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How to do quantile normalization 
correctly for gene expression data 
analyses
Yaxing Zhao1, Limsoon Wong2,3 & Wilson Wen Bin Goh4*

Quantile normalization is an important normalization technique commonly used in high-dimensional 
data analysis. However, it is susceptible to class-effect proportion effects (the proportion of class-
correlated variables in a dataset) and batch effects (the presence of potentially confounding technical 
variation) when applied blindly on whole data sets, resulting in higher false-positive and false-
negative rates. We evaluate five strategies for performing quantile normalization, and demonstrate 
that good performance in terms of batch-effect correction and statistical feature selection can be 
readily achieved by first splitting data by sample class-labels before performing quantile normalization 
independently on each split (“Class-specific”). Via simulations with both real and simulated batch 
effects, we demonstrate that the “Class-specific” strategy (and others relying on similar principles) 
readily outperform whole-data quantile normalization, and is robust-preserving useful signals 
even during the combined analysis of separately-normalized datasets. Quantile normalization is a 
commonly used procedure. But when carelessly applied on whole datasets without first considering 
class-effect proportion and batch effects, can result in poor performance. If quantile normalization 
must be used, then we recommend using the “Class-specific” strategy.

High-throughput technologies such as genomics, transcriptomics and proteomics (-omics) are powerful assays 
for profiling the expressional state of cellular tissues. This facilitates comparative analysis, providing an in-depth 
perspective on differential change, with the abductive implication that differential change is correlated with 
cause1.

However, -omics platforms are susceptible to various sources of technical variation such as general noise2 
and batch effects3,4. These technical variations cause the overall measurement distributions of samples (across 
all genes or proteins) to shift differently, obstructing cross comparability between tissues.

Dealing with technical variation requires an analytical intervention known as normalization. Normalization 
is not one technique, but rather, a body of techniques, with each having optimal usage requirements. Normaliza-
tion techniques also make varied assumptions about data distribution. For example, some such as the quantile 
normalization, assumes all samples have similar distribution regardless of sample class. However, this assumption 
only holds true when small numbers of genes/proteins are dysregulated.

The purpose of normalization is to eliminate or minimize technical variability. A general strategy, common to 
many normalization techniques, is to re-distribute signal intensities across all samples such that they now all have 
the same distribution (e.g. same mean and/or standard deviation). Common examples of normalization tech-
niques include linear scaling (also known as min–max scaling), Z-normalization, and rank-scaling (also known 
as linear interpolation). Specialized approaches for removing batch effects (a form of technical variation) such 
as ComBat5 and Surrogate Variable Analysis6 may also be considered as subtypes of normalization techniques.

It is widely known that normalization techniques are imperfect, and even error generating, especially when 
the data does not meet the assumptions of the normalization technique7,8. In Wu et al.8, they examined the 
distortions produced when cancerous cells (with highly active expressional programmes) are cross-normalized 
to the same baseline as normal cells. The distortions produced include false effects (false positives), effect-size 
reduction, and masking of true effects (false negatives). Wang et al.7, also demonstrated that different normaliza-
tion techniques result in different differential gene sets. In both papers, while they attribute the distortions to an 
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imbalance of genomic count (as cancer cells tend to have highly up-regulated expressional programmes), they 
and in other related studies7–10 do not offer tangible mitigating measures. And so, while the analyst (or biologist) 
is now aware that normalization is imperfect, they are left none-the-wiser on best practices, or at least, how to 
perform normalization properly.

Since many normalization techniques exist, a one-size-fits-all recommendation study is unfeasible. Instead, 
we focus on how to use one popular normalization technique properly, the Quantile normalization (QN) method. 
QN is extremely popular and produces very well-aligned distributions such that QN-normalized samples all 
have the same distributions11 (Fig. 1A). It sees widespread use, constituting a standard part of analysis pipelines 
for high-throughput analysis12.

