
Coupled task scheduling with time-dependent processing times

Mostafa Khatami∗ Amir Salehipour†

Abstract

The single machine coupled task scheduling problem includes a set of jobs, each with two separated

tasks and there is an exact delay between the tasks. We investigate the single machine coupled task

scheduling problem with the objective of minimizing the makespan under identical processing time for

the first task and identical delay period for all jobs, and the time-dependent processing time setting

for the second task. Certain healthcare appointment scheduling problems can be modeled as the

coupled task scheduling problem. Also, the incorporation of time-dependent processing time for the

second task lets the human resource fatigue and the deteriorating health conditions be modeled. We

provide optimal solution under certain conditions. In addition, we propose a dynamic program under

the condition that the majority of jobs share the same time-dependent characteristic. We develop a

heuristic for the general case and show that the heuristic performs well.

Keywords: coupled task scheduling; time-dependent processing time; simple linear processing time;

dynamic program; heuristic; healthcare scheduling

1 Introduction

The single machine coupled task scheduling problem aims to schedule a set of jobs on a single machine

(processor) such that a performance criterion (objective function) is optimized. In this study, we inves-

tigate the performance criterion of minimizing the makespan, i.e. the completion time of the last job in

the sequence. Each job consists of two separated tasks with an exact delay (time interval) between them.

The second (completion) task must be processed after the completion of the first (initial) task. A job

j ∈ J , where J is the set of all jobs, is shown by a triple (aj , Lj , bj). Parameters aj , Lj and bj denote the

processing time of the initial task, the amount of delay and the processing time of the completion task.

Shapiro (1980) modeled a pulsed radar system as a coupled task scheduling problem. A pulse of

electromagnetic energy is used to track an object. The pulse is transmitted, and then, its reflection

is received after a period of time, helping to measure the size and/or the shape of the object. The

objective is to maximize the number of detected objects. Other applications of the coupled task problem

include certain scheduling problems in chemistry manufacturing, where there is an exact technological

delay between the completion time of the first task and the starting time of the second one (Ageev

and Baburin, 2007), in robotic cells, in which a cell includes input and output stations, a machine and

a robot, which transports material between stations and machine (Lehoux-Lebacque et al., 2015), and

in healthcare appointment scheduling, for example, in a chemotherapy treatment once the medicine is

prescribed the patient visits the health center at treatment days separated by a fixed number of rest days

(Condotta and Shakhlevich, 2014).

The coupled task scheduling problem can be applied to certain healthcare problems with multi-stage

characteristics. Consider scheduling the appointment of patients in a nuclear medicine clinic. The problem

consists of strict multi-stage sequential procedures (Pérez et al., 2011; Pérez et al., 2013), where a single

procedure requires multiple stages and each stage needs to be successfully completed within a strict time

window. The cost of required resources and the short half-life of the radio-pharmaceuticals needed for the

∗School of Mathematical and Physical Sciences, University of Technology Sydney, Australia. Email:

mostafa.khatami@student.uts.edu.au
†Corresponding author. School of Mathematical and Physical Sciences, University of Technology Sydney, Australia.

Email: amir.salehipour@uts.edu.au

1

procedure justifies minimizing a performance criterion related to the patients flow time. In this context,

the tiredness of the staff, which typically occurs in practice and impacts the processing time and hence,

the start time of the next job, can be modeled as a time-dependent event. For example, Pérez et al. (2013)

highlights the importance of modeling human resource fatigue within the patient appointment scheduling

in nuclear medicine clinics or in similar environments, proposing therefore studies on the coupled task

scheduling with time-dependent processing times. The problem of scheduling patients in a pathology

laboratory is another example. Certain blood tests, e.g., the fasting blood sugar test, require multiple

tests and there is an exact time interval between a pair of tests. Although the next test cannot be

administered until an exact delay is elapsed, the tests associated with other patients can be administered

within such a delay period. In the simplest form, a pair of tests form a coupled task job. Here, the

performance criterion is to minimize the waiting time of the patients (Marinagi et al., 2000; Azadeh

et al., 2014). This problem can also be investigated with regard to the human resource fatigue. Similar

characteristics can be found in the patient appointment scheduling in radiotherapy clinics (Legrain et

al., 2015) and in hemodialysis treatment services (Liu et al., 2019).

We also note that Mosheiov (1994) and Gawiejnowicz (2008) studied the time-dependent processing

times to model the time of performing the medical services as the time increases under deteriorating

health conditions. It is true that in the aforementioned applications, particularly, in chemotherapy and

radiotherapy services, the symptoms of the patient rapidly grows over time, i.e., the patient needs longer

treatment if that treatment is started late.

Shapiro (1980) showed that the coupled task scheduling problem is equivalent to an NP-hard class of

two-machine job-shop problem. They proposed two heuristic algorithms of “interleaving” and “nesting”

for the problem. The interleaving heuristic aims to sequence jobs such that the completion tasks arrive for

processing in the same order as the initial tasks (Figure 1a). In the nesting procedure, the completion tasks

arrive in the reverse order of the initial tasks (Figure 1b). Scheduling a single job without interleaving

or nesting is often referred to as “appending”. The strong NP-hardness of minimizing the makespan for

the coupled task problem was proved by Sherali and Smith (2005). Condotta and Shakhlevich (2012)

showed that the problem remains strongly NP-hard even if the sequence for the initial tasks is given.

Several special cases were also shown to be strongly NP-hard. For example, under the objective function

of minimizing the makespan problems (aj = Lj = bj), (aj , Lj = L, bj = b) and (aj = p, Lj , bj = p), where

L, b, and p are positive integers, are strongly NP-hard (Orman and Potts, 1997). Even the complexity

of a restricted case where all jobs have the same tasks and delay, i.e. (aj = a, Lj = L, bj = b), which is

commonly known as the “identical” case, is still open. Two notable studies for the identical case are due

to Ahr et al. (2004), who proposed an O(nr2L)-time dynamic program, where r is a function of a, and

to Baptiste (2010), who improved the complexity to O(log n) for fixed a, L and b.

(a): aj ak bj bk

(b): aj ak bk bj

Figure 1: Interleaving jobs j and k (a) and nesting jobs j and k (b).

For the general case of the problem, Ageev and Kononov (2007) proposed a 3.5-approximation al-

gorithm that operates by ordering the jobs in a non-increasing order of (aj + Lj). Li and Zhao (2007)

presented lower bounds for the problem. Heuristic algorithms (Li and Zhao, 2007; Condotta and Shakhle-

vich, 2012) and exact methods (Békési et al., 2014) were also proposed. The recent heuristic of binary

search by Khatami and Salehipour (2020) systematically tightens lower and upper bounds until a feasible

schedule is obtained. Several studies investigated the problem with additional constraints, e.g. with the

precedence constraints (Blazewicz et al., 2010), with the compatibility constraints (Simonin et al., 2011;

Bessy and Giroudeau, 2019), and with the fixed-job-sequence constraints (Hwang and Lin, 2011). In

the shop environment, Yu et al. (2004) and Leung et al. (2007) studied the makespan minimization in a

2

two-machine flow-shop problem. Ageev (2018) recently studied the complexity of the open-shop problem

with the coupled tasks. For a comprehensive review of the coupled task studies, applications, and models

we refer the interested reader to Khatami et al. (2020).

