of machines,
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FIGURE 8. IBDMA reference architecture.

that is maintained in a fault tolerant way. Apache Spark
analyzes sensor data and enables various controls within
the smart building autonomously without any human inter-
vention. This autonomous system keeps a safe, comfortable
and healthy environment for the residents of the smart
building.

For data visualization of the sensor data stored in HDFS,
we usedMicrosoft Power BI to connect to HDFS data storage,
which extracts the data from HDFS and creates dashboards
of the data. To perform predictive analytics, we used R
integration with Power BI and performed predictive analytics
on the sensor data stored in HDFS.

Power BI can only be used for static data visualization,
since IoT sensors generate data streams at regular intervals,
it is imperative to have near-real time data visualization to
have a deeper insight about the environment of the smart
building in near-real time, so any hazards can be dealt with in
near-real time. To enable near-real time visualization, we used
Elasticsearch [29] and Kibana [30]. Data generated from the
sensors was stored and indexed in Elasticsearch, and Kibana
was then used to visualize it in near-real time by setting up an
automatic refresh interval. Elasticsearch is an open-source,
RESTful, distributed search and analytics engine built on
Apache Lucene [31]. New data can be sent, called documents,
to Elasticsearch using the API or ingestion tools such as
Logstash [32]. Elasticsearch automatically stores the original
document and adds a searchable reference to the document
in the cluster’s index. We can then search and retrieve the
document using the Elasticsearch API [33]. Kibana is an open
source data visualization plugin for Elasticsearch. It provides
visualization capabilities on top of the content indexed on an
Elasticsearch cluster [34].

D. INFORMATION
‘Information’ is another vital element of the IBDMA which
stems from the intersection of ‘‘People’’, ‘‘Process’’ and
‘‘Technology’’. As mentioned in the previous sections,
‘people’ identify the ‘processes’ based on the policies
and requirements they define for the IoT ecosystem. The
‘processes’ ultimately govern the underlying ‘technology’
for the successfully implementation of the ‘processes’. On
implementing the ‘processes’ and ‘technologies’ for the
IoT enabled smart buildings solution, useful information in
various forms is generated which can not only be used for
decision making but can also be used to control various
‘facilities’ of the smart building autonomously which in-turn
benefits the residents (people) of the smart building. The
residents are also included in the ‘people’ element as they
are the beneficiary of the whole IoT enabled smart building
ecosystem as explained in the previous section.

The ‘‘information’’ can be used to autonomously control
various ‘‘facilities’’ in the smart building which may include
HVAC system, lighting, garbage, parking, security, elevators,
vending machines, water pumps and many more. Moreover,
this ‘information’ also enables the effective management
of disasters within the smart building. For example, if the
data sent from one of the smoke detection sensor is high
enough indicating a fire situation, this ‘information’ which
stems from the intersection of ‘‘people’’, ‘‘processes’’ and
‘‘technology’’ can be used to set up an autonomous system
to not only sound an alarm but also to try to eliminate fire
by actuating the fire extinguisher in that particular location
of the smart building.

‘‘Information’’ in the IBDMA framework includes data
visualization and data analysis results obtained by using the
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FIGURE 9. Smart building case study - control messages.

‘technology’ stack as defined in the previous section. For
example, the data visualization done in Power BI and Kibana
is ‘information’ based on which certain decisions can be
made and certain ‘facilities’ can be effectively managed.
Similarly, the data analysis results obtained by using Apache
Spark as discussed in the previous section also serve as
‘information’. Some of the key components of ‘‘information’’
as proposed by IBDMA framework are presented in Figure 6.
Since ‘‘process’’ element of the IBDMA framework joins and
overlaps all other element of the framework, the ‘‘processes’’
joining ‘‘information’’ to other elements of the framework
include ‘data analysis’, ‘data visualization’ and ‘decision
making’. This is shown in Figure 8.

