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Abstract 

Previous studies have shown that local scour around bridge piers and abutments is a 

common cause of waterway bridge failures, and around 60% of bridge collapses are due to 

this phenomenon. To control and reduce local scour, different engineering methods have 

been proposed by the researchers which can be classified into two distinct categories, 

including (i) armouring devices, which is a conventional way, and (ii) flow-altering devices. 

Armouring devices such as riprap is placed around a pier to armour the riverbed grains 

against shear stresses and reduces the local scour. However, riprap layers often fail to 

protect bridges during floods because it cannot be stable to withstand the high approaching 

stream velocities. The second category is flow-altering devices that change the flow field 

around the bridge piers in a manner that reduces the potential for erosion.  

In this study, a new flow-altering device named flow diversion structure (FDS) has been 

introduced and experimentally examined and optimised. Different criteria were considered 

to select the shape of this FDS including diverting streamlines from the vicinity of pier, 

creating a relatively wide wake region behind the FDS, and having a low amount of 

local scour around itself. Theoretically, by comparison different shapes according to the 

above criteria, triangular prism was recognised as a proper shape. The effectiveness of 

this innovative countermeasure was examined through a wide-ranging series of 

experimental studies. Firstly, a number of preliminary laboratory tests were conducted to 

prove whether proposed FDS can reduce the local scour around a circular bridge pier. An 

introductory FDS was built with a lateral base of 0.2D, longitudinal base of 0.5D (where D 

is the pier diameter), and full-depth (unsubmerged) height. Seven tests were conducted for 

situations of a single pier and a single pier plus the FDS, which was installed at six 

alternative locations upstream of the pier (namely d/D = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.5, 

where d is the clear distance between the pier and FDS). All tests were conducted under 

steady state and clear-water scour conditions. After achieving the equilibrium bed 

condition, the bed profile was measured, and the maximum scour depth and volume of the 

scour hole were determined for each experimental test. In addition, to determine the 

influence of the FDS on the flow field upstream of the pier, the velocity components were 

measured by an Acoustic Doppler Velocimetry (ADV). Analysis of the results indicated 

that the proposed FDS could change both the magnitude and direction of the velocity 

components upstream of the pier, and consequently reduce the scour depth around the pier 
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up to 38%. Besides, the clear distance between the pier and the FDS affected the 

performance of this new countermeasure.  

Secondly, to optimise the dimensions of FDS including the lateral base (B), longitudinal 

base (L), and height (H), and its clear distance from the upstream face of a circular pier (d), 

different FDS dimensions and locations were examined experimentally. Taguchi‘s method, 

which is an efficient statistical approach to design experimental tests, was employed here to 

determine the parameter combination to minimise the numbers of alternative tests. 

Therefore, 27 FDSs were tested to find the optimum size and installation location of the 

FDS. An advanced technology of 3-D printing was employed to build accurate physical 

models. At the end of each test, to measure the topography of the scoured bed a precise 3-D 

scanner was used. Similar to the preliminary tests, these experiments were also conducted in 

a steady flow and under clear water scour conditions. However, the hydraulic conditions 

were adjusted in such a way to produce almost maximum possible local scour. After 

achieving equilibrium condition, the scour hole was scanned, and the maximum scour depth 

and the volume of the scour hole were extracted from the 3-D model for each experimental 

test. The outcomes clearly demonstrated that the best lateral base, longitudinal base, and 

height of FDS were equals to 0.4D, 0.6D, and 0.25y (where y is the water depth), 

respectively. Furthermore, the best clear distance between FDS and the pier is 

approximately between 1D and 1.5D. In the optimum situation, the scour depth and the 

volume of the scour hole around the pier reduced by 40% and 60%, respectively. 

Finally, to find out how the optimised FDS affected the flow field around a circular pier, an 

experimental study of flow field was conducted using a Particle Image Velocimetry (PIV) 

system. All tests were conducted under fixed bed condition with no sediment. The 

optimised FDS was installed at the best location upstream of the pier (d/D = 1.5), and the 

velocity components were measured at five vertical planes (i.e., Y/D = 0, 1, 2, 3 and 4, 

where Y is the transverse direction). A similar test was carried out with only a single pier as 

a control test. The PIV images, collected during the individual experiments, were processed 

to determine the streamwise (u) and vertical (w) velocity components. A code was 

developed using MATLAB software to calculate the turbulence characteristics of the flow. 

Analysis of the results indicated that the optimised FDS significantly affected the flow field 

and changed the complicated vortices systems, including down-flow, horseshoe vortex, and 

wake vortex around the pier. Consequently, the pier-scour was significantly reduced by the 

substantial changes in the flow field. This novel device is a simple and easy option for 

mitigating local scour around the piers supporting existing and new bridges.   
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