Certain special cases of the coupled task problem have been shown to be polynomially solvable. For

example, Orman and Potts (1997) proved that the case (aj = p, Lj = p, bj) (identical initial tasks and

delays for all jobs) is polynomially solvable for the objective function of minimizing the makespan. We

investigate the same case, and also with the objective function of minimizing the makespan; however,

with a time-dependent processing time characteristic for the completion tasks. Under this setting, the

processing time of the completion task depends on its starting time. To the best of our knowledge,

the present study is the first attempt towards studying the coupled task scheduling problem with time-

dependent processing time characteristic.

Gupta and Gupta (1988) introduced the scheduling problems with time-dependent processing times.

The time-dependent processing times have various applications, e.g. in steel production, in financial

management and in resource allocation, where a delay in starting a job may decrease or increase its

processing time (Kunnathur and Gupta, 1990; Cheng et al., 2004). Under this setting, job j has a normal

processing time αj ≥ 0 and a processing rate βj ≥ 0. The actual processing time of job j depends on

its starting time sj , and is typically shown as pj = αj ± βjsj . A variant of this model, which is called

the “simple linear processing times”, assumes αj = 0, and therefore, pj = βjsj . We investigate the

simple linear processing times model for the completion tasks. Therefore, with considering the three-

field scheduling notation proposed by Graham et al. (1979), the present study investigates the problem

1|(aj = p, Lj = p, bj = βjsj)|Cmax. We assume aj , Lj and bj only take positive integers values. There

are other cases that we do not study in this paper, either because their time-dependent processing

times counterpart remains polynomially solvable or remains strongly NP-hard. For example, the case

(aj = p, Lj = L, bj = p), i.e., all jobs are identical was shown to be polynomially solvable (Orman and

Potts, 1997). We do not study that case with the time-dependent processing times because the problem

is trivial if all jobs share the same processing rate (a greedy approach leads to the optimal makespan).

Also, the strongly NP-hard cases of (aj = Lj = bj), (aj , Lj = L, bj = b) and (aj = p, Lj , bj = p) remain

strongly NP-hard with the addition of the time-dependent processing times.

The remainder of this paper is organized as follows. In Section 2, we present a mathematical formu-

lation for the problem. In Section 3, we discuss optimal properties for the problem. A dynamic program

and a heuristic are also proposed. The results of numerical experiments are presented in Section 4. The

paper ends with a few conclusions in Section 5.

2 Problem definition and formulation

Given a set of coupled task jobs J = {1, 2, . . . , n}, each with two tasks and there is an exact delay

period between two consecutive tasks, to be processed on a single machine, a job j ∈ J is represented by

(aj = p, Lj = p, bj = βjsj), where p is a positive integer, and βj , sj > 0,∀j ∈ J . Therefore, parameter

bj ,∀j is a time dependent variable defined by a simple linear processing time. The goal is to develop a

schedule for (aj = p, Lj = p, bj = βjsj), so to minimize the makespan, i.e. Cmax.

There are a number of mathematical programs available in the literature for the general coupled

task problem. Khatami et al. (2020) discussed that the model proposed by Békési et al. (2014) is

computationally among the top performing models. Hence, we extend that formulation for the problem

of this study. The formulation utilizes linear ordering variables, and the sequence is therefore built by

ordering the tasks. For this reason, we define a set of tasks H = {1, 2, . . . , 2n}, where H2j−1 and H2j

represent the initial and completion tasks of job j. For any pair of tasks h, h′, we define a binary variable

xh,h′ , which takes a value of 1 if task h′ starts after task h in the sequence, and 0 otherwise. The problem

P1 below shows the formulation for (aj = p, Lj = p, bj = βjsj).

Problem P1

3

z = minCmax (1)

subject to

Cmax ≥ s2j + βjs2j , 1 ≤ j ≤ n, (2)

x2j−1,2j = 1, 1 ≤ j ≤ n, (3)

xh,h′ + xh′,h = 1, 1 ≤ h < h′ ≤ 2n, (4)

xh,h′ + xh′,h′′ + xh′′,h ≤ 2, 1 ≤ h < h′ < h′′ ≤ 2n, (5)

s2j = s2j−1 + 2p, 1 ≤ j ≤ n, (6)

s2j ≤ UB − βjs2j , 1 ≤ j ≤ n, (7)

sh ≥ s2j−1 + p− UB(1− x2j−1,h), 1 ≤ j ≤ n, 1 ≤ h ≤ 2n, h /∈ {2j − 1, 2j}, (8)

sh ≥ s2j + βjs2j − UB(1− x2j,h), 1 ≤ j ≤ n, 1 ≤ h ≤ 2n, h /∈ {2j − 1, 2j}, (9)

sh ≥ 0, 1 ≤ h ≤ 2n, (10)

xh,h′ ∈ {0, 1}, 1 ≤ h, h′ ≤ 2n, h 6= h′. (11)

The objective function (Equation (1)) minimizes the makespan. The constraints (2) ensure that the

makespan is larger than the completion time of any job. Constraints (3) ensure that the completion task

of each job should be scheduled after its initial task. Constraints (4) and (5) set the relative order of

any pair of tasks and any triple distinct tasks, respectively. The link between the starting time of the

tasks (of the same job) is established by constraints (6), while an upper bound (UB) is considered for the

starting time of the completion tasks in constraints (7). Constraints (8) and (9) relate the starting time

of tasks, and also relate the starting time variables to the linear ordering variables. Constraints (10) and

(11) ensure that the decision variables are non-negative and binary. We note that the total number of

variables and constraints of the model is equal to 4n2 + 1 and 8
3n

3 + 2n2 + 1
3n, respectively.

3 Minimizing the makespan

We show that problem P1 can be easily solved for these two cases: (1) βj > 0.5,∀j ∈ J , and (2) a two-job

instance. In addition, under the condition that jobs are grouped into a few classes we propose a dynamic

program for problem P1 that delivers the optimal schedule in polynomial time. In many applications it

is indeed safe to group the jobs. For the general case, we propose an efficient heuristic algorithm.

3.1 Optimal schedule

Orman and Potts (1997) showed that for problem (aj = p, Lj = p, bj) under general processing times,

the nesting of jobs is not possible. For a pair of jobs j and k, if bj ≤ p, it is possible to interleave jobs

j and k, where j is the first job and k is the second job of the pair. The contribution of this setting to

the makespan is equal to 3p + bk. This is illustrated in Figure 2a. On the other hand, any job j with

bj > p contributes 2p + bj to the makespan (see Figure 2b). Therefore, the optimal schedule is derived

when as many jobs as possible are interleaved. We will investigate whether this is the case in problem

(aj = p, Lj = p, bj = βjsj).

4

(a):

0 p 2p 3p

aj ak bj bk

(b):

0 p 2p

aj bj

Figure 2: Contribution of an interleaving pair of jobs (a), and a single job (b) to the makespan.

In the classical single machine setting, the optimal schedule for both simple linear and linear time-

dependent processing times exists. For example, under the simple linear condition Mosheiov (1994)

showed that all schedules lead to the same makespan, which is equal to s1 ×
∏
j (1 + βj), s1 > 0, where

s1 is the start time of the schedule. Under the linear processing times, Gupta and Gupta (1988) proved

that the optimal makespan is obtained when jobs are sequenced in a non-decreasing order of αj/βj .