E. FACILITY
The fifth and last element of the IBDMA framework is the
‘‘facility’’ which in the context of IoT ecosystem, includes
the autonomous smart systems within the smart building to
improve the comfort, safety and living conditions for the

TABLE 1. IBDMA metamodel concepts.

residents (people) of the building. Some examples of the
‘facility’ may include; smart energy management, HVAC,
smart parking management, smart waste management, smart
lighting, etc. as shown in Figure 7. To address the big data
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FIGURE 10. Designation of IBDMA concepts into metamodel layers.

management and analytics challenge, it is important to clearly
understand the target facility to develop optimized big data
management and analytics solution.

The ‘‘information’’ generated from the intersection
of ‘‘people’’, ‘‘process’’ and ‘‘technology’’ helps to
autonomously control the ‘‘facility’’ as shown in Figure 2.
For this research, we consider the autonomous control of
five smart facilities which include HVAC system, smart
lighting, fire detection, garbage management and parking
management.

Since the ‘‘process’’ element joins and overlaps all the
elements of the IBDMA framework, the ‘‘process’’ that
overlaps the ‘‘facility’’ element of the IBDMA framework is
‘‘action’’ as shown in Figure 8.

IV. IBDMA FRAMEWORK REFERENCE ARCHITECTURE
This section presents details about the IBDMA Framework
reference architecture for a smart building use case. The
smart building has 1000 sensors of five types: Oxygen,
Temperature, Parking, Luminosity and Garbage monitoring
sensors. There are 200 sensors of each type. The sensors
generate data in real-time which gets sent to data sinks:
1) HDFS and 2) Elasticsearch. This data is ingested into
Hadoop using Apache Flume. Once the data in Elasticsearch
is indexed, it can be visualized in near real-time in Kibana.
Flume agents push the data to HDFS where it is made
available for Power BI for batched data visualization and

TABLE 2. IBDMA metamodel relationships.

predictive analytics by integrating R scripts within Power
BI. The data in HDFS is analyzed in near using Apache
Spark. Based on the data generated by the virtual sensors,
the PySpark algorithm outputs messages on the terminal
simulating how certain facilities (HVAC system, fire alarms,
lights, parking spaces and garbage bins) in the smart building
are being monitored and controlled. The complete reference
architecture is presented in Figure 8.

The results obtained from the ‘Data Analysis’, ‘Data
Visualization’ and ‘Decision-Making’ steps as shown
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FIGURE 11. IBDMA metamodel.

in Figure 8 enable us to control the virtual smart building
application scenario by simulating and activating various
facilities in the smart building. This is done by triggering
various actions based on the values generated from the
virtual IoT sensors. We simulate the triggering actions of
various control in a virtualized smart building environment
by printing out text messages on the terminal.

To control and maintain the oxygen concentration in the
smart building, the PySpark algorithm constantly monitors
and analyzes incoming oxygen data in near real-time. If the
value detected is below the minimum threshold level of
oxygen concentration, the associated HVAC system is turned
ON. This is denoted by printing out ‘‘HVAC system X
turned ON’’ where X represents a particular location in
the smart building. When the oxygen concentration returns
into the acceptable range, the HVAC system is turned OFF.
We denote this by printing ‘‘HVAC system X turned OFF’’.
If, however, oxygen concentration is within the acceptable

range, the HVAC system remains idle and the PySpark
algorithm outputs ‘‘Oxygen level at X OKAY’’.

For smoke detectors, if the value detected by any smoke
detection sensor is above a certain threshold, indicating
that there is a fire scenario and in that scenario the fire
alarm associated with that smoke detector is turned ON.
We illustrate this by printing ‘‘Fire alarm X turned ON’’ on
the terminal window where X represents the location in the
smart building where smoke is detected. If there is no fire or
hazardous gases, our systemwill print a message saying, ‘‘No
fire at X’’.

For parking spaces sensors, when a parking space is filled,
the framework issues a message ‘‘Parking X is occupied’’.
When the parking space is empty, the message shown to the
residents is ‘‘Parking X is empty’’ where X represents the
location of the parking space. The residents can then park
their car to the empty parking spaces. The building admin can
take useful decisions by analyzing the data from the parking
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TABLE 3. IBDMA metamodel concepts mapped with model relationships found in literature.