QN was originally developed for gene expression microarrays13 but is now used across almost any kind of 
high-dimensional/-throughput -omics platform including RNA-sequencing14 and proteomics9. A particular 
danger in the use of QN is that lay analysts are easily misled by the rather “perfect-looking” post-normalization 
results: QN-normalized samples look deceptively similar, even if the underlying classes are in fact, very differ-
ent. Furthermore, as with Wang et al.’s observations, QN can obliterate true signals and generate false signals 
during data analysis7.

Here, we examine five different (sub)strategies based on the QN-some not necessarily correct, but still shown 
here so that its deficiencies are made known-for performing analysis (Fig. 1B). These strategies are “All”, the quin-
tessential QN approach that is performed on the whole dataset; “Class-specific”, which splits data first by class, on 
which QN is then performed separately on each split and then combining the separately-QN normalized splits; 
“Discrete”, which is similar to “Class-specific”, but goes further to split data by both technical batch and class (i.e. 
QN is applied separately to each sub-dataset of the same batch and class); “Ratio”, which produces a matrix of 

Figure 1.   (A) The basic steps of quantile normalization, (B) 5 different sub-flavors of quantile normalization. 
All refers to standard quantile normalization, the other sub-flavors include Class-specific, Discrete, Ratio and 
qsmooth (Qref: reference quantile (row mean). Qhat: linear model fit at each quantile. w: a weight at every 
quantile that compares the variability between groups relative to within groups).
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ratios by comparing inter-class samples; and qsmooth, which compares inter-class variability against within-class 
variability to introduce weights in the QN-normalized matrix (see “Materials and methods” section for details).

To determine the best strategy (if one does indeed exist), we benchmark on an assortment of available pro-
teomics data (proteomics data primarily, as an instance of high-throughput biological data) and consider both 
natural and simulated batch effects across different levels of class-effect proportion (CEP), which is the propor-
tion of differential proteins amongst all measured proteins, between two sample classes. We also evaluate which 
QN-strategy is robust in situations where datasets that were previously normalized on separate occasions, are 
merged. This procedure is especially valuable in practical applications such as boosting mega-analysis where 
datasets are combined from various independently-derived sources to boost statistical power15.

Materials and methods
Quantile normalization procedure.  The quantile normalization (QN) procedure is simple (Fig. 1A): it 
involves first ranking the gene of each sample by magnitude, calculating the average value for genes occupying 
the same rank, and then substituting the values of all genes occupying that particular rank with this average 
value. The next step is to reorder the genes of each sample in their original order. This series of steps characterizes 
quantile normalization, and is the basic procedure underlying the various (sub)strategies described in Fig. 1B.

Amongst QN-strategies (Fig. 1B), ‘All’ normalizes data as one complete set (irrespective of class and batch 
factors; a batch factor is a categorization of data by technical effects, also known as batch effects).

The “Class-specific” strategy splits data by phenotype classes first where the classes are then quantile-nor-
malized independently. The normalized splits are then recombined into one dataset. This design is meant to 
counteract false positives/negatives caused by averaging out sample classes with highly different expressional 
profiles (e.g. cancer and normal tissues).

The “Discrete” strategy takes the “Class-specific” approach further, and also accounts for the batch factor. 
Each split (by class and batch) are then quantile-normalized separately, and then recombined into one dataset.

The “Ratio” strategy involves generating a matrix of ratios, obtained by arbitrarily comparing samples from 
one class against another sample belonging to the other class. Suppose we have a sample S1,A from class A, 
with proteins 1–1000, and another (paired) sample S1,B from class B, with proteins 1–1000. We may calculate 
an expression vector B/A, such that for each protein i, its respective ratio is ExpS1,B,i/ExpS1,A,i (where Exp is the 
protein expression value). Note that we only compare samples from the same technical batch. This “ratio-ed” 
matrix still preserves the batch factors while class effect is now effectively, a fold change.