The results of Gupta and Gupta (1988) may be extended for problem (aj = p, Lj = p, bj = βjsj).

We note that the combination of the initial task and the delay period of job j can be considered as

the normal processing time of job j, i.e. αj = p + p = 2p. If no interleaving is possible, problem

(aj = p, Lj = p, bj = βjsj) reduces to the single machine scheduling with linear time-dependent processing

times, for which sequencing jobs in a non-decreasing order of αj/βj leads to the optimal makespan.

Therefore, it is suffice to investigate if interleaving is possible.

It is safe to assume that the first job starts at time zero because all jobs are available at time zero.

Then, the processing time of its completion task will be bj = βj × 2p. Two cases are possible: (1)

βj > 0.5,∀j ∈ J , and (2) βj ≤ 0.5,∃j ∈ J . The following theorem leads to the optimal schedule if

βj > 0.5,∀j.

Theorem 1. The optimal solution for problem P1 is obtained when jobs are sorted in a non-increasing

order of βj, if and only if βj > 0.5,∀j.

Proof. Without loss of generality let the first job start at time zero. Therefore, its completion task

starts at time 2p and bj = βj × 2p. It is clear that bj > p, since βj > 0.5,∀j. Recall that there is no

possibility for jobs interleaving if bj > p (see Figure 2b). Hence, the optimal sequence is obtained by

ordering jobs in a non-decreasing order of αj/βj , or equivalently in a non-increasing order of βj since

αj = 2p > 0,∀j ∈ J .

The proof of Theorem 1 shows that even though the actual processing time of jobs depends on the

start time of the completion tasks, this does not impact the optimal sequence because αj = 2p,∀j ∈ J .

The result of Theorem 1 may also be utilized to locate jobs that cannot be the first of an interleaving

pair. This leads to the following lemma.

Lemma 1. Under arbitrary values of β the jobs in set J̄ ⊂ J , where J̄ = {j|βj > 0.5} appear in the

optimal schedule in a non-increasing order of βj , j ∈ J̄ .

Proof. Let βj > βk > 0.5 for jobs j, k ∈ J̄ . Assume that job k precedes job j in the optimal schedule.

It is easy to see that swapping jobs j and k decreases the makespan, which implies that job k cannot

precede job j in the optimal schedule. We note that the jobs in J̄ cannot be the first of an interleaving

pair, and swapping jobs j, k does not therefore change the order of other jobs.

We now investigate the case of βj ≤ 0.5,∃j ∈ J . There might be some possibility for interleaving

of jobs. The following scenario shows the impact of interleaving two jobs on the makespan. Let l =

(p, p, bl = βlsl) and k = (p, p, bk = βksk) be a two-job instance of problem (aj = p, Lj = p, bj = βjsj).

Also, let βl ≤ 0.5 and βk > 0.5. Assume that the schedule starts at time zero and the first completion

task therefore starts at time 2p. Because βl ≤ 0.5, βl(2p) ≤ p, implying that the jobs can be interleaved if

the schedule starts with l. On the contrary, because βk > 0.5, and therefore βk(2p) � p, the interleaving

of jobs is not possible if the schedule starts with k. The Gantt chart of Figure 3 illustrates these two

cases. The makespan for those cases can be derived as follows.

5

(l, k) : C(1) = p+ p+ p+ 3pβk = 3p+ 3pβk, (12)

(k, l) : C(2) = p+ p+ 2pβk + p+ p+ (4p+ 2pβk)βl = 4p+ 2pβk + (4p+ 2pβk)βl. (13)

(l, k):

0 p 2p 3p

al ak bl bk

2pβl 3pβk

(k, l):

0 p 2p

ak bk al bl

2pβk (4p+ 2pβk)βl

p

Figure 3: Two possible schedules for a two-job instance: (l, k), where interleaving occurs, and (k, l),
where interleaving is not possible.

Obviously, we are interested in finding the values of βl and βk such that C(1) ≤ C(2):

3p+ 3pβk ≤ 4p+ 2pβk + (4p+ 2pβk)βl =⇒
pβk ≤ p+ 4pβl + 2pβlβk =⇒

βk ≤ 1 + 4βl + 2βlβk =⇒

βk − 2βlβk ≤ 1 + 4βl =⇒

βk(1− 2βl) ≤ 1 + 4βl.

(14)

It should be noted that if βl = 0.5, Inequality (14) always holds, i.e. interleaving is beneficial. Following

this, we propose Lemma 2.

Lemma 2. If there exists a job l with βl = 0.5, and the remaining jobs with βj > 0.5,∀j ∈ J \ {l}, the

optimal schedule is obtained by interleaving job l with the job with the largest value of βj , j ∈ J \ {l}, and

sequencing the remaining jobs in a non-increasing order of their β values.

Proof. Interleaving job l with a job k, βk > 0.5 leads to a smaller makespan. This is shown in Inequality

(14). It is clear that the largest improvement in the makespan is obtained when interleaving job l with

the job with the largest value of β. The optimal sequence for the remaining jobs can be determined by

Theorem 1.

Lemma 2 further shows that it is only enough to investigate the potential of interleaving when 0 <

βl < 0.5. Given a pair of jobs l, k, Inequality (15) calculates a threshold for βk > 0.5 such that an

interleaving improves the makespan:

βk ≤
1 + 4βl
1− 2βl

. (15)

This leads to the following theorem.

Theorem 2. In a two-job (l, k) instance of problem (aj = p, Lj = p, bj = βjsj), an interleaving reduces

the makespan if 0.5 < βk ≤ 1+4βl

1−2βl
, 0 < βl < 0.5.

Proof. As discussed above.

We note that Theorem 2 does not necessarily hold when n ≥ 3. A counter example is shown in

Figure 4. The optimal schedule for a three-job instance with β1 = 0.1, β2 = 1, β3 = 1.5 and p = 1 does

not follow Theorem 2, because the theorem implies that we may schedule an interleaving pair of jobs 1

6

and 3 at the beginning of the schedule since β3 <
1+4β1

1−2β1
(prioritizing job 3 to job 2 since β3 > β2 due to

applying Lemma 1), followed by job 2. However, the optimal sequence is (3, 1, 2).

(1, 3, 2):

0 1 2 3 7.5 8.5 9.5 19

a1 a3 b3 a2 b2

b1 = 0.1× 2 1.5× 3 1× 9.5

(3, 1, 2):

0 1 2 5 6 7 8 16

a3 b3

1.5× 2

a1 a2 b1

0.1× 7

b2

1× 8

Figure 4: Counter example for generalizing the result of Theorem 2.

3.2 Groups of identical jobs

Although the computational complexity of problem (aj = p, Lj = p, bj = βjsj) under arbitrary values of

β remains open, we now investigate a polynomially solvable case, in which jobs are partitioned into a set

of G = {1, . . . ,m}, |G| = m groups. An important characteristic of group g ∈ G is that all of its jobs

share the same processing rate denoted by βg.