TABLE 4. IBDMA metamodel relationships mapped with model relationships found in literature.

spaces sensors. For example, they can see if there is a need
to build another parking area to improve the comfort of the
residents.

To control andmaintain good luminosity levels in the smart
building, the PySpark algorithm keeps on monitoring the
incoming luminosity sensor data in near real-time. If the value

detected by the algorithm is below the minimum threshold
level of luminosity, the associated lights will be turned ON.
This, in our research is illustrated by printing out ‘‘Lights at
X turned ON’’ where X represents the sensor id or location.
If, however, the luminosity level detected by the sensors is
within the acceptable range, the proposed framework does
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TABLE 5. IBDMA metamodel relationship between concepts.

not turn ON or OFF the lights. In this case, the PySpark
algorithm prints ‘‘Luminosity level at X OKAY’’ illustrating
that luminosity levels are okay at that location. When the
system analyzes that the lights at a particular location needs to
be turned off, the system displays a message stating, ‘‘Lights
at X turned OFF’’.

For garbage bins sensors, if a particular garbage detection
sensor detects that the garbage at a particular location is full,
the system issues a message saying, ‘‘Garbage at X is Full’’.
If, however, the garbage at a particular location has more
space for garbage, the system displays a message saying,
‘‘Garbage at X has space’’. Using this data, the smart building
admin can effectively manage the garbage of the building.
The admin can also check at which times and days of the
week the garbage is more and at which locations it is more as
compared to other garbage locations. Similarly, the admin can
analyze the data to see if they need to develop new garbage
locations or provide more garbage collectors to a particular
location.

The results obtained on the Cloudera terminal screen while
performing the data analysis are presented in Figure 9.

V. METAMODEL FOR BIG DATA MANAGEMENT AND
ANALYTICS FOR IoT ENABLED SMART BUILDINGS
The IBDMAmetamodel is the second component of IBDMA
Framework as shown in Figure 1. To construct IBDMA
metamodel a set of relevant metamodels and architectures
were first selected. IBDMA concepts and relationships
between the concepts are rooted in the existing literature.
To develop the IBDMA metamodel, we followed a six step
Metamodeling Creation Process adapted from [35] and [36].
These six steps include:

• Step 1: Define IBDMA concepts and relationships from
IBDMA framework reference architecture and the use
case

• Step 2: Mapping similar concepts and relationships onto
relevant domain metamodels and architectures

• Step 3: Reconciliation of definitions
• Step 4: Designation of concepts

FIGURE 12. Output of validation scenario 1.

• Step 5: Identification of relationships and resultant
IBDMA Metamodel

• Step 6: Validation of metamodel

A. DEFINE METAMODEL CONCEPTS AND RELATIONSHIPS
FROM IBDMA FRAMEWORK REFERENCE ARCHITECTURE
AND THE USE CASE
This step includes reviewing the IBDMA framework refer-
ence architecture and the use case as earlier discussed in
Sections II and III. Following the review of both the IBDMA
framework contextual elements and its reference architecture
(Figure 2 and Figure 8 respectively), we gathered concepts
and relationships that are used in the smart environments in
general and IoT-enabled smart buildings in particular.We also
gathered the instances of the concepts from the smart building
use case discussed in Section III. Based on our analysis we
summarized the following concepts as part of the IBDMA
framework metamodeling process as shown in TABLE 1.

Similarly, on reviewing the IBDMA framework contextual
elements and its reference architecture as presented in
section II and II respectively, we identified the Relationships
in the Metamodel as shown in TABLE 2.

The next step is to ensure that the concepts and their
relationships can generate concepts and relationships of other
relevant metamodels.