Unlike the other strategies discussed earlier, the “qsmooth” strategy is a generalized version of QN which 
preserves global differences in distributions corresponding to different biological conditions20. qsmooth com-
putes a weight at every quantile comparing the variability between groups relative to within groups. The weight 
shrinks the group-level quantile normalized data towards the overall reference quantiles if variability between 
groups is sufficiently smaller than the variability within groups.

Overall evaluation strategy.  To simulate class-effect proportion (CEP), class effects are applied onto 0, 
0.2, 0.5 and 0.8 of measured proteins (Fig. 2). The magnitude of applied effect sizes is randomly selected from 
0.2, 0.5, 0.8, 1 and 2. The class effect is applied in one class, but not the other, and is a proportionate increment. 
For example, a 0.2 class-effect level means a 20% increment from the original value. When CEP is high, it leads 
to sample classes whose basal expression states are drastically different.

Batch effects are simulated similarly, except the batch effects are inserted according to batch factors (the 
categorization of technical batches). In this simplistic scenario, we simply assign half of the samples of each 
class, to each batch.

Since the set of differential variables are known a priori, normalization performance across the five strategies 
may be evaluated by statistical feature selection (based on the two-sample t test; α = 0.05 significance level) and 
overall batch-effect correction based on the gPCA delta21 (see below).

For statistical feature selection, the precision, recall and their harmonic mean (the F-score) are used. These 
are expressed as:

where TP, FP and FN refer to true positives, false positives and false negatives, respectively. The efficacy of batch 
correction is evaluated using gPCA21. The gPCA delta measures the proportion of variance due to batch effects 
in test data, and is bound between 0 and 1. Ideally, we want this to be as low as possible following normalization.

Evaluation using data with simulated class and batch effects.  The D2.2 dataset is a one-class pro-
teomics dataset (n = 8) derived from shotgun proteomics in a study of arctic squirrels with no technical repli-
cates (batches)22. This dataset is largely free of any batch or class effects. As we have used it for a large variety of 
benchmarking experiments in the past, we would also be able to determine if the simulation outcomes from the 
various QN-strategies are compatible/unexpected with reference to previous studies. Batch and technical effects 
are simulated as described above and shown in Fig. 2A.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score = 2×
Precision× Recall

Precision+ Recall
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Evaluation using data with real batch effects.  The Renal Cancer Control dataset (designated RCC 
for ease of reference) is a one-class proteomics dataset (n = 4) with three technical replicates each (batches)23, 
making a total of 12 samples. This is a rare dataset because it is designed essentially for benchmarking. As with 
D2.2, we have also used it for a variety of benchmarking experiments in the past, and therefore we would also be 
able to determine if the simulation outcomes from across the various QN-strategies are consistent with respect 
to previous studies. Moreover, these samples all originate from normal kidney tissue and have already been well-
characterized and described prior24.

To generate batch effects in RCC, two different batches are simply combined into one dataset (Fig. 2B). Since 
there is only one class in RCC, there are no real class effects. We therefore simulate class-effect proportions from 
0 (negative control) to 0.8.

Cross‑analysis of multiple datasets normalized independently in the “combination” sce-
nario.  Many similar but small datasets are available online. To boost power, it is sometimes desirable to com-
bine these datasets together as a form of “big-data” analysis (we term this the “combination” scenario). However, 
as constituent datasets are normalized independently; merely combining these can lead to the generation of 
batch effects, and reduce detectability of true biological signals.

It is possible that amongst the various QN-strategies, some may have value in facilitating this “combination” 
scenario. RCC’s three natural technical replicates (1, 2 and 3) are used to identify the appropriate QN-strategy 
(Fig. 3).