The simplest case includes only one group of jobs, i.e. m = 1, implying that all jobs are identical

and in the form of (aj = p, Lj = p, bj = βsj). The problem can easily be solved because the sequence

is immaterial. We further show this in Section 3.4. When m > 1, however, the number of all possible

permutations of jobs grows exponentially. As an example, consider m = 2. For the simplicity, let

n be an even number and let each group have an equal number of jobs. Therefore, n
2 jobs have a

processing rate of β1 and the remaining n
2 jobs have a processing rate of β2. It is clear that the number

of all possible permutations of jobs is equal to n!
n
2 !n2 ! . Next, we present a dynamic program for problem

(aj = p, Lj = p, bj = βjsj), and show that DP runs in polynomial time when m is relatively small.

3.2.1 The dynamic programming algorithm

Let i = 1, . . . , n denote the current stage of the algorithm, where the total number of stages is equal to

the number of jobs. At stage i the set of i first jobs is scheduled. Let π denote the set of jobs-group at

stage i and j denote the last job scheduled in stage i. We denote by ziπ,j = (ciπ,j , t
i
π,j) the state of the

system at stage i, where ciπ,j presents the completion time of i first jobs and tiπ,j represents two operations

of “interleaving” (int) or “appending” (app) for the next job in the sequence. The recursive formula for

ziπ,j , 1 ≤ i ≤ n− 1 is shown in Equation (16).

ziπ,j = (ciπ,j , t
i
π,j) =


(ci−1π\{j} + bj , app) if ti−1π\{j} = int,

(ci−1π\{j} + 2p+ bj , app) if ti−1π\{j} = app ∧ bj > p,

(ci−1π\{j} + 3p, int), (ci−1π\{j} + 2p+ bj , app) if ti−1π\{j} = app ∧ bj ≤ p.

(16)

where

bj =

βj(si−1π\{j}) if ti−1π\{j} = int,

βj(s
i−1
π\{j} + 2p) if ti−1π\{j} = app.

(17)

Given that ci−1π\{j} represents the completion time of the i− 1 first jobs and si−1π\{j} and ti−1π\{j} denote the

starting time and the operations “int” or “app” for the last job in the sequence of i − 1 first jobs, then

at each stage i > 1, we show the state of the system at the previous stage by zi−1π\{j}.

7

The initial state is (c0∅, t
0
∅) =

(0, int)

(0, app)
, and the final state is

znπ,j = cnπ,j =

cn−1π\{j} + bj if tn−1π\{j} = int,

cn−1π\{j} + 2p+ bj if ti−1π\{j} = app.
(18)

The four possible cases for ziπ,j in Equation (16) are as follow. If ti−1π\{j} = int, job j is interleaved with

the last job in the sequence and the next job should be in the form of appending (case 1). If ti−1π\{j} = app,

job j will be appended, but the possibilities for the next job depend on the value of bj . If bj > p, the

next job is also in the form of appending since it cannot be interleaved with job j (case 2). However,

if bj ≤ p, the next job can be interleaved with job j. We point that both interleaving and appending

(cases 3 and 4, respectively) must be considered for the next job. Consider a three-job instance, where

β1 = 0.25, β2 = 0.20, β3 = 0.17 and p = 1. Figure 5 shows that although job 2 can be interleaved with

job 1, instead, its appending leads to the optimal schedule (Figure 5a).

(a):

0 1 2 2.5 3.5 4.5 5.5 6.435

a1 b1 a2 a3 b2 b3

0.25× 2 0.2× 4.5 0.17× 5.5

(b):

0 1 2.5 3 3.6 4.6 5.6 6.552

a1 a2 b1 b2 a3 b3

0.25× 2 0.2× 3 0.17× 5.6

Figure 5: A three-job example showing that appending job 2 (a) leads to a smaller makespan than
interleaving jobs 1 and 2 (b).

We note that at most three cases, out of four, need to be considered in any stage. Also, at each

stage i, for any π, from the cases with similar tiπ,j the one with smaller ciπ,j is stored for the next stage.

Therefore, in each stage at most two options of appending and interleaving may be possible. Next, we

show that the proposed dynamic program can be solved in polynomial time when m is relatively small.

3.2.2 Complexity of the proposed dynamic program

We assume that jobs are partitioned into m groups. Let first consider the case that each group contains

an equal number of jobs, which is n
m .

In stage i there is a number of candidates for π. Each candidate includes exactly i jobs. The number

of candidates depends on both i and m because we only distinguish jobs by their group(s). In stage

i, 1 ≤ i ≤ n
m , the number of candidates, which we denote by η, is equal to the number of solutions of

Equation (19):

m∑
m′=1

xm′ = i, 0 ≤ xm′ ≤
n

m
,∀m′ ∈ {1, . . . ,m}. (19)

Since both i and xm′ are bounded from above by n
m , η is equal to

(
i+m−1

i

)
. In stage i, nm < i ≤ n, η is

still derived by using Equation (19), however, out of the total number of
(
i+m−1

i

)
some are invalid. More

precisely, because i > n
m the solutions including xm′ >

n
m ,∃m

′ ∈ {1, . . . ,m} are not considered, leading

to a smaller value of η. Therefore, η in any stage i is not greater than
(
i+m−1

i

)
. Now consider the case

where the groups do not contain an equal number of jobs. We can still derive η by using Equation (19),

however, again some of the solution are invalid, and hence, η in stage i is never greater than
(
i+m−1

i

)
.

Additionally, in stage i there are at most m candidate jobs to occupy the last position because m

groups of jobs exist. Also, at most three cases of appending or interleaving need to be considered. Hence,

the time complexity of stage i is in the order of O(m
(
n+m−1

n

)
), implying that the time complexity of the

8

proposed dynamic program is O(nm
(
n+m−1

n

)
), which is shown by Theorem 3 to be polynomial for small

values of m.

Theorem 3. The proposed dynamic program solves problem P1 with n jobs and m groups of identical

jobs in O(mnm).

Proof. The proof is by induction:

If m = 2, then 2n
(
n+2−1
n

)
= 2n(n+ 1) ≈ O(n2),

If m = 3, then 3n
(
n+3−1
n

)
= 3n(n+ 2)(n+ 1)/2 ≈ O(n3),

If m = 4, then 4n
(
n+4−1
n

)
= 4n(n+ 3)(n+ 2)(n+ 1)/6 ≈ O(n4),

. . . .

In general, if m groups of identical jobs exist, the time complexity is O(mnm). We note that when m = n,

the complexity of the dynamic program is O(nn+1).

Next, we explain a numerical example to illustrate the operation of the dynamic program.

3.2.3 A numerical example

Consider a four-job problem, where G = {1, 2}, β1 = 0.1, β2 = 0.2 and p = 1. Each group consists of an

equal number of jobs.

Stage i = 1 includes only one job, and the two options for π include {k} and {l}, where k represents

jobs that belong to group 1 and l denotes jobs of group 2. It is clear that there is only one candidate for

job j (the job in the last position in the sequence). Table 1 shows the calculations. Because there is one

option for app and one for int, both will be stored by the algorithm for the next stage. Those are shown

by an asterisk in Table 1.

Table 2 shows the calculations for stage i = 2. Three candidates for π include {k, k}, {k, l} and {l, l}.
In the second set both k and l may fill the last position. Also, because there are more than one option

for app under {k, k} and {l, l}, and more than one option for both app and int under {k, l}, the ones

with the smaller value of makespan will be kept by the algorithm for the next stage.