B. STEP 2: MAPPING SIMILAR CONCEPTS AND
RELATIONSHIPS ONTO RELEVANT DOMAIN
METAMODELS AND ARCHITECTURES
This step provides a preliminary validation to ensure that
IBDMA metamodel is semantically adequate and can gener-
ate other concepts and relationships in relevant metamodels
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FIGURE 13. Resultant IBDMA metamodel for scenario 1.

and architectures. For this purpose, we considered and
short-listed the following seven most relevant metamodels
and architectures from literature.

1- ArchiMate
2- FAML
3- Adaptive Architecture metamodel
4- TOGAF
5- ISO/IEC/IEE 42010
6- IoT reference model [37]
7- BIM (Building Information Model) [38]
On review and analysis of the above in detail, we mapped

the IBDMA metamodel concepts defined in the previous
step to similar concepts founds in those architectures and
metamodels. TABLE 3 lists the mapping of the IBDMA
metamodel concepts onto the concepts found in the above
mentioned sevenmetamodels and architectures. It can be seen
from TABLE 3 that most of the IBDMAmetamodel concepts
are found in the relevant metamodels and architectures we
chose for our analysis.

Similarly, we chose the same seven metamodels and
architectures for our analysis of mapping the IBDMA

metamodel relationships onto the relationships found in these
metamodels and architectures. The resulting relationship
mapping table can be found in TABLE 4 below.

It can be seen from TABLE 3 and TABLE 4 that although
most of the concepts and relationships we defined for
IBDMA metamodel can be mapped to the concepts and
relationships of only a few metamodels found in literature.
However, none of the available metamodels in the literature
captures the concepts and relationships we defined in a
single metamodel. Moreover, there are few relationships that
cannot be found in any other metamodel as can be seen
from TABLE 4. This strengthens the claims that IBDMA
metamodel captures all the concepts and their relationships
comprehensively to address big data management and
analytics challenges for the smart building environments.

C. STEP 3: RECONCILIATION OF DEFINITIONS
In this step, we reconcile the differences between definitions
of the concepts. The definitions of concepts chosen in the
previous section are considered in choosing or synthesizing
the common concept definition to be used. Since the
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FIGURE 14. Resultant metamodel for scenario 2.

definitions of concepts come from various architectures
and models, they were developed by people with varying
perspectives and backgrounds. If there is a contradictory use
of concept definition between two or more sources, then a
we need to have a process to harmonize and fit the definition
in the metamodel. Some architectures and models ignore
explicit definitions of some of their concepts. In such cases,
the reconciliation process is missing in those models. As an
example, the concept of ‘People’ maybe defined differently
in the seven chosen metamodels and architectures discussed
in Step 2 as compared to the concept of People defined
in IBDMA metamodel as presented in TABLE 1. However,
we found that most of the concepts were defined in the same
way as we defined them for IBDMA metamodel as shown
in TABLE 1.

D. STEP 4: DESIGNATION OF CONCEPTS
Once the concepts have been finalized and reconciled,
they are designated and arranged into metamodeling layers
(M2, M1 and M0) [39]. The concepts in M2 layer are
generic across all smart environments e.g. smart cities, smart
buildings, smart homes, smart farms etc. The concepts in
M1 are specific to smart buildings, while the concepts
in M0 are actually the instances of the concepts present
in M1.

The five concepts in M2 denote the five major elements
of the IBDMA framework i.e. People, Process, Technology,

Information and Facility. These concepts are common across
various smart environments i.e. smart homes, smart offices,
smart cities etc. These five concepts from M2 layer are
broken down into their instances in M1 layer. The M1 layer
specifically denotes concepts related to the smart buildings.
In M0 layer, instances of the concepts of M1 layer are
presented. Figure 10 represents the designation and arrange-
ment of IBDMAMetamodel concepts into the metamodeling
layers.