We developed a 3-step procedure involving adjustment, normalization and combination (Fig. 3) to simulate 
the “combination” scenario. In adjustment, samples in each batch are assigned an arbitrary class label (A or B) 
and differential proteins assigned. In normalization, samples from 2 batches are assigned together such that we 
get two possible combinations, Batch1/Batch2 (Ba1Ba2) and Batch2/Batch3 (Ba2Ba3). The five QN-strategies are 
then deployed on these two combinations separately. In combination, the resulting Batch1/Batch2 and Batch2/
Batch3 (Ba1Ba2 + Ba2Ba3) are combined, on which we then evaluate based on statistical feature selection and 
batch-effect measurements based on the gPCA delta21.

Results
The “All” quantile normalization strategy falls short.  We evaluate five QN (sub)strategies on two 
datasets, the RCC and D2.2. Since both datasets have effectively one class, we may randomly assign samples into 
arbitrary classes and simulate class effects by specifying which proteins should have a significant differential 
expression (see “Materials and methods” section). The proportion of proteins in the dataset which is designated 

Figure 2.   Simulation strategies for data with simulated class and batch effects (A) and data with real batch 
effects, but simulated class effects (B).
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differential is termed class-effect proportion (CEP). For reference, we also introduce the pre-adjustment scenario 
(“Adjust”), which is the form of data after insertion of class and batch-effects, but before normalization (Fig. 4).

Both RCC (natural batch effects, simulated class effects) and D2.2 (simulated batch effects, simulated class 
effects) demonstrate that the commonly used “All” quantile approach is generally poorer at signal recovery 
(Fig. 4).

In RCC, where a natural batch effect is created by combining technical replicates, the “All” quantile strategy 
performs generally the worst (in terms of F-scores) in statistical feature selection. Averaging across all CEPs 
evaluated, “All” is the second worst with an F-score of 0.52; “Class-specific” is the best at 0.86 (1.7-fold difference). 
Where CEP is low (0.20) and in what may be considered a typical scenario where “All” is expected to work well 
if not abysmally, “Discrete” is the best performing with an F-score of 0.77, and “All” second last at 0.52 (1.5-fold 
difference). When CEP is high (0.8) and what we consider to be a non-optimal scenario for “All”, “Class-specific” 
tops the list with an F-score of 0.94 while “All” performs very poorly with an F-score of 0.46 (2.0-fold difference). 
Expectedly, the greatest performance differential is in the scenario where CEP is high. But what is surprising is 
that “All” does not work well even in the low CEP scenario as well.

In the RCC evaluation, “All” is not always the worst. Other poorly performing strategies include the “Ratio” 
strategy, which is the worst in the small CEP scenario with an F-score of 0.33 (Fig. 4A; c.f. Table 1). Furthermore, 
we observe that “All” is moderate in its ability to downplay batch effects. Averaging across all CEPs evaluated, “All” 
ranks fourth with a gPCA Delta of 0.55, and the “Class-specific” approach ranks first with a Delta of 0.25 (2.0-
fold difference). The performance ranking for batch-effect resistance is relatively stable for each CEPs examined.

In RCC, the best approach for signal recovery, when CEP is small, is not to do anything (the “Adjust” sce-
nario: pre-normalized data) where the F-score for “Adjust” is 0.89, compared to 0.77 for “Discrete”. However, 
“Class-specific” and “qsmooth” strategies catch up quickly as CEP increases (At a CEP of 0.8, the F-scores for 
“Class-specific” and “qsmooth” moves up to 0.94 and 0.87 respectively, where the F-score for “Adjust” is 0.93). 
This supports the notion that such strategies become increasingly suitable, when inter-class differences (higher 
CEP) become more pronounced.

D2.2 shows that the gPCA Delta is not always an objective measure of batch effects. It is unexpectedly high 
in cases where no batch effects are present with a mean value of 0.83 for all scenarios examined (Fig. 4B; Top left 
panel). Although once class effects are introduced, gPCA Deltas dropped to more congruent levels (between 0 
and 0.25). Interestingly, the “Ratio” strategy seems to inflate batch effects such that gPCA Deltas are always high 
(no matter what the simulated CEP or batch level is). To demonstrate the correctness of the simulations, actual 
distribution values for D2.2 are shown in Supplementary Fig. S1.