Due to the example’s assumption that there are an equal number of jobs in each group, in stage i = 3

we have only two candidates for π, which are {k, k, l} and {k, l, l}. Table 3 shows the calculations. The

algorithm proceeds to stage i = 4. There is a single candidate for π and π = {k, k, l, l} since all jobs are

considered. Table 4 shows that the optimal value of makespan is equal to 7.26. By starting from stage

i = 4 and going backward we observe that the optimal solution is formed by first scheduling jobs of group

2, followed by jobs of group 1. Figure 6 depicts the optimal schedule.

9

Table 1: The dynamic programming calculations for stage i = 1 of the numerical example.
π {k} {l}
j k l

z0∅

{
(0, int)

(0, app)

{
(0, int)

(0, app)

bj

{
0.1(0) = 0

0.1(0 + 2) = 0.2

{
0.2(0) = 0

0.2(0 + 2) = 0.4

z1π,j

{
(0 + 3, int) = (3, int)∗

(0 + 2 + 0.2, app) = (2.2, app)∗

{
(0 + 3, int) = (3,int)∗

(0 + 2 + 0.4, app) = (2.4, app)∗

Table 2: The dynamic programming calculations for stage i = 2 of the numerical example.
π {k, k} {k, l} {l, l}
j k k l l

z1π\{j}

{
(3, int)

(2.2, app)

{
(3, int)

(2.4, app)

{
(3, int)

(2.2, app)

{
(3, int)

(2.4, app)

bj

{
0.1(3) = 0.3

0.1(2.2 + 2) = 0.42

{
0.1(3) = 0.3

0.1(2.4 + 2) = 0.44

{
0.2(3) = 0.6

0.2(2.2 + 2) = 0.84

{
0.2(3) = 0.6

0.2(2.4 + 2) = 0.88

z2π,j


(3 + 0.3, app) = (3.3, app)∗

(2.2 + 3, int) = (5.2, int)∗

(2.2 + 2 + 0.42, app) = (4.62, app)


(3 + 0.3, app) = (3.3, app)∗

(2.4 + 3, int) = (5.4, int)

(2.4 + 2 + 0.44, app) = (4.84, app)


(3 + 0.6, app) = (3.6, app)

(2.2 + 3, int) = (5.2, int)∗

(2.2 + 2 + 0.84, app) = (5.04, app)


(3 + 0.6, app) = (3.6,app)∗

(2.4 + 3, int) = (5.4, int)∗

(2.4 + 2 + 0.88, app) = (5.28, app)

10

Table 3: The dynamic programming calculations for stage i = 3 of the numerical example.
π {k, k, l} {k, l, l}
j k l k l

z2π\{j}

{
(5.2, int)

(3.3, app)

{
(5.2, int)

(3.3, app)

{
(5.4, int)

(3.6, app)

{
(5.2, int)

(3.3, app)

bj

{
0.1(5.2) = 0.52

0.1(3.3 + 2) = 0.53

{
0.2(5.2) = 1.04

0.2(3.3 + 2) = 1.06

{
0.1(5.4) = 0.54

0.1(3.6 + 2) = 0.56

{
0.2(5.2) = 1.04

0.2(3.3 + 2) = 1.06

z3π,j


(5.2 + 0.52, app) = (5.72, app)∗

(3.3 + 3, int) = (6.3, int)∗

(3.3 + 2 + 0.53, app) = (5.83, app)

{
(5.2 + 1.04, app) = (6.24, app)

(3.3 + 2 + 1.06, app) = (6.36, app)


(5.4 + 0.54, app) = (5.94, app)∗

(3.6 + 3, int) = (6.6,int)∗

(3.6 + 2 + 0.56, app) = (6.16, app)

{
(5.2 + 1.04, app) = (6.24, app)

(3.3 + 2 + 1.06, app) = (6.36, app)

Table 4: The dynamic programming calculations for stage i = 4 of the numerical example
π {k, k, l, l}
j k l

z3π\{j}

{
(6.6, int)

(5.94, app)

{
(6.3, int)

(5.72, app)

bj

{
0.1(6.6) = 0.66

0.1(5.94 + 2) = 0.794

{
0.2(6.3) = 1.26

0.2(5.72 + 2) = 1.544

z4π,j

{
6.6 + 0.66 = 7.26

5.94 + 2 + 0.794 = 8.734

{
6.3 + 1.26 = 7.56

5.72 + 2 + 1.544 = 9.264

11

(l, l, k, k):

0 1 2 3 3.6 4.6 5.6 6.6 7.26

al al bl bl ak ak bk bk

0.2× 2 0.2× 3 0.1× 5.6 0.1× 6.6

Figure 6: Optimal schedule of a four-job problem produced by the dynamic program.

3.3 The heuristic algorithm

In Section 3.1, we showed that in problem (aj = p, Lj = p, bj = βjsj) the first priority must be given to

jobs with greater values of βj (implied by Theorem 1). An interleaving of jobs, however, may potentially

decrease the makespan if Theorem 2 holds. Therefore, when constructing a schedule the only two available

options at any point include (1) appending a single job, or (2) interleaving a pair of jobs. We utilize those

principles and develop a heuristic algorithm for problem P1. The proposed heuristic first constructs a

schedule (see Algorithm 1), and then iteratively improves the schedule (see Algorithm 2).

Let T = J be the set of unscheduled jobs and S = () be the sequence of performing jobs. Each

iteration of the constructive heuristic consists of identifying a single job to be appended, or a pair of

jobs to be interleaved. Let assume that the jobs can start at time zero. Therefore, the start time of the

completion task in the first iteration is s1 = 2p. At every iteration i ≥ 1, a threshold on β is calculated:

βthr = p
si

(the threshold is used to identify jobs with bj ≤ p). The subset of jobs with βj ≤ βthr are

identified as the jobs that can be the first of a potential interleave. From those, the job with the largest

value of β is selected. Let l denote this job. The other job, say k, is then selected such that it has the

largest value of β among all jobs.

Next, it is checked whether job k satisfies the bound βk ≤ 1+4βl

1−2βl
. If so, the interleaving pair of jobs

l and k is scheduled, where job l is the first job of the interleaving pair. Otherwise, job k is appended

to S. At the end of each iteration, the makespan, i.e. the start time of the next completion task, and S

and T are updated. The procedure continues until all jobs are scheduled, or no interleaving is possible,

i.e. bj � p, j ∈ T . In this case, the remaining jobs are appended to S in a non-increasing order of βj .

Algorithm 1: The construction procedure of the heuristic algorithm.

1 Input: S = (), T = J, p, βj ,∀j ∈ J, s1 = 2p.
2 Output: A sequence S with makespan CS .

3 for i = 1 to n do
4 βthr = p

si
;

5 if ∃j ∈ T, βj ≤ βthr then
6 l← arg maxj∈T (βj |βj ≤ βthr);
7 k ← arg maxj∈T (βj);

8 if βk ≤ 1+4βl
1−2βl

then

9 Interleave jobs l and k adjacently;
10 si+1 = si + (βk)(si + p) + 3p;
11 S ← S ∪ {l, k};
12 T ← T \ {l, k};
13 else
14 Append job k adjacently;
15 si+1 = si + (βk)si + 2p;
16 S ← S ∪ {k};
17 T ← T \ {k};
18 end

19 else
20 Break;
21 end

22 end
23 Adjacently append the remaining jobs in T to S, in a non-increasing order of βj ;
24 return S;

By utilizing the delay periods, Algorithm 1 constructs as many interleaving pairs as possible, while it

12

gives higher priority to the jobs with larger value of β. The total number of iterations performed by the

algorithm is at most equal to the number of jobs. Because finding jobs l and k in each iteration requires

O(n) time, the algorithm therefore has a time complexity of O(n2).