E. STEP 5: IDENTIFICATION OF RELATIONSHIPS AND
RESULTANT IBDMA METAMODEL
In this step, we determine the relationships between the
IBDMA metamodel concepts that are arranged into various
metamodel layers. As shown in Figure 11, we use the ( ),
( ) and ( ) symbols to denote Association, Gener-
alization and Aggregation relationships respectively. As an
association example, ‘Helps Maintain’’ between Information
andFacility concepts indicate that information helpsmaintain
all the elements of the Facility. As a Generalization exam-
ple, Fire Alarm, Fire extinguisher, HVAC System, Lights,
Parking space switches and Garbage Detection Switches
generalize theActuators concept. As an aggregation example,
On-Device Resource and Device are related by the relation
‘hosts’. More examples of binary relationships are shown
in Table 5. Concepts depicting hardware are shown in blue,
software in green, animate (humans/animals) in yellow and
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FIGURE 15. Output of validation scenario 3.

FIGURE 16. Classes in TopBraid.

concepts that fit into either multiple or no categories in
pink. The relationship between the concepts are determined
using the IBDMA reference architecture for the IoT-enabled
smart building as presented in the previous section. The
relationships between the concepts defined in Figure 11 are
taken from TABLE 4. Table 5 outlines how the metamodel
concepts are related to each other. By taking the IBDMA
framework and its reference architecture as presented in
Sections II and III, and on combining the metamodel
concepts and the relationship between these concepts
the resultant metamodel is developed which is presented
in Figure 11.

TABLE 6. Contributions of the IBDMA Metamodel.

TABLE 7. Limitations of the IBDMA Metamodel.

F. STEP 6: VALIDATION OF METAMODEL
In this section, we use IBDMA metamodel to instantiate
three practical use-cases for smart buildings. This will prove
the effectiveness, completeness and comprehensiveness of
the metamodel for smart building applications. We also
import the developed metamodel into a knowledge graph
management tool and prove the validity of the IBDMA
metamodel using this tool as well.

1) METAMODEL EVALUATION AND
VALIDATION SCENARIO 1
To evaluate IBDMA metamodel, we create an instance of
metamodel for a specific use case. The smart building that we
choose has a variety of different types of IoT sensors installed
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FIGURE 17. Instances of concepts in TopBraid.

FIGURE 18. Metamodel relationships imported in TopBraid.

within the building. However, for scenario 1, we choose
one oxygen sensor installed in the smart building which
monitors the oxygen levels in one particular room of the
smart building. For simplicity, we refer to this as ‘Sensor 1’
installed in room number 1 of the smart building we choose.
We then implement the big data management and analytics
architecture using Cloudera VM and create an end-to-end
pipeline as depicted in Figure 8. This pipeline ingests the data
generated by the IoT Oxygen sensor into HDFS, from where
the value generated by the sensor is analyzed using Spark
code and based on the value of the sensor, the smart building
HVAC system is controlled. When sensor 1 generates a
value, which is below the comfortable threshold level for
humans, the Spark code produces an output showing, ‘‘HVAC

System 1 turned ON’’, indicating that the HVAC system
which serves room 1 where Sensor 1 is connected 1 is turned
ON. This is presented in Figure 12.

Now we validate our metamodel using this scenario.
As mentioned earlier, Sensor 1 generates the data about
oxygen levels, this sensor being a ‘‘Device’’, ‘generates’
‘‘data’’ and ‘interfaces with’ the ‘‘data process’’. The ‘‘data’’
generated by the sensor gets analyzed and produces useful
‘‘information’’ which ‘originates’ from the ‘‘data’’. This
useful ‘‘information’’ ‘helps maintain’ the ‘‘facility’’ which
‘contains’ ‘‘physical entities’’. In this particular case, if the
‘‘data process’’ detects that the value generated by the oxygen
sensor is too low, it triggers the ‘‘HVAC System’’ to turn
ON and to make sure that the level of oxygen in room 1
remains within the acceptable range for the ‘‘residents’’ of
the smart building ‘‘facility’’. The resultant metamodel for
this particular example is presented in Figure 13. It can be
seen clearly from this example scenario that the IBDMA
metamodel encompasses and captures all the concepts
required for validating this example use case.