Where statistical feature selection is concerned, D2.2 suggests that without batch effects (Fig. 4B; Leftmost 
column), as CEP increase from 0.2 to 0.8, the performance of the “All” strategy becomes progressively worse 
relative to other approaches: “All” has the lowest F-scores at 0.23 at a CEP of 0.2 and 0.10 at a CEP of 0.8, and 
also the second highest gPCA Delta with an average of 0.25 across all CEPs (after the “Ratio” strategy whose 
respective average Delta is 0.95). As CEP increases (from 0.2 onwards), all other strategies, including “Ratio”, 
outperform “All”.

Surprisingly, the “Ratio” strategy works very well for statistical feature selection although it also seems to 
preserve batch effects very strongly (Table 2). The higher statistical power is likely due to inflation of class effects 
as they are uniformly added to only samples from one class, such that a consistently high ratio would be obtained. 
Moreover, from a statistical point-of-view, it is actually inappropriate to produce arbitrary ratios for non-pairable 
data. In D2.2, the “Class-specific” approach has the highest precision at 0.75 (“All” is the worst at 0.46); second 
highest F-score at 0.30 (Ratio is the best at “0.33” and the worst is “All” at 0.14), but the lowest gPCA deltas with 
an average of 0.42 (“Ratio” is the worst at 0.95).

Figure 3.   Cross analysis approach for analyzing discretely normalized datasets.
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Figure 4.   Performance of statistical feature selection (Precision: P, Recall: R and F-score: F) and batch effect 
correction (gPCA Delta: D) (A) statistical feature selection across the various quantile normalization strategies 
given increasing class effects (from 0 to 0.8). Data points shown here are the respective means across 100 
simulations based on the RCC dataset. (B) Statistical feature selection across the various quantile normalization 
strategies given increasing class effects (from 0 to 0.8) and increasing batch effects (from 0 to 0.8). Data points 
shown here are the respective means across 100 simulations based on the D2.2 dataset. The “Adjust” scenario is 
not a quantile normalization strategy, it is the data after inserting class and/or batch effects, but no normalization.
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Class‑specific approaches are useful for combined analysis of independently normalized 
data.  Due to limited sample availability and high running costs, many biological datasets are small and gen-
erally lack statistical power. Over time, many related biological datasets using similar high-throughput platforms 
have been published (albeit already processed and normalized before being shared online). A desirable analyti-
cal procedure is to take these datasets and combine them for the purpose of boosting power. This procedure is 
known as mega-analysis.

Since each dataset comes from a different source, combining these inevitably generates batch effects, which 
in turn, has adverse effects on statistical feature selection. Since RCC has three technical batches, we may use 
these in a combinatorial manner to demonstrate if any of the 5 QN-strategies has any value in preserving signal, 
while also being robust against any generated batch effects.

Table 1.   Rank distributions denoting performance based on statistical feature selection and batch effect 
correction using RCC data (c.f. Fig. 4A). The top ranked method is displayed in bold.

CEP

F-score Delta

0 0.2 0.5 0.8 0 0.2 0.5 0.8

Adjust 0 1 1 2 5 3.5 3 3

Class-specific 0 3 2 1 2 1 1 1

qsmooth 0 4 3 3.5 3 2 2 2

All 0 5 5 5 4 3.5 4 4

Discrete 0 2 6 6 1 6 6 6

Ratio 0 6 4 3.5 6 5 5 5

Table 2.   Rank distributions denoting performance based on statistical feature selection and batch effect 
correction using D2.2 data (c.f. Fig. 4B). The top ranked method is displayed in bold.