We now present an example to clarify the operation of Algorithm 1. Consider four jobs with β values

of {0.1, 0.15, 0.18, 3.0} and p = 1. We initialize T = {1, 2, 3, 4} and S = (). Assuming that we start

at time zero, then s1 = 2. Table 5 shows that the algorithm appends job 4 in the first iteration. In

the second iteration, jobs 1 and 3 are interleaved, where job 1 is the first job of the interleaving pair.

Then, because the condition in line 5 of Algorithm 1 is not satisfied, the loop is terminated and the

remaining job, i.e. job 2 is appended. The Gantt chart depicted in Figure 7 shows the schedule delivered

by Algorithm 1, which is indeed the optimal schedule.

Table 5: The operation of Algorithm 1 for a four-job instance.
Step i βthr l k S T si+1

1 1
2

3 4 (4) {1, 2, 3} 10
2 1

10
1 3 (4, 1, 3) {2} 14.98

3 1
14.98

- - - - -

(4, 1, 3, 2):

0 1 2 8 9 10 11 12.98 13.98 14.98 17.227

a4 b4 a1 a3 b1 b3 a2 b2

3× 2 0.1× 10 0.18× 11 0.15× 14.98

Figure 7: The sequence and schedule for a four-job instance delivered by Algorithm 1.

The schedule obtained by Algorithm 1 may further be improved. To do so, we iteratively apply swap

moves. This is presented in Algorithm 2. We implement the “first improvement” criterion, i.e. once an

improving solution is obtained it is accepted and the schedule is updated. It is clear that the run time of

Algorithm 2 is O(n2). Therefore, the run time of the proposed heuristic is O(n2).

Algorithm 2: The improvement procedure of the heuristic algorithm.

1 Input: βj , ∀j ∈ J , S0, CS0 , j = 1.

2 Output: A sequence S with makespan CS .

3 S = S0;

4 CS = CS0 ;

5 while j ≤ n− 1 do

6 Improve = 0;

7 for k = j + 1 : n do

8 S′ ← swap(j, k);

9 CS′ ← makespan(S′);

10 if CS′ < CS then

11 S = S′;

12 CS = CS′ ;

13 Improve = 1;

14 end

15 end

16 if Improve = 0 then

17 j = j + 1;

18 end

19 end

20 return S;

13

3.4 Lower bound

We derive a lower bound for problem P1 by letting βj = minj∈J βj ,∀j ∈ J , i.e. all jobs have an identical

processing rate. Theorem 4 shows this.

Theorem 4. Optimizing problem P1 under the setting βmin = minj∈J βj leads to a makespan, which is

never greater than the makespan under the arbitrary values for β.

Proof. Assume that the makespan under the setting βmin = minj∈J βj is greater than the makespan under

the arbitrary values for β. Then, there exits an optimal makespan where βj > βmin, j ∈ J . Because the

initial task and the delay period take identical values for all jobs, the makespan under βj > βmin, j ∈ J
is never less than the one under βmin, implying that the initial assumption is contradicted.

Next, we show that obtaining this lower bound is trivial.

Lemma 3. Under the setting βj = βmin,∀j ∈ J the makespan for problem P1 is minimized if the

sequence includes a number of adjacent interleaving pairs followed by appending the remaining jobs once

no interleaving is possible (sequence 1), or if the sequence includes appending a single job at the beginning,

followed by a number of adjacent interleaving pairs and then appending the remaining jobs (sequence 2).

Proof. We note that the schedule with the minimum makespan consist of as many interleaving pairs

(of jobs) as possible. Intuitively, this implies that a number of adjacent interleaving pairs followed by

appending the remaining jobs once no interleaving is possible must lead to the minimum makespan. We

show that in some cases a better makespan (with smaller value) is obtained if we first append a single job,

and then add a set of interleaving pairs followed by a set of appending jobs. We note that interleaving is

possible as long as the completion task of the first job (of an interleaving pair) starts no later than p
βmin

.

Let illustrate sequences 1 and 2 by a three-job example, where p = 1 and βmin = 0.1. Sequence 1 consists

of one interleaving pair, followed by appending the third job. This results in Cmax = 5.83 (see Figure 8a).

In sequence 2, the third job is scheduled before the interleaving pair. This results in Cmax = 5.72, i.e.

the minimum makespan (see Figure 8b).

(a):

0 1 2 3 3.3 4.3 5.3 5.83

a1 a2 b1 b2 a3 b3

0.1× 2 0.1× 3 0.1× 5.3

(b):

0 1 2 3.2 4.2 5.2 5.72

a3 b3 a1 a2 b1 b2

0.1× 2 0.1× 4.2 0.1× 5.2

Figure 8: A three-job instance to illustrate calculation of the lower bound for problem P1.

There is no possibility to append two (or more) jobs at the beginning of the sequence because an inter-

leaving pair of those jobs would complete earlier than appending them adjacently.

4 Computational results

We evaluate the performance of the proposed heuristic on a set of 120 randomly generated instances.

The instances include 5, 10, 20, 50, 75 and 100 jobs (n). We set the parameter β in a way to allow

some interleaving in the schedule. Since large values of β result in less possibility for interleaving, and

hence, easier instances, we therefore consider two settings. For the first setting, we randomly select β

from the continuous uniform distribution such that βj ∈ (0, 0.1),∀j ∈ J , and for the second setting

βj ∈ (0, 0.2),∀j ∈ J . We generated 10 instances for each combination of n and β. This results in 120

instances in total. We set p = 1 for all instances.

14

We also solve the instances by optimizing problem P1 with the solver Gurobi version 8.0.0 (Gurobi

Optimization, 2018). We implement problem P1 and the heuristic algorithm in the programming language

Python version 2.7. We perform all computational experiments on a PC with Intel R© CoreTM i5-7500

CPU clocked at 3.40GHz with 8GB of memory under Linux Ubuntu 18.04 operating system. We set

a time limit of 3600 seconds for the solver Gurobi. We utilize one processor (thread) for the heuristic

algorithm, however, we run the Gurobi by using one processor and four processors (denoted as Gurobi1

and Gurobi4). For the remaining parameters of the solver Gurobi we used the default values.

Table 6 reports the outcomes of the heuristic algorithm, denoted as “Heurcons” and Gurobi. We use

two criteria of “Feasible” and “Optimal”, which denote the number of feasible and optimal solutions,

respectively, obtained by the heuristic and Gurobi in order to evaluate the performance of the methods.

According to the results, Gurobi1 and Gurobi4 generate feasible solution for only 71 instances, out of

120 (i.e. for almost 59%). Within 3600 seconds of running, Gurobi reports feasible solution for only one

instance with 75 jobs and βj ∈ (0, 0.1); it also does not report feasible solution for the instances with 50

jobs and βj ∈ (0, 0.2). For the instances with 100 jobs, Gurobi runs out of memory. The performance

of Gurobi4 is slightly better than that of Gurobi1 since it obtains three additional optimal solutions.