2) METAMODEL EVALUATION AND
VALIDATION SCENARIO 2
To evaluate the IBDMA metamodel, we consider our second
use case in this section. We choose a University’s smart
building based in Australia as our smart building instance
for this particular scenario. This building has 12 floors
with various types of sensors installed in the building. One
of the sensor types installed in the building is Waspmote
types of sensors. Waspmote sensors installed in the building
included Oxygen sensors, Carbon Dioxide sensors, Luminos-
ity sensors, Temperature sensors, Humidity sensors and other
sensors. For this scenario, we choose a Luminosity sensor
installed at level 6 of the University’s smart building. This
sensor produces a binary value output with 1 representing
good luminosity levels in the smart building room and
0 representing low luminosity levels in the room where the
sensor is installed. For simplicity, we designate this sensor as
sensor 601. When sensor 601 outputs a ‘1’ value, the lights in
that particular room of the smart building turns OFF. On the
other hand, when sensor generates a ‘0’ value, the light turns
ON in the room.
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FIGURE 19. TopBraid window with the imported Metamodel.

Now we instantiate the metamodel for this use case.
As mentioned earlier, Sensor 601 generates the data about
luminosity levels, this sensor being a ‘‘Device’’, ‘generates’
‘‘data’’ and ‘interfaces with’ the ‘‘data process’’. The ‘‘data’’
generated by the sensor gets analyzed and produces useful
‘‘information’’ which ‘originates’ from the ‘‘data’’. This
useful ‘‘information’’ ‘helps maintain’ the ‘‘facility’’ which
‘contains’ ‘‘physical entities’’. In this particular case, if the
‘‘data process’’ detects that the value generated by the
luminosity sensor is too low, it triggers the ‘‘Light’’ to
turn ON and to make sure that the luminosity level in
a particular room 1 remains within the acceptable range
for the ‘‘residents’’ of the smart building ‘‘facility’’. The
resultant metamodel for this particular example is presented
in Figure 14. Hence, it can be seen clearly from this example
scenario that IBDMA metamodel encompasses and captures
all the concepts required for validating this example use
case.

3) METAMODEL EVALUATION AND VALIDATION
SCENARIO 3
To evaluate the metamodel, we consider our final smart
building example scenario in this section by creating an
instance of the IBDMA metamodel for a specific use case.
The smart building, we choose has a variety of different types
of IoT sensors installed within the building. However, for
scenario 3, we choose one smoke detection sensor installed
in the smart building which monitors the smoke levels in
one particular room of the smart building. For simplicity,

we refer to this as ‘Sensor 201’ installed in room number 1
of the smart building we choose. We then implement the big
data management and analytics architecture using Cloudera
VM and create an end-to-end pipeline as depicted in Figure 8.
This pipeline ingests the data generated by the IoT Smoke
Detection sensor into HDFS, from where the value generated
by the sensor is analyzed using Spark code and based on
the value of the sensor, the smart building Fire Alarm is
controlled. When sensor 201 generates a value, which is
above the comfortable threshold level for humans, the Spark
code produces an output saying, ‘‘Fire Alarm 1 turned ON’’,
indicating that the Fire Alarm which serves room 201 where
Sensor 201 is connected is turned ON. This is presented
in Figure 15.

We now validate our metamodel using this scenario,
by using TopBraid as the metamodel management tool.
Sensor 201 generates the data about smoke levels, this sensor
being a ‘‘Device’’ interfaces with the ‘‘data process’’.

Hence the ‘‘data’’ generated by the sensor gets analyzed
and produces useful ‘‘information’’. This useful information
helps maintain the ‘‘facility’’ which contains ‘‘physical
entities’’. In this particular case, if the ‘‘data process’’ detects
that the value generated by the smoke detection sensor is
too high, it triggers the ‘‘Fire Alarm’’ to turn ON and
makes sure that the ‘‘Fire Alarm’’ at the location where
the smoke was detected turns ON. This alerts the ‘‘Users’’
or ‘‘residents’’ in the building so that they can stay safe
by evacuating the building. We validate the metamodel in
TopBraid in the section below for this particular example
scenario.
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FIGURE 20. Metamodel validation in TopBraid – evaluation and validation scenario 3.