Batch

F-score Delta

0 0.2 0.5 0.8 0 0.2 0.5 0.8

CEP: 0

Adjust 0 0 0 0 1 4 4 4

Class-specific 0 0 0 0 2 4 4 4

qsmooth 0 0 0 0 4 4 4 4

All 0 0 0 0 4 4 4 4

Discrete 0 0 0 0 4 4 4 4

Ratio 0 0 0 0 6 1 1 1

CEP: 0.2

Adjust 2.5 2.5 2 4 2.5 4 4.5 4.5

Class-specific 2.5 2.5 2 1 1 1 1 1

qsmooth 2.5 2.5 5 4 4 2 2 2

All 5.5 6 5 4 5 4 3 3

Discrete 2.5 2.5 2 4 2.5 4 4.5 4.5

Ratio 5.5 5 5 4 6 6 6 6

CEP: 0.5

Adjust 3 3 3 4 2.5 3.5 4.5 4.5

Class-specific 3 3 3 2 2.5 1 1 1

qsmooth 3 5 5 4 2.5 2 2 2

All 6 6 6 6 5 5 3 3

Discrete 3 3 3 4 2.5 3.5 4.5 4.5

Ratio 3 1 1 1 6 6 6 6

CEP: 0.8

Adjust 3.5 4 4 3 2.5 3.5 3.5 4.5

Class-specific 3.5 4 2 3 2.5 1 1 1

qsmooth 3.5 4 4 5 2.5 2 2 2

All 6 6 6 6 5 5 5 3

Discrete 3.5 2 4 3 2.5 3.5 3.5 4.5

Ratio 1 1 1 1 6 6 6 6
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Using RCC, we first simulated class-effect proportion (CEP) from 0 to 0.8. Each technical batch in RCC with 
only class-effects simulated is termed as “Adjustment” phase data. We then simulated batch effects by combin-
ing the 3 technical batches derived from the “Adjustment” phase data using two scenarios, Ba1Ba2 and Ba2Ba3, 
which refer to Batches 1 and 2, and Batches 2 and 3 respectively. Ba1Ba2 and Ba2Ba3 are each normalized using 
the five QN-strategies. This post-normalized Ba1Ba2 and Ba2Ba3 are referred to as “Normalization” phase data. 
Finally, since we have two sets of normalized data due to Ba1Ba2 and Ba2Ba3, we combine these to create the 
“Combination” phase dataset.

For “Adjustment”, “Normalization” and “Combination” phase data, we perform statistical feature selection 
and summarize the findings as F-scores (Fig. 5A). We also evaluate changes in the measured batch effects based 
on the gPCA Delta (the actual values are detailed in Supplementary table S1). Furthermore, we summarize the 
findings as ranks in Fig. 5B for easy evaluation of performance for the “Combination” scenario.

When CEP is weak (0.2), there is overall degradation in statistical feature selection performance in the “Com-
bination” phase. In the case of “All”, the F-scores for Ba1Ba2, Ba2Ba3 and “Combination” are 0.54, 0.56 and 0.48 
respectively. This weaker performance in the “Combination” phase is also observed in the case of “Class-specific” 
for Ba1Ba2, Ba2Ba3 and “Combination” at 0.78, 0.76 and 0.63 respectively. Similar degradations are also observed 
for “Discrete” and “qsmooth”. Only “Ratio” remained invariant for Ba1Ba2, Ba2Ba3 and “Combination” phases, 
albeit with the same poor F-scores at 0.33.

These results may come across as unsurprising, since combining discretely normalized data (Ba1Ba2 + Ba2Ba3) 
will create additional batch effects that make it harder to select correct signal. Notably, the “Ratio” strategy per-
forms the worst, followed by “All”. This is consistent with our earlier findings, since we already know that “Ratio” 
is the worst at dealing with batch effects (c.f. Fig. 4).

As CEP increases from 0.2 towards 0.8, all QN-strategies improve, including “Ratio”. For example, the F-scores 
for “Class-specific” and “Discrete” both increase to 0.94. However, the rate of improvement differs, with “All” 
moving slowly, and eventually languishing to become the worst-performing method with an F-score of 0.57 
given a CEP of 0.8.