The proposed heuristic, however, delivers feasible solution for all instances. Interestingly, the heuristic

produces the same best solutions for 18 of those instances, i.e. for 45%.

Table 6: Number of feasible and optimal solutions delivered by Heurcons and Gurobi.
n Setting for β Feasible Optimal

Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 10 10 10 0 10 10
(0, 0.2) 10 10 10 2 10 10

10 (0, 0.1) 10 10 10 9 7 10
(0, 0.2) 10 10 10 7 10 10

20 (0, 0.1) 10 10 10 0 0 0
(0, 0.2) 10 10 10 0 0 0

50 (0, 0.1) 10 10 10 0 0 0
(0, 0.2) 10 0 0 0 0 0

75 (0, 0.1) 10 1 1 0 0 0
(0, 0.2) 10 0 0 0 0 0

100 (0, 0.1) 10 0 0 0 0 0
(0, 0.2) 10 0 0 0 0 0

Total 120 71 71 18 37 40

Table 7 reports two criteria of “Gap (%)” and “Time (sec)” (computation time in seconds), which are

averaged over 10 instances per setting (either heuristic or Gurobi). The gap is calculated as z−z∗
z∗ × 100,

where z is the objective function value, i.e. the makespan delivered by the method, and z∗ is the best

objective function value between the heuristic and Gurobi. The gap measures proximity of a solution

obtained by the method from the best available one. Consistent with earlier findings, for small instances

with 5 and 10 jobs the solver Gurobi outperforms the proposed heuristic. For larger instances, however,

the heuristic delivers improved solutions. Particularly, we note that both versions of Gurobi have a gap

of 75.42% and 77.16% for instances with 50 and 75 jobs, not to mention that because Gurobi is not able

to report any feasible solution for four groups of instances, the value of gap cannot be calculated for those

instances (“-” in Table 7 shows this).

Table 8 summarizes the outcomes of Heurcons and Gurobi1 and Gurobi4. The highlighted values

denote the superiority of the method with respect to the criterion. As the table shows, the proposed

heuristic performs very well, and obtains high quality solutions: its average gap is 0.30%, while its worst

gap is nearly 1.22%. In addition, it is very efficient since it solves even the problems with 100 jobs within

three seconds. The average time of both Gurobi1 and Gurobi4 is almost 40 minutes, and significantly

increases with the number of jobs.

To further evaluate the performance of the proposed heuristic, i.e., Heurcons, we compare the values

of its gap to the lower bound and those of the solver Gurobi. We report the outcomes in Table 9, where

the values of gap are averaged over 10 instances per setting. The gap is calculated as z−lb
lb × 100, where

15

Table 7: Gap from the best obtained solution, and the computation time for Heurcons and Gurobi.
n Setting for β Gap (in %) Time

Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 1.08 0.00 0.00 < 0.01 0.20 0.18
(0, 0.2) 1.13 0.00 0.00 < 0.01 0.18 0.16

10 (0, 0.1) 0.01 0.00 0.00 < 0.01 3167.36 1526.39
(0, 0.2) 1.22 0.00 0.00 < 0.01 443.31 199.38

20 (0, 0.1) 0.00 6.52 4.86 0.02 3600.00 3600.03
(0, 0.2) 0.14 4.45 3.81 0.02 3600.01 3600.03

50 (0, 0.1) 0.00 75.42 75.42 0.25 3600.01 3600.07
(0, 0.2) 0.00 - - 0.31 3600.02 3600.02

75 (0, 0.1) 0.00 77.16 77.16 0.92 3600.15 3600.26
(0, 0.2) 0.00 - - 1.17 3600.28 3600.39

100 (0, 0.1) 0.00 - - 2.36 - -
(0, 0.2) 0.00 - - 2.79 - -

Table 8: Overall results for Heurcons and Gurobi.
Method Feasible Optimal Gap (%) Time (sec)

Ave Max Ave Max

Heurcons 120 18 0.30 1.22 0.65 2.79
Gurobi1 71 37 13.25 77.16 2521.18 3600.28
Gurobi4 71 40 12.93 77.16 2332.69 3600.39

z is the objective function value, i.e., the makespan delivered by the method, and lb is the lower bound

obtained via procedure explained in Section 3.4. We report the results only for instances with n = 5, 10

because proven optimal solutions are available only for these instances. The results indicate that Heurcons

performs very closely to Gurobi because its average values of gap to the lower bound is very close to those

of Gurobi.

Table 9: Gap to the lower bound for Heurcons and Gurobi.
n Setting for β Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 2.55 1.50 1.50
(0, 0.2) 6.73 5.67 5.67

10 (0, 0.1) 3.72 3.71 3.71
(0, 0.2) 23.34 22.58 22.58

Average 9.08 8.36 8.36

Because Gurobi cannot deliver feasible solutions for large instances, we further assess the performance

of the proposed heuristic, i.e., Heurcons by solving the instances with two new settings and comparing

the outcomes of Heurcons and those of the two settings. For this purpose, we generate initial solutions

via sorting the jobs in non-increasing and non-decreasing orders of their β values that results in two new

variants for the heuristic, denoted as “HeurLPT ”, “HeurSPT ”, respectively. We summarize the results

in Table 10, where the metric best denotes the number of best solutions obtained by each setting. The

results show that Heurcons obtains significantly better solutions than those two variants of HeurLPT and

HeurSPT . Indeed, Heurcons obtains the best solution in 108 instances. The average gap of Heurcons over

all instances is almost 0.44%, that is much lower than the average gap of the two settings of HeurLPT

and HeurSPT . Those results further indicate the quality of solutions produced by the proposed heuristic.

5 Conclusion

We investigated the single machine coupled task scheduling problem where the processing time of initial

tasks and the delay periods have identical values, and the processing time of completion tasks follow

a time-dependent characteristic. We showed that the optimal schedule can be obtained under certain

conditions. Also, we proposed a dynamic program that can solve the problem in polynomial time if jobs

can be grouped with respect to their processing rates, and the number of groups is not large. For general

16

Table 10: Assessing the performance of Heurcons, HeurLPT and HeurSPT .
n Setting for β Heurcons HeurLPT HeurSPT

Gap (in %) Best Gap (in %) Best Gap (in %) Best

5 (0, 0.1) 1.08 10 1.08 10 1.08 10
(0, 0.2) 2.01 10 2.01 10 2.01 10

10 (0, 0.1) 0.01 9 0.01 9 0.04 9
(0, 0.2) 1.22 8 3.10 5 2.48 5

20 (0, 0.1) 0.52 6 1.11 7 1.91 2
(0, 0.2) 0.40 9 3.13 2 9.80 0

50 (0, 0.1) 0.02 8 2.23 2 10.95 0
(0, 0.2) 0.00 10 5.71 0 6.88 0

75 (0, 0.1) 0.00 10 2.86 0 10.23 0
(0, 0.2) 0.00 9 4.94 1 10.43 0

100 (0, 0.1) 0.07 9 2.87 1 7.09 0
(0, 0.2) 0.00 10 4.61 0 12.61 0

Average / total 0.44 108 2.81 47 6.29 36

case, the computational complexity of the problem still remains open, and we therefore developed certain

theoretical results and utilized those in a very efficient heuristic algorithm. Particularly, in large instances

where the solver Gurobi is unable to generate even feasible solutions, the proposed heuristic is shown to

perform very well and obtains quality solutions very quickly.