4) TopBraid METAMODEL IMPORT AND VALIDATION
SCENARIO 3
In order to operationalize the metamodel, we import
the metamodel into TopBraid EDG (Enterprise Data
Governance) [40]. Topbraid is a modular set of different
types of graphs, expressing knowledge about the things
needed for managing and governing data. It enables the
rapid assembly of dynamic ontology-driven applications by
providing full support for the entire Semantic Application
Lifecycle from development to deployment. We validate
the metamodel using TopBraid by considering scenario 3
with a smoke detection sensor installed in the smart
building.

Importing the metamodel in TopBraid involves creating
classes for the concepts in the metamodel and then defining
instances of those classes. Figure 16 shows the metamodel
concepts of IBDMA metamodel imported into TopBraid as
classes.

Next, we define relationships of the IBDMA metamodel
in TopBraid. The pane on the right side of the TopBraid
window shows the properties (relationships) between the
classes (concepts). The pane on the bottom of TopBraid
window lists the instances of a particular class (concept)

that is selected in the classes pane in TopBraid as shown
in Figure 18.

The pane on the bottom of TopBraid window lists the
instances of a particular class (concept) that is selected in the
classes pane in TopBraid as shown in Figure 18.

The metamodel concepts and relationships between the
concepts on importing into TopBraid are shown in Figure 19.

Now we instantiate the metamodel for the Smoke Detec-
tion sensor 201 scenario 3 as presented in previous section.
The resultant instantiation of the IBDMA metamodel for the
Metamodel Validation Scenario is presented in Figure 20.
The zoomed-in version of the IBDMA metamodel for this
instance is presented in Figure 21. It can be seen clearly that
the metamodel imported into TopBraid encompasses all the
concepts and the relationship between these concepts. This
consistent operationalization of IBDMA metamodel enabled
much easier use of the metamodel, proving it to be valid for
this third and final example use case.

VI. CONTRIBUTION AND LIMITATION OF THE IBDMA
METAMODEL
This section lists the major contributions and the limitations
of the IBDMA Metamodel presented in the paper.
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FIGURE 21. Metamodel validation scenario 2 (zoomed in) version.

VII. CONCLUSION AND FUTURE WORK
In this article, we presented the Integrated Big Data
Management and Analytics metamodel in a familiar format,
UML, to increase its ease of use and broaden its appeal.
The aim of the metamodel to address the big data man-
agement and analytics challenges faced by researchers and
practitioners working in the Smart Buildings domain. We
used the IBDMA framework and its reference architecture
as a basis for our metamodel. In this work, we extracted
concepts and relationship between the concepts from the
IBDMA framework. We validated their semantics against
several other relevant metamodels and architectures. The
finalized concepts and relationships were arranged into
Metamodel layers (M2 – M0). The resultant metamodel,
was then validated using three practical use cases within
smart buildings environments. And finally, to operationalize
IBDMA metamodel, it was imported into TopBraid and
further validated within TopBraid for a third use case to
illustrate its effectiveness.

IBDMA metamodel is the core contribution of this article.
It is intended to become an effective platform for sharing
and integrating the big data management and analytics
knowledge for IoT enabled smart buildings from various
sources. Existing models for big data management and
analytics for smart buildings are not based onmetamodels but
rather are based on the frameworks and architectural aspects.

Their interoperability thus far remains an issue that IBDMA
metamodel targets at. Existing literature provides generic
metamodels for the smart environments which have not been
validated thoroughly for smart building applications. This
is the first work that develops an integrated metamodel
for big data management and analytics for IoT enabled
smart buildings and has been tested thoroughly to prove
its effectiveness and completeness. The work will help
researchers and practitioners in understanding the big data
management and analytics challenges and how to address
them in IoT enabled smart buildings. The metamodel will
also be used as a tool to determine the completeness of any
big data solution implementation in smart buildings. Our
future work will aim to extend this metamodel for other
smart environments (not just buildings) and consider a more
detailed and comprehensive use case for validation.
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