Figure 5.   Feature-selection performance based on combining datasets that have been normalized separately 
given increasing class effect proportion (from 0 to 0.8) (A) distribution of F-scores Best performing method in 
the combination scenario is marked with a red *. (B) Feature-selection performance (F-Score) and Batch effect 
correction (Delta) based on the data combination scenario across 3 different class effect proportion (CEP) levels 
Performance values are summarized as ranks, where 1 is the best (highlighted in red or green), and 5 is the worst 
(c.f. Fig. 3).
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If we are working with multiple datasets with relatively low CEPs, the “qsmooth” approach is good. Here, the 
F-score for “qsmooth” is 0.66, with the next best performing method being “Class-specific” at 0.63. The worst is 
“Ratio” with an F-score of 0.33. However, if high CEPs are suspected to be present, then the “Class-specific” and 
“Discrete” strategies yield better results. Here, the F-score for “Class-specific” and “Discrete” is 0.94, with the 
next best performing method being “qsmooth” at 0.92.

When it comes to batch correction, the best strategies are “Discrete” and “Class-specific”, with “qsmooth” also 
being a good option (Fig. 5B). While “All” does not afford much adjustment for batch effects, the “Ratio” strategy 
is consistently the worst at batch-effect management (Fig. 5B; c.f. Fig. 4).

Discussions
Quantile normalization is affected by class‑effect proportion and batch effects.  Applying QN 
on a whole dataset assumes all samples in that dataset, irrespective of class, to have similar feature value (i.e. pro-
tein expression level) distributions. Given a dataset with two classes and a single batch. Suppose QN is applied 
blindly to the entire dataset, we will find that even when samples in the two classes have different feature value 
distributions, they are both normalized by QN to the same incorrect target feature value distribution (which 
is the average of the two true distributions weighted by the proportions of samples in the two classes). On the 
other hand, suppose QN is applied on the two classes of samples separately, the samples would be normalized to 
their respective target feature value distribution. Hence applying QN blindly to the entire dataset is less likely to 
produce good results than applying QN in a class-specific way (Supplementary Fig. S1).

Suppose further that there are two batches where QN is applied in a class- and batch-specific manner, four 
class-and batch-specific feature value distributions are produced for the four possible class-batch combinations. 
If the two batch-specific distributions for the same class are quite different, this makes it harder to correctly detect 
the actual differential features. On the other hand, suppose QN is applied in a class-specific way on the union 
of the two batches. Then the samples get normalized to the target feature value distribution of their respective 
class. This makes it easier to correctly detect the differential features than the class-and batch-specific applica-
tion of QN.

However, there is an important caveat when QN is applied in a class-specific way to the union of batches: The 
feature value distribution of a class is the average of the feature value distribution of this class in the two batches 
weighted by the proportion of samples of this class in the two batches. This dependence on proportion of samples 
of the class in the two batches is likely to cause problems when QN is applied in this manner in multiple studies, 
and the normalized data from these studies are combined.

Despite its seemingly good properties, in our simulations for the traditional “All” QN-strategy, performing 
normalization on data where class-effect proportion (CEP) becomes progressively higher, generally leads to 
poorer identification of real signal (as evidenced by statistical feature selection evaluated on the F-score). This is 
further exacerbated by the presence of batch effects serving as an additional source of confounding. In contrast, 
for the other 4 QN strategies, as CEP increases, the F-score increases.

In practice, we are well aware that data normalization based on unreliable assumptions does more harm, by 
distorting the data, and creating invalid conclusions16. A very important erroneous assumption is that the differ-
ent sample classes only involve few differential genes, and that in total, the overall distribution between samples 
should be similar, irrespective of class. These two assumptions are obviously invalid when comparing normal 
tissue against highly proliferative cancer tissue17,18.