A direction for future research includes studying the problem where the delay duration is time-

dependent. Also, it is interesting to investigate the identical case, i.e. (aj = a, Lj = L, bj = b) with

time-dependent processing times.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable suggestions and comments.

Mostafa Khatami is the recipient of the UTS International Research Scholarship (IRS) and the UTS

President’s Scholarship (UTSP). Amir Salehipour is the recipient of an Australian Research Council

Discovery Early Career Researcher Award (project number DE170100234) funded by the Australian

Government.

References

Ageev, A. A. (2018). “Inapproximately lower bounds for open shop problems with exact delays”. Approx-

imation and Online Algorithms. Springer International Publishing AG, 45–55.

Ageev, A. A. and Baburin, A. E. (2007). “Approximation algorithms for UET scheduling problems with

exact delays”. Operations Research Letters 35(4), 533 –540.

Ageev, A. A. and Kononov, A. V. (2007). “Approximation algorithms for scheduling problems with exact

delays”. Approximation and Online Algorithms. Springer Berlin Heidelberg.

Ahr, D., Békési, J., Galambos, G., Oswald, M., and Reinelt, G. (2004). “An exact algorithm for scheduling

identical coupled tasks”. Mathematical Methods of Operations Research 59(2), 193–203.

Azadeh, A., Farahani, M. H., Torabzadeh, S, and Baghersad, M. (2014). “Scheduling prioritized patients

in emergency department laboratories”. Computer Methods and Programs in Biomedicine 117(2), 61–

70.

Baptiste, P. (2010). “A note on scheduling identical coupled tasks in logarithmic time”. Discrete Applied

Mathematics 158(5), 583 –587.

Békési, J., Galambos, G., Jung, M. N., Oswald, M., and Reinelt, G. (2014). “A branch-and-bound algo-

rithm for the coupled task problem”. Mathematical Methods of Operations Research 80(1), 47–81.

Bessy, S. and Giroudeau, R. (2019). “Parameterized complexity of a coupled-task scheduling problem”.

Journal of Scheduling 22(3), 305–313.

17

Blazewicz, J., Ecker, K., Kis, T., Potts, C. N., Tanas, M., and Whitehead, J. (2010). “Scheduling of

coupled tasks with unit processing times”. Journal of Scheduling 13(5), 453–461.

Cheng, T. C. E., Ding, Q., and Lin, B. M. T. (2004). “A concise survey of scheduling with time-dependent

processing times”. European Journal of Operational Research 152, 1 –13.

Condotta, A. and Shakhlevich, N. (2012). “Scheduling coupled-operation jobs with exact time-lags”.

Discrete Applied Mathematics 160(16), 2370 –2388.

Condotta, A. and Shakhlevich, N. (2014). “Scheduling patient appointments via multilevel template: A

case study in chemotherapy”. Operations Research for Health Care 3(3), 129 –144.

Gawiejnowicz, S. (2008). Time-dependent scheduling. Springer Science & Business Media.

Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. (1979). “Optimization and approximation in deter-

ministic sequencing and scheduling: A survey”. Annals of Discrete Mathematics 5, 287 –326.

Gupta, J. N. D. and Gupta, S. K. (1988). “Single facility scheduling with nonlinear processing times”.

Computers & Industrial Engineering 14(4), 387 –393.

Gurobi Optimization, L. (2018). Gurobi Optimizer Reference Manual.

Hwang, F. J. and Lin, B. M. T. (2011). “Coupled-task scheduling on a single machine subject to a

fixed-job-sequence”. Computers & Industrial Engineering 60(4), 690 –698.

Khatami, M. and Salehipour, A. (2020). “A binary search algorithm for the general coupled task schedul-

ing problem”. 4OR, 1–19.

Khatami, M., Salehipour, A., and Cheng, T. C. E. (2020). “Coupled task scheduling with exact delays:

Literature review and models”. European Journal of Operational Research 282(1), 19 –39.

Kunnathur, A. S. and Gupta, S. K. (1990). “Minimizing the makespan with late start penalties added to

processing times in a single facility scheduling problem”. European Journal of Operational Research

47(1), 56 –64.

Legrain, A., Fortin, M.-A., Lahrichi, N., Rousseau, L.-M., and Widmer, M. (2015). “Stochastic optimiza-

tion of the scheduling of a radiotherapy center”. Journal of Physics: Conference Series. Vol. 616. 1.

IOP Publishing, 012008.

Lehoux-Lebacque, V., Brauner, N., and Finke, G. (2015). “Identical coupled task scheduling: polynomial

complexity of the cyclic case”. Journal of Scheduling 18(6), 631–644.

Leung, J. Y.-T., Li, H., and Zhao, H. (2007). “Scheduling two-machine flow shops with exact delays”.

International Journal of Foundations of Computer Science 18(02), 341–359.

Li, H. and Zhao, H. (2007). “Scheduling Coupled-Tasks on a Single Machine”. IEEE Symposium on

Computational Intelligence in Scheduling, 137–142.

Liu, Z., Lu, J., Liu, Z., Liao, G., Zhang, H. H., and Dong, J. (2019). “Patient scheduling in hemodialysis

service”. Journal of Combinatorial Optimization 37(1), 337–362.

Marinagi, C. C., Spyropoulos, C. D., Papatheodorou, C., and Kokkotos, S. (2000). “Continual planning

and scheduling for managing patient tests in hospital laboratories”. Artificial Intelligence in Medicine

20(2), 139–154.

Mosheiov, G. (1994). “Scheduling jobs under simple linear deterioration”. Computers & Operations Re-

search 21(6), 653 –659.

Orman, A. and Potts, C. (1997). “On the complexity of coupled-task scheduling”. Discrete Applied Math-

ematics 72(1), 141 –154.

Pérez, E., Ntaimo, L., Wilhelm, W. E., Bailey, C., and McCormack, P. (2011). “Patient and resource

scheduling of multi-step medical procedures in nuclear medicine”. IIE Transactions on Healthcare

Systems Engineering 1(3), 168–184.

Pérez, E., Ntaimo, L., Malavé, C. O., Bailey, C., and McCormack, P. (2013). “Stochastic online appoint-

ment scheduling of multi-step sequential procedures in nuclear medicine”. Health Care Management

Science 16(4), 281–299.

Shapiro, R. D. (1980). “Scheduling coupled tasks”. Naval Research Logistics Quarterly 27(3), 489–498.

Sherali, H. D. and Smith, J. C. (2005). “Interleaving two-phased jobs on a single machine”. Discrete

Optimization 2(4), 348 –361.

18

Simonin, G., Darties, B., Giroudeau, R., and König, J.-C. (2011). “Isomorphic coupled-task scheduling

problem with compatibility constraints on a single processor”. Journal of Scheduling 14(5), 501–509.

Yu, W., Hoogeveen, H., and Lenstra, J. K. (2004). “Minimizing makespan in a two-machine flow shop

with delays and unit-time operations is NP-hard”. Journal of Scheduling 7(5), 333–348.

19

	Introduction
	Problem definition and formulation
	Minimizing the makespan
	Optimal schedule
	Groups of identical jobs
	The dynamic programming algorithm
	Complexity of the proposed dynamic program
	A numerical example

	The heuristic algorithm
	Lower bound

	Computational results
	Conclusion