Here, when CEP increases, applying quantile normalization on the whole dataset, is not effective, is error 
generating, and should be avoided.

Use Class‑specific quantile normalization when class‑effect proportion is high and for “com-
bination” scenarios.  Amongst the five QN-strategies, across various class-effect proportion (CEP) and 
batch-effect levels, the “Class-specific” QN-strategy emerges as the victor. It is most effective when CEP is high. 
And so, based on both sets of simulations (D2.2 and RCC), we advocate the use of the “Class-specific” strategy, 
especially when class-effect proportion is high, and where there is also the presence of a strong batch effect 
(Fig. 4; Bottom right panel).

“Class-specific” QN also works well (relative to the other four strategies) as a normalization approach if the 
intended desire is to eventually combine these separate datasets in a bid for performing mega-analysis; that is, 
combining multiple separately-normalized datasets into one single whole for the purpose of enhancing power, 
signal recovery and functional analysis.

Although the focus here is methodological, there are many practical uses for “Class-specific” QN in the bio-
logical setting. As mentioned earlier, due to limited sample availability and high running costs, many biological 
datasets lack power. But combining these generates batch and/or other technical effects. If we want to more 
effectively leverage on biological data on which much resources (monetary, material and time) have been invested, 
doing normalization better can certainly help. In specific biomedical phenotypes, there are also diseases which 
clearly have high CEP. Cancer, being an obvious scenario suitable for “Class-specific” QN.

Limitations of study.  Although we evaluate five QN strategies, this study is essentially limited to proteom-
ics data. Assuming platform-specific idiosyncratic bias is negligible, the outstanding issue of strong CEPs should 
manifest similarly in a non-platform specific manner. That is, we do not think the results would have differed 
greatly if we considered genomics or transcriptomics data.

However, it is true that different platforms have different traits (e.g. orders of magnitude amongst measured 
variables, the number of measurable variables, different technical effects), which may affect the relative perfor-
mance of statistical feature selection or batch-effect measurement. A future direction of this study would be to 
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investigate if there are discernible differences across platforms, and if our finding that the “Class-discrete” strategy 
is optimal when CEP is strong, still holds true.

Other limitations are simulation and measurement of batch effects. The approach for simulating batch effects 
here assumes uniformity, such that every protein carries some information regarding batch effects and is multi-
plicative. However, techniques for non-uniform or additive batch simulation also exist19 and could be considered 
as additional proof regarding the batch-effect robustness manifested by some of the strategies tested here. Finally, 
while very convenient, the gPCA Delta does not appear to be always stable or objective, and in the absence of 
class effects, may manifest as high (close to 1, indicating presence of batch effects), even when no true batch 
effects actually exist. However, this is a compromise, as a summary statistic measuring total batch effect is still 
more desirable than to check for batch effects manually, via the hundreds of scatterplots that may be generated 
per simulation.

Finally, this study is based essentially on simulations, with assumptions on how batch and class effects may 
manifest. While it is possible to deploy “Class-specific” QN on real data, it is much harder to prove that the 
predictions are necessarily correct. This would require experimental validation and mechanistic studies, which 
goes beyond the scope of this study.

Conclusions
Quantile normalization is often used to normalize –omics datasets. If inter-class effect proportion and/or batch-
effects are strong, then a careless but commonly used “blind” approach which applies quantile normalization on 
the entire dataset is wrong, and leads to poorer statistical feature selection while also not sufficiently addressing 
batch effects (if present). Fortunately, this is easily addressed by alternative strategies, namely, those that take 
into account class-proportion effects. Here, we demonstrate that such strategies, including the “Class-specific” 
and “qsmooth” approaches, readily outperform the blind approach to quantile normalization; and they are also 
robust, preserving useful signal even when considering multiple independently-normalized datasets.

Data availability
All data analysed in this study are available in the GitHub repository (https​://githu​b.com/gohwi​ls/NetPr​ot/relea​
ses/tag/0.1/Data.zip).
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